LARGE BEARINGS # **CONTENTS** | Technical Data | | A- | 5 | |-------------------|--------------------|-----|----| | Deep Groove Ba | II Bearings | В- | 5 | | Angular Contact | Ball Bearings | В- | 15 | | Cylindrical Rolle | r Bearings | В- | 37 | | Tapered Roller B | Bearings | В- | 89 | | Spherical Roller | Bearings | B-2 | 03 | | Thrust Bearings | | B-2 | 27 | | | | | | | Bearings for Spe | ecial Applications | C- | 1 | | | | | | | Catalog List & A | ppendix Table | D- | 1 | # **Warranty** NTN warrants, to the original purchaser only, that the delivered product which is the subject of this sale (a) will conform to drawings and specifications mutually established in writing as applicable to the contract, and (b) be free from defects in material or fabrication. The duration of this warranty is one year from date of delivery. If the buyer discovers within this period a failure of the product to conform to drawings or specifications, or a defect in material or fabrication, it must promptly notify NTN in writing. In no event shall such notification be received by NTN later than 13 months from the date of delivery. Within a reasonable time after such notification, NTN will, at its option, (a) correct any failure of the product to conform to drawings, specifications or any defect in material or workmanship, with either replacement or repair of the product, or (b) refund, in part or in whole, the purchase price. Such replacement and repair, excluding charges for labor, is at NTN's expense. All warranty service will be performed at service centers designated by NTN. These remedies are the purchaser's exclusive remedies for breach of warranty. NTN does not warrant (a) any product, components or parts not manufactured by NTN, (b) defects caused by failure to provide a suitable installation environment for the product, (c) damage caused by use of the product for purposes other than those for which it was designed, (d) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, or (g) any other abuse or misuse by the purchaser. THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. In no case shall NTN be liable for any special, incidental, or consequential damages based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory, and in no case shall total liability of NTN exceed the purchase price of the part upon which such liability is based. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the product or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, downtime, the claims of third parties including customers, and injury to property. Some states do not allow limits on warranties, or on remedies for breach in certain transactions. In such states, the limits in this paragraph and in paragraph (2) shall apply to the extent allowable under case law and statutes in such states. Any action for breach of warranty or any other legal theory must be commenced within 15 months following delivery of the goods. Unless modified in a writing signed by both parties, this agreement is understood to be the complete and exclusive agreement between the parties, superceding all prior agreements, oral or written, and all other communications between the parties relating to the subject matter of this agreement. No employee of NTN or any other party is authorized to make any warranty in addition to those made in this agreement. This agreement allocates the risks of product failure between NTN and the purchaser. This allocation is recognized by both parties and is reflected in the price of the goods. The purchaser acknowledges that it has read this agreement, understands it, and is bound by its terms. Although care has been taken to assure the accuracy of the data compiled in this catalog, NTN does not assume any liability to any company or person for errors or omissions. # TECHNICAL DATA CONTENTS | 1. | | Rating and Life ····· | | |----|-----|---|-------------| | | | Bearing life ···· | | | | 1.2 | Basic rated life and basic dynamic load rating | ۹- 5 | | | | Adjusted life rating factor ····· | | | | | Basic static load rating ····· | | | | 1.5 | Allowable static equivalent load ····· | 4- 7 | | 2. | | ing Load Calculation ····· | | | | | Load acting on shafts | | | | | Mean load ····· | | | | 2.3 | Equivalent load ····· | 4- 9 | | 3. | | ing Tolerances····· | | | | | Dimensional accuracy and running accuracy | | | | 3.2 | Limits and tolerances for chamfer and tapered bore | \-20 | | 4. | | ing Fits ····· | | | | | Interference | | | | | The necessity of a proper fit | | | | 4.3 | Fit selection | \-22 | | 5. | | ing Internal Clearance····· | | | | | Bearing internal clearance | | | | 5.2 | Internal clearance selection | \-29 | | 6. | | ication ······ | | | | | Lubrication of rolling bearings ····· | | | | | Characteristics of grease and oil lubrication | | | | | Grease lubrication | | | | | Solid Grease (for bearings with solid grease lubricant) | | | | 6.5 | Oil lubrication ····· | \-42 | | 7. | | ing Materials······ | | | | | Raceway and rolling element materials | | | | 7.2 | Cage materials ····· | ۹-45 | # 1. Load Rating and Life # 1.1 Bearing life Even in bearings operating under normal conditions, the surfaces of the raceway and rolling elements are constantly being subjected to repeated compressive stresses which cause flaking of these surfaces to occur. This flaking is due to material fatigue and will eventually cause the bearings to fail. The effective life of a bearing is usually defined in terms of the total number of revolutions a bearing can undergo before flaking of either the raceway surface or the rolling element surfaces Other causes of bearing failure are often attributed to problems such as seizing, abrasions, cracking, chipping, gnawing, rust, etc. However, these so called "causes" of bearing failure are usually themselves caused by improper installation, insufficient or improper lubrication, faulty sealing or inaccurate bearing selection. Since the above mentioned "causes" of bearing failure can be avoided by taking the proper precautions, and are not simply caused by material fatigue, they are considered separately from the flaking aspect. # 1.2 Basic rated life and basic dynamic load rating A group of seemingly identical bearings when subjected to identical load and operating conditions will exhibit a wide diversity in their durability. This "life" disparity can be accounted for by the difference in the fatigue of the bearing material itself. This disparity is considered statistically when calculating bearing life, and the basic rated life is defined as follows. The basic rated life is based on a 90% statistical model which is expressed as the total number of revolutions 90% of the bearings in an identical group of bearings subjected to identical operating conditions will attain or surpass before flaking due to material fatigue occurs. For bearings operating at fixed constant speeds, the basic rated life (90% reliability) is expressed in the total number of hours of operation. The basic dynamic load rating is an expression of the load capacity of a bearing based on a constant load which the bearing can sustain for one million revolutions (the basic life rating). For radial bearings this rating applies to pure radial loads, and for thrust bearings it refers to pure axial loads. The basic dynamic load ratings given in the bearing tables of this catalog are for bearings constructed of NTN standard bearing materials, using standard manufacturing techniques. Please consult NTN Engineering for basic load ratings of bearings constructed of special materials or using special manufacturing techniques. The relationship between the basic rated life, the basic dynamic load rating and the bearing load is given in formula (1.1). $$L_{10} = \left(\frac{C}{P}\right)^{p} \cdots \cdots (1.1)$$ where, p= 3.....For ball bearings p= 10/3....For roller bearings L_{10} : Basic rated life 10 6 revolutions C: Basic dynamic rated load, N (Cr: radial bearings, Ca: thrust bearings) P: Equivalent dynamic load, N (Pr: radial bearings, Pa: thrust bearings) The basic rated life can also be expressed in terms of hours of operation (revolution), and is calculated as shown in formula (1.2). $$L_{10h} = 500 f_h^p \dots (1.2)$$ $$f_h = f_0 \frac{C}{P} \cdots \cdots (1.3)$$ $$f_n = (\frac{33.3}{n})^{1/p} \cdots (1.4)$$ where, $L_{10\mathrm{h}}$: Basic rated life, h $f_{\rm h}$: Life factor f_n : Speed factor n: Shaft speed, min⁻¹ Formula (1.2) can also be expressed as shown in formula (1.5). $$L_{10h} = \frac{10^6}{60 n} \left(\frac{C}{P} \right)^p \cdots (1.5)$$ The relationship between Rotational speed n and speed factor f_n as well as the relation between the basic rated life L_{10h} and the life factor f_n is shown in **Fig. 1.1**. When several bearings are incorporated in machines or equipment as complete units, all the bearings in the unit are considered as a whole when computing bearing life (see formula 1.6). The total bearing life of the unit is a life rating based on the viable lifetime of the unit before even one of the bearings fails due to rolling contact fatigue. $$L = \frac{1}{\left(\frac{1}{L_1^e} + \frac{1}{L_2^e} + \cdots + \frac{1}{L_n^e}\right)^{1/e}} \dots \dots (1.6)$$ where, e = 10/9.....For ball bearings e = 9/8.....For roller bearings ${\it L}$: Total basic rated life of entire unit, h $L_1.L_2\cdots L_n$: Basic rated life of individual bearings, 1, 2, ..., h When the load conditions vary at regular intervals, the life can be given by formula (1.7).
$$L_{\rm m} = (\sum \phi_{\rm j} / L_{\rm j})^{-1} \cdots \cdots (1.7)$$ where, $\varPhi\ _{\ {\scriptscriptstyle j}}$: Frequency of individual load conditions $L_{ m i}$: Life under individual conditions Fig. 1.1 Bearing life rating scale ### 1.3 Adjusted life rating factor The basic bearing life rating (90% reliability factor) can be calculated through the formulas mentioned earlier in Section 1.2. However, in some applications a bearing life factor of over 90% reliability may be required. To meet these requirements, bearing life can be lengthened by the use of specially improved bearing materials or special construction techniques. Moreover, according to elastohydrodynamic lubrication theory, it is clear that the bearing operating conditions (lubrication, temperature, shaft speed, etc.) all exert an effect on bearing life. All these adjustment factors are taken into consideration when calculating bearing life, and using the life adjustment factor as prescribed in ISO 281, the adjusted bearing life can be determined. $$L_{\text{na}} = a_1 \cdot a_2 \cdot a_3 \cdot (C/P)^p \cdots (1.8)$$ where. Lna: Adjusted life rating in millions of revolutions (10⁶)(adjusted for reliability, material and operating conditions) a₁: Reliability adjustment factor a₂: Material adjustment factor a₃:Operating condition adjustment factor #### 1.3.1 Life adjustment factor for reliability a_1 The values for the reliability adjustment factor a_1 (for a reliability factor higher than 90%) can be found in **Table 1.1**. Table 1.1 Reliability adjustment factor values a_1 | Reliability % | $L_{ m n}$ | Reliability factor a_1 | |---------------|------------|--------------------------| | 90 | L_{10} | 1.00 | | 95 | L_{5} | 0.62 | | 96 | L_4 | 0.53 | | 97 | L_3 | 0.44 | | 98 | L_2 | 0.33 | | 99 | L_1 | 0.21 | ### 1.3.2 Life adjustment factor for material a_2 The life of a bearing is affected by the material type and quality as well as the manufacturing process. In this regard, the life is adjusted by the use of an a_2 factor. The basic dynamic load ratings listed in the catalog are based on NTN's standard material and manufacturing processes, therefore, the adjustment factor a_2 =1. When special materials or processes are used the adjustment factor can be larger than 1. NTN bearings can generally be used up to 120°C. If bearings are operated at a higher temperature, the bearing must be specially heat treated (stabilized) so that inadmissible dimensional change does not occur due to changes in the micro-structure. This special heat treatment might cause the reduction of bearing life because of a hardness change. #### 1.3.3 Life adjustment factor a_3 for operating conditions The operating conditions life adjustment factor $a_{\rm s}$ is used to adjust for such conditions as lubrication, operating temperature, and other operation factors which have an effect on bearing life. Generally speaking, when lubricating conditions are satisfactory, the α_3 factor has a value of one; and when lubricating conditions are exceptionally favorable, and all other operating conditions are normal, α_3 can have a value greater than one. However, when lubricating conditions are particularly unfavorable and the oil film formation on the contact surfaces of the raceway and rolling elements is insufficient, the value of a_3 becomes less than one. This insufficient oil film formation can be caused, for example, by the lubricating oil viscosity being too low for the operating temperature (below 13 mm²/s for ball bearings; below 20 mm²/s for roller bearings); or by exceptionally low rotational speed (nmin⁻¹ x d_p mm less than 10,000). For bearings used under special operating conditions, please consult **NTN** Engineering. As the operating temperature of the bearing increases, the hardness of the bearing material decreases. Thus, the bearing life correspondingly decreases. The operating temperature adjustment values are shown in **Fig. 1.2**. Fig. 1.2 Life adjustment value for operating temperature # 1.4 Basic static load rating When stationary rolling bearings are subjected to static loads, they suffer from partial permanent deformation of the contact surfaces at the contact point between the rolling elements and the raceway. The amount of deformity increases as the load increases, and if this increase in load exceeds certain limits, the subsequent smooth operation of the bearings is impaired. It has been found through experience that a permanent deformity of 0.0001 times the diameter of the rolling element, occurring at the most heavily stressed contact point between the raceway and the rolling elements, can be tolerated without any impairment in running efficiency. The basic rated static load refers to a fixed static load limit at which a specified amount of permanent deformation occurs. It applies to pure radial loads for radial bearings and to pure axial loads for thrust bearings. The maximum applied load values for contact stress occurring at the rolling element and raceway contact points are given below. | For ball bearings | 4,200 Mpa | |--------------------------------------|-----------| | (except self-aligning ball bearings) | | | For self-aligning ball bearings | 4,600 Mpa | | For roller bearings | 4,000 Mpa | | | | # 1.5 Allowable static equivalent load Generally the static equivalent load which can be permitted (See Section 2.3.2 page A-9) is limited by the basic static rated load as stated in **Section 1.4**. However, depending on requirements regarding friction and smooth operation, these limits may be greater or lesser than the basic static rated load. In the following formula (1.9) and **Table 1.2** the safety factor S_0 can be determined considering the maximum static equivalent load. $$S_{\circ} = C_{\circ} / P_{\circ} \cdots$$ (1.9) where. S_{\circ} : Safety factor C_{\circ} : Basic static rated load, N (radial bearings: $C_{\rm or}$, thrust bearings: $C_{\rm oa}$) $P_{0 \text{ max}}$: Maximum static equivalent load, N (radial: P_{or} max, thrust: C_{oa} max) Table 1.2 Minimum safety factor values So | Operating conditions | Ball
bearings | Roller
bearings | |---|------------------|--------------------| | High rotational accuracy demand | 2 | 3 | | Normal rotating accuracy demand (Universal application) | 1 | 1.5 | | Slight rotational accuracy
deterioration permitted
(Low speed, heavy loading, etc.) | 0.5 | 1 | Notes: 1. For spherical thrust roller bearings, min. So value=4. 2. For shell needle roller bearings, min. So value=3. When vibration and/or shock loads are present, a load factor based on the shock load needs to be included in the P₀ max value. 4. If a large axial load is applied to deep groove ball bearings or angular ball bearings, the contact oval may exceed the raceway surface. For more information, please contact NTN Engineering. # 2. Bearing Load Calculation To compute bearing loads, the forces which act on the shaft being supported by the bearing must be determined. These forces include the inherent dead weight of the rotating body (the weight of the shafts and components themselves), loads generated by the working forces of the machine, and loads arising from transmitted power. It is possible to calculate theoretical values for these loads; however, there are many instances where the load acting on the bearing is usually determined by the nature of the load acting on the main power transmission shaft. # 2.1 Load acting on shafts #### 2.1.1 Load factor There are many instances where the actual operational shaft load is much greater than the theoretically calculated load, due to machine vibration and/or shock. This actual shaft load can be found by using formula (2.1) $$K=f_{\mathsf{W}}\cdot K_{\mathsf{C}}\cdots$$ (2.1) where: K: Actual shaft load N {kgf} f_W : Load factor (**Table 2.1**) K_{c} : Theoretically calculated value N {kgf} Table 2.1 Load factor $f_{\rm w}$ | Amount of shock | $f_{ m w}$ | Application | |-------------------------|------------|--| | Very little or no shock | 1.0~1.2 | Electrical machines, machine tools, measuring instruments. | | Light shock | 1.2~1.5 | Railway vehicles, automobiles, rolling mills, metal working machines, paper making machines, rubber mixing machines, printing machines, aircraft, textile machines, electrical units, office machines. | | Heavy shock | 1.5~3.0 | Crushers, agricultural equipment, construction equipment, cranes. | # 2.2 Mean load The load on bearings used in machines under normal circumstances will, in many cases, fluctuate according to a fixed time period or planned operation schedule. The load on bearings operating under such conditions can be converted to a mean load ($F_{\rm m}$), this is a load which gives bearings the same life they would have under constant operating conditions. # (1) Fluctuating stepped load The mean bearing load, $F_{\rm m}$, for stepped loads is calculated from formula (2.2). $F_{\rm 1}$, $F_{\rm 2}$ $F_{\rm n}$ are the loads acting on the bearing; $n_{\rm 1}$, $n_{\rm 2}$ $n_{\rm m}$ and $t_{\rm 1}$, $t_{\rm 2}$ $t_{\rm n}$ are the bearing speeds and operating times respectively. $$F_{\mathrm{m}} = \left(\frac{\sum (F_{\mathrm{i}}^{p} n_{\mathrm{i}} t_{\mathrm{i}})}{(n_{\mathrm{i}} t_{\mathrm{i}})}\right)^{1/p} \dots (2.2)$$ where: p=3 For ball bearings p=10/3 For roller bearings Fig. 2.1 Stepped load ### (2) Consecutive series load Where it is possible to express the function F(t) in terms of load cycle to and time t, the mean load is found by using formula (2.3). $$F_{\rm m} = \left[\frac{1}{t_0} \int_0^{t_0} F(t)^p dt \right]^{1/p} \dots (2.3)$$ where:
p=3 For ball bearings p=10/3 For roller bearings Fig. 2.2 Linear fluctuating load #### (3) Linear fluctuating load The mean load, $F_{\rm m}$, can be approximated by formula (2.4). $$F_{\rm m} = \frac{F_{\rm min} + 2F_{\rm max}}{3} \cdots (2.4)$$ Fig. 2.3 Time function series load # NTN ### (4) Sinusoidal fluctuating load The mean load, F_m , can be approximated by formulas (2.5) and (2.6). case (a) $$F_m = 0.75 F_{max} \cdots (2.5)$$ case (b) $F_m = 0.65 F_{max} \cdots (2.6)$ Fig. 2.4 Sinusoidal variable load ### 2.3 Equivalent load # 2.3.1 Dynamic equivalent load When both dynamic radial loads and dynamic axial loads act on a bearing at the same time, the hypothetical load acting on the center of the bearing giving the bearings the same life as if they had only a radial load or only an axial load, is called the dynamic equivalent load. For radial bearings, this load is expressed as pure radial load and is called the dynamic equivalent radial load. For thrust bearings, it is expressed as pure axial load and is called the dynamic equivalent axial load. # (1) Dynamic equivalent radial load The dynamic equivalent radial load is expressed by formula (2.7). $$P_{r}=XF_{r}+YF_{a}$$(2.7) where, P_r: Dynamic equivalent radial load, N F_r: Actual radial load, N $F_{\rm a}$: Actual axial load, N X: Radial load factor Y: Axial load factor The values for X and Y are listed in the bearing tables. ### (2) Dynamic equivalent axial load As a rule, standard thrust bearings with a contact angle of 90° cannot carry radial loads. However, self-aligning thrust roller bearings can accept some radial load. The dynamic equivalent axial load for these bearings is given in formula (2.8). $$P_{a} = F_{a} + 1.2F_{r} 1.2F$$ where, Pa: Dynamic equivalent axial load, N $F_{\rm a}$: Actual axial load, N $F_{\rm r}$: Actual radial load, N Provided that $F_r/F_a \leq 0.55$ only. ### 2.3.2 Static equivalent load The static equivalent load is a hypothetical load which would cause the same total permanent deformation at the most heavily stressed contact point between the rolling elements and the raceway as under actual load conditions; that is when both static radial loads and static axial loads are simultaneously applied to the bearing. For radial bearings this hypothetical load refers to pure radial loads, and for thrust bearings it refers to pure centric axial loads. These loads are designated static equivalent radial loads and static equivalent axial loads respectively. ### (1) Static equivalent radial load For radial bearings the static equivalent radial load can be found by using formula (2.9) or (2.10). The greater of the two resultant values is always taken for $P_{\rm or}$. $$P_{\text{or}} = X_{\text{o}} F_{\text{r}} + Y_{\text{o}} F_{\text{a}} \cdots$$ (2.9) $P_{\text{or}} = F_{\text{r}} \cdots \cdots \cdots \cdots \cdots$ (2.10) where, Por: Static equivalent radial load, N $F_{\rm r}$: Actual radial load, N $F_{\rm a}$: Actual axial load, N X_{\circ} : Static radial load factor Y_{\circ} : Static axial load factor The values for X_0 and Y_0 are given in the respective bearing tables. ### (2) Static equivalent axial load For spherical thrust roller bearings the static equivalent axial load is expressed by formula (2.11). $$P_{\text{oa}} = F_{\text{a}} + 2.7 F_{\text{r}} \cdots (2.11)$$ where, P_{oa} : Static equivalent axial load, N F_a : Actual axial load, N $F_{\rm r}$: Actual radial load, N Provided that $F_r / F_a \leq 0.55$ only. # 3. Bearing Tolerances # 3.1 Dimensional accuracy and running accuracy Bearing "tolerances" or dimensional accuracy and running accuracy, are regulated by ISO and JIS B 1514 standards (rolling bearing tolerances). For **dimensional accuracy**, these standards prescribe the tolerances necessary when installing bearings on shafts or in housings. **Running accuracy** is defined as the allowable limits for bearing runout during operation. ### **Dimensional accuracy** Dimensional accuracy constitutes the acceptable values for bore diameter, outer diameter, assembled bearing width, and bore diameter uniformity as seen in chamfer dimensions, allowable inner ring tapered bore deviation and shape error. Also included are, average bore diameter variation average, outer diameter variation, average outer diameter unevenness, as well as raceway width and height variation (for thrust bearings). ### Running accuracy Running accuracy constitutes the acceptable values for inner and outer ring radial runout and axial runout, inner ring side runout, and outer ring outer diameter runout. Allowable rolling bearing tolerances have been established according to precision classes. JIS Class 0 corresponds to normal precision class bearings, and precision becomes progressively higher as the class number becomes smaller; i.e., Class 6 is less precise than Class 5, which is less precise than Class 4, and so on. Table 3.1 indicates which standards and precision classes are applicable to the major bearing types. Table 3.2 shows a relative comparison between JIS B 1514 precision class standards and other standards. For greater detail on allowable error limitations and values, refer to Tables 3.3 - 3.8. Allowable values for chamfer dimensions are shown in Table 3.9, and allowable error limitations and values for radial bearing inner ring tapered bores are shown in Table 3.10. Table 3.1 Bearing types and applicable tolerance | Bearing type | | Applicable standard | | Applica | ble tolera | nce | | Tolerance table | |----------------------------------|--------|---------------------|------------|---------|------------|---------|----------|-----------------| | Deep groove ball bearing | | | class 0 | class 6 | class 5 | class 4 | class 2 | | | Angular contact ball bearings | | ISO492 | class 0 | class 6 | class 5 | class 4 | class 2 | Table 0.0 | | Cylindrical roller bearigns | | 150492 | class 0 | class 6 | class 5 | class 4 | class 2 | Table 3.3 | | Spherical roller bearings | | | class 0 | _ | _ | _ | _ | | | Tapered roller bearings | metric | ISO492 | class 0,6X | class 6 | class 5 | class 5 | _ | Table 3.4 | | rapered roller bearings | Inch | ABMA Std.19 | class 4 | class 2 | class 3 | class 0 | class 00 | Table 3.5 | | Thrust ball bearings | | - ISO199 | class 0 | class 6 | class 5 | class 4 | _ | Table 3.6 | | Spherical roller thrust bearings | | 130199 | class 0 | _ | _ | _ | _ | Table 3.7 | | Thrust tapered roller bearings | metric | NTN standard | class 0 | _ | _ | _ | _ | Table 3.8 | | musi tapereu roller bearings | Inch | ANSI/ABMA Std. 23 | class 2 | _ | _ | _ | _ | Table 3.8 | Table 3.2 Comparison of tolerance classifications of national standards | Standa | rd | | Tole | rance Cla | ass | | Bearing Types | | | | |--|------------------|-----------------------------|------------------|------------------|---------|----------|---|--|--|--| | Japanese industrial standard (JIS) | JIS B 1514 | class 0,6X | class 6 | class 5 | class 4 | class 2 | All type | | | | | | ISO 492 | Normal
class
Class 6X | Class 6 | Class 5 | Class 4 | Class 2 | Radial bearings | | | | | International Organization for Standardization (ISO) | ISO 199 | Normal class | Class 6 | Class 5 | Class 4 | _ | Thrust ball bearings | | | | | | ISO 578 | Class 4 | _ | Class 3 | Class 0 | Class 00 | Tapered roller bearings (Inch series) | | | | | Deutsches Institut
fur Normung(ISO) | DIN 620 | P0 | P6 | P5 | P4 | P2 | All type | | | | | American National
Standards Institute (ANSI)
Anti-Friction Bearing | ANSI/ABMA Std.20 | ABEC-1
RBEC-1 | ABEC-3
RBEC-3 | ABEC-5
RBEC-5 | ABEC-7 | ABEC-9 | Radial bearings
(Except tapered roller bearings) | | | | | Manufacturers (ABMA) | ANSI/ABMA Std.19 | Class 4 | Class 2 | Class 3 | Class 0 | Class 00 | Tapered roller bearings (Inch series) | | | | [&]quot;ABEC" is applied for ball bearings and "RBEC" for roller bearings. Notes: 1. JIS B 1514, ISO 492 and 199, and DIN 620 have the same specification level. ^{2.} The tolerance and allowance of JIS B 1514 are a little different from those of ABMA standards. Table 3.3 Tolerance for radial bearings (Except tapered roller bearings) Table 3.3 (1) Inner rings | | ninal
ore
neter | | Sir | ngle p | lane m | | oore d | liame | ter dev | viation | 1 | Single radial plane bore diameter variation $V_{d m p}$ | | | | | | | | | | | | | | | |-------|-----------------------|------|------|--------|--------|------|--------|-------|---------|---------|------|---|-----|------------|-------|---|-------|------|--------|-------|-------|-------|------|--------|-------|-------| | 0 | | | | | | | | | | | | dia | ame | ter se | eries | 9 | l max | diam | eter s | eries | s 0.1 | max | diam | eter s | eries | 2,3,4 | | m | m | clas | ss 0 | cla | ss 6 | clas | ss 5 | cla | ss 4 | cla | ss 2 | | | class
5 | | | | | class | | | class | | | | | | over | incl. | high | low | high | low | high | low | high | | high | low | | | max | | | | | max | | _ | ŭ | | max | | _ | | 80 | 120 | 0 | -20 | 0 | -15 | 0 | -10 | 0 | -8 | 0 | -5 | 25 | 19 | 10 | 8 | 5 | 25 | 19 | 8 | 6 | 5 | 15 | 11 | 8 | 6 | 5 | | 120 | 150 | 0 | -25 | 0 | -18 | 0 | -13 | 0 | -10 | 0 | -7 | 31 | 23 | 13 | 10 | 7 | 31 | 23 | 10 | 8 | 7 | 19 | 14 | 10 | 8 | 7 | | 150 | 180 | 0 | -25 | 0 | -18 | 0 | -13 | 0 | -10 | 0 | -7 | 31 | 23 | 13 | 10 | 7 | 31 | 23 | 10 | 8 | 7 | 19 | 14 | 10 | 8 | 7 | | 180 | 250 | 0 | -30 | 0 | -22 | 0 | -15 | 0 | -12 | 0 | -8 | 38 | 28 | 15 | 12 | 8 | 38 | 28 | 12 | 9 | 8 | 23 | 17 | 12 | 9 | 8 | | 250 | 315 | 0 | -35 | 0 | -25 | 0 | -18 | _ | _ | _ | _ | 44 | 31 | 18 | _ | _ | 44 | 31 | 14 | _ | _ | 26 | 19 | 14 | _ | _ | | 315 | 400 | 0 | -40 | 0 | -30 | 0 | -23 | _ | _ | _ | _ | 50 | 38 | 23 | _ | _ | 50 | 38 | 18 | _ | _ | 30 | 23 | 18 | _ | _ | | 400 | 500 | 0 | -45 | 0 | -35 |
_ | _ | _ | _ | _ | _ | 56 | 44 | _ | _ | _ | 56 | 44 | _ | _ | _ | 34 | 26 | _ | _ | _ | | 500 | 630 | 0 | -50 | 0 | -40 | _ | _ | _ | _ | _ | _ | 63 | | _ | _ | _ | 63 | 50 | _ | _ | _ | 38 | 30 | _ | _ | _ | | 630 | 800 | 0 | -75 | _ | _ | _ | _ | _ | _ | _ | _ | 94 | _ | _ | _ | _ | 94 | _ | _ | _ | _ | 55 | _ | _ | _ | _ | | 800 | 1,000 | 0 | -100 | _ | _ | _ | _ | _ | _ | _ | _ | 125 | _ | _ | _ | _ | 125 | _ | _ | _ | _ | 75 | _ | _ | _ | _ | | 1,000 | 1,250 | 0 | -125 | _ | _ | _ | _ | _ | _ | _ | _ | 155 | _ | _ | _ | _ | 155 | _ | _ | _ | _ | 94 | _ | _ | _ | _ | | 1,250 | 1,600 | 0 | -160 | _ | _ | _ | _ | _ | _ | _ | _ | 200 | _ | _ | _ | _ | 200 | _ | _ | _ | _ | 120 | _ | _ | _ | _ | | 1,600 | 2,000 | 0 | -200 | _ | _ | _ | _ | _ | _ | _ | _ | 250 | _ | _ | _ | _ | 250 | _ | _ | - | _ | 150 | _ | _ | _ | _ | [•] The dimensional difference Δds of bore diameter to applied for class 4 and 2 is the same as the tolerance of dimensional difference Δdmp of average bore diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and to all the diameter series against Class 2. Table 3.3 (2) Outer rings | | Nom | | | Single plane mean outside diameter deviation | | | | | | | | | | | | ngle | radi | al pla | ne o | utsi | de d | liame | eter v | ariat | ion | | | |----|--------------|-------|------|--|------|------|-----------------|------|------|-------|------|-------|--|-------|-----------|-------|------------|--------|-------|-------|-------------------------------|------------|--------|------------|------------|------------|-------| | | outs
diam | | | | | | $\Delta \! D$ n | пр | | | | | | | | | | | | V_D | p | | | | | | | | | L |) | | | | | | | | | | | | | open type | | | | | | | | | | | | | | | mı | m | | | | | | | | | | | diameter series 9 max diameter serie | | | | | | serie | s 0,1 | 0,1 max diameter series 2,3,4 | | | | | | | | | | | cla | ss 0 | cla | ss 6 | clas | ss 5 | cla | ıss 4 | cla | ass 2 | class | class | class | class | class
2 | class | class | class | class | class
2 | class | class
6 | class
5 | class
4 | class | | | over | incl. | high | low | | U | max | | 2 | | J | max | | 2 | | ŭ | max | | | | | 80 | 120 | 0 | -15 | 0 | -13 | 0 | -10 | 0 | -8 | 0 | -5 | 19 | 16 | 10 | 8 | 5 | 19 | 16 | 8 | 6 | 5 | 11 | 10 | 8 | 6 | 5 | | | 120 | 150 | 0 | -18 | 0 | -15 | 0 | -11 | 0 | -9 | 0 | -5 | 23 | 19 | 11 | 9 | 5 | 23 | 19 | 8 | 7 | 5 | 14 | 11 | 8 | 7 | 5 | | | 150 | 180 | 0 | -25 | 0 | -18 | 0 | -13 | 0 | -10 | 0 | -7 | 31 | 23 | 13 | 10 | 7 | 31 | 23 | 10 | 8 | 7 | 19 | 14 | 10 | 8 | 7 | | | 180 | 250 | 0 | -30 | 0 | -20 | 0 | -15 | 0 | -11 | 0 | -8 | 38 | 25 | 15 | 11 | 8 | 38 | 25 | 11 | 8 | 8 | 23 | 15 | 11 | 8 | 8 | | | 250 | 315 | 0 | -35 | 0 | -25 | 0 | -18 | 0 | -13 | 0 | -8 | 44 | 31 | 18 | 13 | 8 | 44 | 31 | 14 | 10 | 8 | 26 | 19 | 14 | 10 | 8 | | | 315 | 400 | 0 | -40 | 0 | -28 | 0 | -20 | 0 | -15 | 0 | -10 | 50 | 35 | 20 | 15 | 10 | 50 | 35 | 15 | 11 | 10 | 30 | 21 | 15 | 11 | 10 | | | 400 | 500 | 0 | -45 | 0 | -33 | 0 | -23 | _ | _ | _ | _ | 56 | 41 | 23 | _ | _ | 56 | 41 | 17 | _ | _ | 34 | 25 | 17 | _ | _ | | | 500 | 630 | 0 | -50 | 0 | -38 | 0 | -28 | _ | _ | _ | _ | 63 | 48 | 28 | _ | _ | 63 | 48 | 21 | _ | _ | 38 | 29 | 21 | _ | _ | | | 630 | 800 | 0 | -75 | 0 | -45 | 0 | -35 | _ | _ | _ | _ | 94 | 56 | 35 | _ | _ | 94 | 56 | 26 | _ | _ | 55 | 34 | 26 | _ | _ | | | 800 | 1,000 | 0 | -100 | 0 | -60 | _ | _ | _ | _ | _ | _ | 125 | 75 | _ | _ | _ | 125 | 75 | _ | _ | _ | 75 | 45 | _ | _ | _ | | 1, | 000 | 1,250 | 0 | -125 | _ | _ | _ | _ | _ | _ | _ | _ | 155 | _ | _ | _ | _ | 155 | _ | _ | _ | _ | 94 | _ | _ | _ | _ | | 1, | 250 | 1,600 | 0 | -160 | _ | _ | _ | _ | _ | _ | _ | _ | 200 | _ | _ | - | - | 200 | _ | _ | - | _ | 120 | - | - | _ | _ | | 1, | 600 | 2,000 | 0 | -200 | _ | _ | _ | _ | _ | _ | _ | _ | 250 | _ | _ | _ | _ | 250 | _ | _ | _ | _ | 150 | _ | _ | _ | _ | | 2, | 000 | 2,500 | 0 | -250 | _ | _ | _ | _ | - | _ | - | _ | 310 | - | _ | _ | - | 310 | _ | _ | _ | - | 190 | _ | - | _ | _ | The dimensional difference ΔDs of outer diameter to be applied for classes 4 and 2 is the same as the tolerance of dimensional difference ΔDmp of average outer diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and also to all the diameter series against Class 2. | Mean single plane bore diameter variation $V_{d\mathrm{mp}}$ | $ \begin{array}{c c} \text{Inner ring} & \text{Face runout} \\ \text{radial runout} & \text{with bore} \\ \hline K_{\text{ia}} & S_{\text{d}} \\ \end{array} $ | Inner ring axial runout (with side) | Inner ring width deviation Δ_{BS} | Inner ring width variation $V_{B m S}$ | |--|---|-------------------------------------|---|---| | class class class class class 0 6 5 4 2 max | class | class class class
5 4 2
max | normal modified class 0,6 class 5,4 class 2 class 0,6 class 5,4 high low high low high low high low | class class class class class
0 6 5 4 2
max | | 15 11 5 4 2.5
19 14 7 5 3.5
19 14 7 5 3.5 | 25 13 6 5 2.5 9 5 2.5 30 18 8 6 2.5 10 6 2.5 30 18 8 6 5 10 6 4 | 9 5 2.5
10 7 2.5
10 7 5 | 0 -200 0 -200 0 -380 0 -380 0 -250 0 -250 0 -500 0 -380 0 -250 0 -250 0 -500 0 -380 | 25 25 7 4 2.5
30 30 8 5 2.5
30 30 8 5 4 | | 23 17 8 6 4
26 19 9 — —
30 23 12 — — | 40 20 10 8 5 11 7 5 50 25 13 — 60 30 15 — 15 — 15 — | 13 8 5
15 — —
20 — — | 0 -300 0 -350 0 -500 0 -500 0 -350 0 -350 — 0 -500 0 -500 0 -400 0 -400 — 0 -630 0 -630 | 30 30 10 6 5
35 35 13 — —
40 40 15 — — | | 34 26 — — —
38 30 — — —
55 — — — | 65 35 — — — — — — — — — — — — — — — — — — | | 0 -450 0 -500 0 -750 | 50 45 — — —
60 50 — — —
70 — — — | | 75 — — — —
94 — — — —
120 — — — —
150 — — — | 90 — — — — — — — — — — — — — — — — — — — | | 0 -1,000 — — — — 0 -1,250 — — — — 0 -1,600 — — — — 0 -2,000 — — — — | 80 — — — —
100 — — — —
120 — — —
140 — — — | 2 To be applied to deep groove ball bearing and angular contact ball bearings. 3 To be applied to individual raceway rings manufactured for combined bearing use. Unit μ m | | Mean single plane outside diameter variation $V_{D{ m mp}}$ | | | | | er rin | g rac | lial ru | inout | | ide su
clinati
Sp | irface
ion | | side i
al run S_{ea} | out | | er ring variation $V_{C{ m s}}$ | | |-----------------|---|-------------------|-------------|-------------------|-------------------|----------------|-------------------|----------------|-------------|----------------|-------------------------|-------------------|----------------|---------------------------|-------------|----------------|---------------------------------|-------------------| | class
0 | class
6 | class
5
max | class
4 | class
2 | class
0 | class
6 | class
5
max | class
4 | class
2 | class
5 | class
4
max | class
2 | class
5 | class
4
max | class
2 | class
5 | class
4
max | class
2 | | 11
14
19 | 10
11
14 | 5
6
7 | 4
5
5 | 2.5
2.5
3.5 | 35
40
45 | 18
20
23 | 10
11
13 | 6
7
8 | 5
5
5 | 9
10
10 | 5
5
5 | 2.5
2.5
2.5 | 11
13
14 | 6
7
8 | 5
5
5 | 8
8
8 | 4
5
5 | 2.5
2.5
2.5 | | 23
26
30 | 15
19
21 | 8
9
10 | 6
7
8 | 4
4
5 | 50
60
70 | 25
30
35 | 15
18
20 | 10
11
13 | 7
7
8 | 11
13
13 |
7
8
10 | 4
5
7 | 15
18
20 | 10
10
13 | 7
7
8 | 10
11
13 | 7
7
8 | 4
5
7 | | 34
38
55 | 25
29
34 | 12
14
18 | _
_
_ | _
_
_ | 80
100
120 | 40
50
60 | 23
25
30 | _
_
_ | _
_
_ | 15
18
20 | _
_
_ | _
_
_ | 23
25
30 | _
_
_ | _
_
_ | 15
18
20 | _
_
_ | _
_
_ | | 75
94
120 | 45
—
— | _
_
_ | _
_
_ | _
_
_ | 140
160
190 | 75
—
— | | _
_
_ | _
_
_ | _
_
_ | | _
_
_ | 150
190 | _ | _ | _ | _ | 220
250 | _ | _ | _ | _ | _
_ | _ | _ | _
_ | _ | _ | _
_ | _ | _ | **⑤** To be applied to deep groove ball bearings and angular contact ball bearings. Table 3.4 Tolerance of tapered roller bearings (Metric system) Table 3.4 (1) Inner rings | bo
dian | ninal
ore
neter | | _ | e plane
ameter
Δa | | |) | | ngle ra
diame | | | | ean sin
diame
V_a | . | | Inne | Ŭ | radial ı
Kia | runout | run
with | ice
iout
bore | |------------|-----------------------|------|---------|-------------------------|-------|------|-------|-------|------------------|-------|-------|-------|---------------------------|----------|-------|-------|-------|-----------------|--------|-------------|---------------------| | | d | .1 | - 0.01/ | .1 | - 5.0 | -1- | | class S class | class | | | ım
 | | s 0,6X | class | | | iss 4 | 0,6X | 6 | 5 | 4 | 0,6X | 6 | 5 | 4 | 0,6X | 6 | 5 | 4 | 5 | 4 | | over | incl. | high | low | high | low | high | low | | n | nax | | | n | nax | | | n | nax | | m | nax | | 80 | 120 | 0 | -20 | 0 | -15 | 0 | -10 | 20 | 15 | 11 | 8 | 15 | 11 | 8 | 5 | 30 | 13 | 8 | 5 | 9 | 5 | | 120 | 180 | 0 | -25 | 0 | -18 | 0 | -13 | 25 | 18 | 14 | 10 | 19 | 14 | 9 | 7 | 35 | 18 | 11 | 6 | 10 | 6 | | 180 | 250 | 0 | -30 | 0 | -22 | 0 | -15 | 30 | 22 | 17 | 11 | 23 | 16 | 11 | 8 | 50 | 20 | 13 | 8 | 11 | 7 | | 050 | 045 | _ | 0.5 | | | | | 0.5 | | | | 00 | | | | | | | | | | | 250 | 315 | 0 | -35 | _ | _ | _ | _ | 35 | _ | _ | _ | 26 | _ | _ | _ | 60 | _ | _ | _ | _ | _ | | 315 | 400 | 0 | -40 | _ | _ | _ | _ | 40 | _ | _ | _ | 30 | _ | _ | _ | 70 | _ | _ | _ | _ | _ | | 400 | 500 | 0 | -45 | _ | _ | _ | _ | 45 | _ | _ | _ | 34 | _ | _ | _ | 80 | _ | _ | _ | _ | _ | | 500 | 630 | 0 | -50 | _ | _ | _ | _ | 50 | _ | _ | _ | 38 | _ | _ | _ | 90 | _ | _ | _ | _ | _ | | 630 | 800 | 0 | -75 | _ | _ | _ | _ | 75 | _ | _ | _ | 56 | | _ | _ | 105 | _ | _ | _ | _ | _ | | 800 | 1,000 | ٥ | -100 | _ | _ | _ | _ | 100 | _ | _ | _ | 75 | | _ | _ | 120 | _ | _ | _ | _ | _ | | 000 | 1,000 | | 100 | | | | | 100 | | | | 73 | _ | | | 120 | | | | | | | 1,000 | 1,250 | 0 | -125 | _ | _ | _ | _ | 125 | _ | _ | _ | 94 | _ | _ | _ | 140 | _ | _ | _ | _ | _ | | 1,250 | 1,600 | 0 | -160 | _ | _ | _ | _ | 160 | _ | _ | _ | 120 | _ | _ | _ | 160 | _ | _ | _ | _ | _ | $[\]textbf{①} \ \, \text{The dimensional difference } \Delta_{\textit{ds}} \ \, \text{of bore diameter to be applied for class 4 is the same as the tolerance of dimensional difference } \Delta_{\textit{dmp}} \ \, \text{of average bore diameter.}$ Table 3.4 (2) Outer rings | ou | minal
Itside
meter | , | Single plane mean outside diameter deviation \$\Delta_{Dmp}\$ class 0.6X class 5.6 class 4 | | | | de | | | | | | ean sin
utside (
varia | diame | | Oute | J | radial (
Tea | runout | surf
inclin | side
ace
ation | |-------|--------------------------|------|--|------|-----|------|-------|---------------|------------|------------|------------|---------------|------------------------------|------------|------------|---------------|------------|-----------------|------------|----------------|----------------------| | n | nm | | ,- | | | | ass 4 | class
0,6X | class
6 | class
5 | class
4 | class
0,6X | class
6 | class
5 | class
4 | class
0,6X | class
6 | class
5 | class
4 | class
5 | class
4 | | over | incl. | high | low | high | low | high | low | | n | nax | | | n | nax | | | n | nax | | m | nax | | 80 | 120 | 0 | -18 | 0 | -13 | 0 | -10 | 18 | 13 | 10 | 8 | 14 | 10 | 7 | 5 | 35 | 18 | 10 | 6 | 9 | 5 | | 120 | 150 | 0 | -20 | 0 | -15 | 0 | -11 | 20 | 15 | 11 | 8 | 15 | 11 | 8 | 6 | 40 | 20 | 11 | 7 | 10 | 5 | | 150 | 180 | 0 | -25 | 0 | -18 | 0 | -13 | 25 | 18 | 14 | 10 | 19 | 14 | 9 | 7 | 45 | 23 | 13 | 8 | 10 | 5 | | 180 | 250 | 0 | -30 | 0 | -20 | 0 | -15 | 30 | 20 | 15 | 11 | 23 | 15 | 10 | 8 | 50 | 25 | 15 | 10 | 11 | 7 | | 250 | 315 | 0 | -35 | 0 | -25 | 0 | -18 | 35 | 25 | 19 | 14 | 26 | 19 | 13 | 9 | 60 | 30 | 18 | 11 | 13 | 8 | | 315 | 400 | 0 | -40 | 0 | -28 | 0 | -20 | 40 | 28 | 22 | 15 | 30 | 21 | 14 | 10 | 70 | 35 | 20 | 13 | 13 | 10 | | 400 | 500 | 0 | -45 | _ | _ | _ | _ | 45 | _ | _ | _ | 34 | _ | _ | _ | 80 | _ | _ | _ | _ | _ | | 500 | 630 | 0 | -50 | _ | _ | _ | _ | 50 | _ | _ | _ | 38 | _ | _ | _ | 100 | _ | _ | _ | _ | _ | | 630 | 800 | 0 | -75 | _ | _ | _ | _ | 75 | _ | _ | _ | 56 | _ | _ | _ | 120 | _ | _ | _ | — | _ | | 800 | 1,000 | 0 | -100 | _ | _ | _ | _ | 100 | _ | _ | _ | 75 | _ | _ | _ | 140 | _ | _ | _ | _ | _ | | 1,000 | 1,250 | 0 | -125 | _ | _ | _ | _ | 125 | _ | _ | _ | 84 | _ | _ | _ | 165 | _ | _ | _ | _ | _ | | 1,250 | 1,600 | 0 | -160 | _ | _ | _ | _ | 160 | _ | _ | _ | 120 | _ | _ | _ | 190 | _ | _ | _ | _ | _ | | 1,600 | 2,000 | 0 | -200 | _ | _ | _ | _ | 200 | _ | _ | _ | 150 | _ | _ | _ | 230 | _ | _ | _ | _ | _ | **²** The dimensional difference ΔD_S of outside diameter to be applied for class 4 is the same as the tolerance of dimensional difference ΔD_{mp} of average outside diameter. ³ $\Delta {\it D}s$ as the same as $\Delta {\it D}mp$ in the case of class 4. | Inner ring axial runout (with side) | Inner | ring width d Δ_{Bs} | eviation | | | | ng, o | sembled
r height | single
deviation | tapered rolle
height devia | d double rows
or bearing or
tion | Overall width
of assembled
tapered rolled
or height dev | four rows
bearing
iation | |-------------------------------------|-----------|----------------------------|-----------|-------|------|-------|-------|---------------------|---------------------|-------------------------------|--|--|--------------------------------| | class 4 | class 0.6 | class 6X | class 4.5 | class | 0.6 | class | 6X | class | s 4,5 | Δ _{B1s} , | Δ_{C1s} s 0,6,5 | $\Delta_{B2s,}$ class (| Δc_{2s} | | max | high low | high low | high low | high | low | high | | high | low | high | low | high | low | | 5 | 0 -200 | 0 -50 | 0 -400 | +200 | -200 | +100 | 0 | +200 | -200 | +400 | -400 | +500 | -500 | | 7 | 0 -250 | 0 -50 | 0 -500 | +350 | -250 | +150 | 0 | +350 | -250 | +500 | -500 | +600 | -600 | | 8 | 0 -300 | 0 -50 | 0 -600 | +350 | -250 | +150 | 0 | +350 | -250 | +600 | -600 | +750 | -750 | | _ | 0 -350 | 0 -50 | | +350 | -250 | +200 | 0 | _ | _ | +700 | -700 | +900 | -900 | | _ | 0 -400 | 0 -50 | | +400 | -400 | +200 | 0 | _ | _ | +800 | -800 | +1,000 | -1,000 | | _ | 0 -450 | | | _ | _ | _ | _ | _ | _ | +900 | -900 | +1,200 | -1,200 | | _ | 0 -500 | | | _ | _ | _ | _ | _ | _ | +1,000 | -1,000 | +1,200 | -1,200 | | _ | 0 -750 | | | _ | _ | _ | _ | _ | _ | +1,500 | -1,500 | +1,500 | -1,500 | | _ | 0 -1,000 | | | _ | _ | _ | - | _ | _ | +1,500 | -1,500 | +1,500 | -1,500 | | _ | 0 -1,200 | | | _ | _ | _ | _ | _ | _ | +1,500 | -1,500 | +1,500 | -1,500 | | _ | 0 -1,500 | | | _ | _ | _ | _ | _ | _ | +1,500 | -1,500 | +1,500 | -1,500 | Unit μ m | | | | | μ μ | |---|----------------------------------|----------------|---------------------------------|--| | Outer ring axial runout S_{ea} | Outer | ring wid
Δα | | riation | | class 4 | class 0, | 6,5,4 | clas | s 6X | | max | sup. | inf. | sup. | inf. | | 6
7
8
10
10
13
—
—
—
— | Identica
inner rir
same be | ig of | 0
0
0
0
0
0
0 | -100
-100
-100
-100
-100
-100
-100
 | | _ | | | | | To be applied for nominal bore diameters of 406.400mm (16 inch) or lass. Table 3.4 (3) Effective width of outer and inner rings with roller Unit μ m | | | | | | | | | | , | |-------------------|-------|---------------------------------------|--------------|-----------|-------|------|------------|-----------------------|-----| | Nom
bo
diam | re | Effective
of roller a
of tapere | and inner | ring asse | embly | | | bearing
ridth devi | | | á | l | | ΔT 1 | s | | | ΔT | 2s | | | m | m | clas | s 0 | class | 6X | clas | s 0 | class | 6X | | over | incl. | high | low | high | low | high | low | high | low | | 80 | 120 | +100 | -100 | +50 | 0 | +100 | -100 | +50 | 0 | | 120 | 180 | +150 | -150 | +50 | 0 | +200 | -100 | +100 | 0 | | 180 | 250 | +150 | -150 | +50 | 0 | +200 | -100 | +100 | 0 | | 250 | 315 | +150 | -150 | +100 | 0 | +200 | -100 | +100 | 0 | | 315 | 400 | +200 | -200 | +100 | 0 | +200 | -200 | +100 | 0 | | | | | | | | | | | | Table 3.5 Tolerance for tapered roller bearings of inch system Table 3.5 (1) Inner rings Unit μ m | Nominal be | ore diameter | | | | Single bo | ore diameter | deviation | | | | | |------------|--------------|------|------|------|-----------|--------------|-----------|------|-----|-------|-----| | | d | | | | | Δd s | n | nm | | | | | | | | | | | | | | Clas | ss 4 | Clas | s 2 | Cla | ss 3 | Clas | s 0 | Class | 00 | | over | incl. | high | low | | 76.2 | 266.7 | +25 | 0 | +25 | 0 | +13 | 0 | +13 | 0 | +8 | 0 | | 266.7 | 304.8 | +25 | 0 | +25 | 0 | +13 | 0 | +13 | 0 | - | - | | 304.8 | 609.6 | +51 | 0 |
+51 | 0 | +25 | 0 | - | - | - | - | | 609.6 | 914.4 | +76 | 0 | _ | _ | +38 | 0 | - | _ | _ | _ | | 914.4 | 1,219.2 | +102 | 0 | _ | _ | +51 | 0 | - | _ | - | - | | 1,219.2 | _ | +127 | 0 | - | - | +76 | 0 | _ | _ | _ | _ | Table 3.5 (2) Outer rings | - | abic 010 (2) 01 | ator ringo | | | | | | | | | | Unit μm | |---|-----------------|---------------|------|------|------|-------------|--|-------------|------|------|-------|---------| | | Nominal out | side diameter | | | | Single outs | ide diamete | r deviation | | | | | | | i | D | | | | | $\Delta \! \! \! \! \! \! \! \! \! \Delta$ | m | nm | | | | | | | | | | | | | | | Cla | ss 4 | Clas | ss 2 | Cla | ss 3 | Clas | ss 0 | Class | s 00 | | | over | incl. | high | low | | | _ | 266.7 | +25 | 0 | +25 | 0 | +13 | 0 | +13 | 0 | +8 | 0 | | | 266.7 | 304.8 | +25 | 0 | +25 | 0 | +13 | 0 | +13 | 0 | - | - | | | 304.8 | 609.6 | +51 | 0 | +51 | 0 | +25 | 0 | - | - | - | - | | | 609.6 | 914.4 | +76 | 0 | +76 | 0 | +38 | 0 | _ | _ | _ | _ | | | 914.4 | 1,219.2 | +102 | 0 | _ | - | +51 | 0 | _ | - | - | - | | | 1,219.2 | _ | +127 | 0 | - | - | +76 | 0 | - | - | - | - | Table 3.5 (3) Effective width of inner rings with roller and outer rings | b | minal
ore
meter | out | ninal
side
neter | (| Overall widt | h deviation | | oled single ro Δ_{Ts} | w tapered | roller beari | ng | Overall widt
of assemb
tapered rolle | led 4-row | |-------|-----------------------|-------|------------------------|------|--------------|-------------|------|------------------------------|-----------|--------------|--------|--|----------------| | | d | i | D | | | | | | | | | Δ_{B2s} . | Δ_{C2s} | | n | nm | m | ım | | | | | | | | | | | | | | | | Clas | ss 4 | Cla | ss 2 | Cla | iss 3 | Class | s 0,00 | Class | 4,2,3,0 | | over | incl. | over | incl. | high | low | | _ | 101.6 | | | +203 | 0 | +203 | 0 | +203 | -203 | +203 | -203 | +1,520 | -1,520 | | 101.6 | 304.8 | | | +356 | -254 | +203 | 0 | +203 | -203 | +203 | -203 | +1,520 | -1,520 | | 304.8 | 609.6 | _ | 508.0 | +381 | -381 | +381 | -381 | +203 | -203 | - | _ | +1,520 | -1,520 | | 304.8 | 609.6 | 508.0 | _ | +381 | -381 | +381 | -381 | +381 | -381 | _ | _ | +1,520 | -1,520 | | 609.6 | - | | | +381 | -381 | - | - | +381 | -381 | - | - | +1,520 | -1,520 | Table 3.5 (4) Radial deflection of inner and outer rings Unit μ m Nominal outside diameter Inner ring radial runout K_{ia} DOuter ring radial runout $\it K_{\rm ea}$ mm Class 4 Class 2 Class 3 Class 0 Class 00 max over incl. 304.8 51 38 8 4 2 304.8 609.6 51 38 18 76 51 51 609.6 914.4 914.4 76 76 | | | | | | | | | | | | Unit μm | |------|----------|---------------|--------------------|--------|---------------|------|----------------|---------------|-------------------|-------------|--------------------| | | | width deviati | | | | Таре | ered roller be | aring outer | ring effective | width devia | ıtion | | | ring ass | sembly of tap | ered roller b | earing | | | | $\Delta \tau$ | 2s | | | | | | ΔT | 1s | Clas | s 4 | Clas | ss 2 | Cla | ss 3 | Clas | s 4 | Cla | ss 2 | Cla | ss 3 | | high | low | | +102 | 0 | +102 | 0 | +102 | -102 | +102 | 0 | +102 | 0 | +102 | -102 | | +152 | -152 | +102 | 0 | +102 | -102 | +203 | -102 | +102 | 0 | +102 | -102 | | - | - | +178 | -178 ¹⁰ | +102 | -102 ● | _ | - | +203 | -203 ¹ | +102 | -102 ¹⁰ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ¹ To be applied for nominal bore diameters of 406.400 mm (16 inch) or less. Table 3.6 Tolerance of thrust ball bearings Table 3.6 (1) Shaft washer Unit μm | | ominal
bore
ameter | Single | | ore diameter o | deviation | bore diame | dial plane
eter variation | | st bearing sha
washer racev | vay) thicknes | | |------|--------------------------|--------|------|----------------|-----------|------------|------------------------------|-------|--------------------------------|---------------|-------| | | d | | | | | V | ⁷ dp | | S | i | | | | mm | Cla | ass | Cla | ISS | Class | Class | Class | Class | Class | Class | | | | 0,6 | 6,5 | 4 | 1 | 0,6,5 | 4 | 0 | 6 | 5 | 4 | | over | incl. | high | low | high | low | m | ıax | | m | ıax | | | 80 | 120 | 0 | -20 | 0 | -15 | 15 | 11 | 15 | 8 | 4 | 3 | | 120 | 180 | 0 | -25 | 0 | -18 | 19 | 14 | 15 | 9 | 5 | 4 | | 180 | 250 | 0 | -30 | 0 | -22 | 23 | 17 | 20 | 10 | 5 | 4 | | 250 | 315 | 0 | -35 | 0 | -25 | 26 | 19 | 25 | 13 | 7 | 5 | | 315 | 400 | 0 | -40 | 0 | -30 | 30 | 23 | 30 | 15 | 7 | 5 | | 400 | 500 | 0 | -45 | 0 | -35 | 34 | 26 | 30 | 18 | 9 | 6 | | 500 | 630 | 0 | -50 | 0 | -40 | 38 | 30 | 35 | 21 | 11 | 7 | | 630 | 800 | 0 | -75 | 0 | -50 | 55 | _ | 40 | 25 | 13 | 8 | | 800 | 1,000 | 0 | -100 | _ | _ | 75 | _ | 45 | 30 | 15 | _ | Table 3.6 (2) Housing washer Unit μ m | ou
dia | minal
Itside
.meter | Single pl | | itside diametei
∆ _{Dmp} | r deviation | outside | dial plane
diameter
ation | Thrust | | ing washer ra
variation | aceway | |-----------|---------------------------|-----------|------|-------------------------------------|-------------|------------|---------------------------------|--------|------------------|----------------------------|--------| | | D | CI | ass | Ck | ass | V
Class | 7 _{Dp} Class | Class | Class | Class | Class | | r | nm | | | | | | | | | | | | | | 0, | 6,5 | | 4 | 0,6,5 | 4 | 0 | 6 | 5 | 4 | | over | incl. | high | low | high | low | m | ıax | | m | ıax | | | 80 | 120 | 0 | -22 | 0 | -13 | 17 | 10 | | | | | | 120 | 180 | 0 | -25 | 0 | -15 | 19 | 11 | | | | | | 180 | 250 | 0 | -30 | 0 | -20 | 23 | 15 | | | | | | 250 | 315 | 0 | -35 | 0 | -25 | 26 | 19 | | | | | | 315 | 400 | 0 | -40 | 0 | -28 | 30 | 21 | | According to | | | | 400 | 500 | 0 | -45 | 0 | -33 | 34 | 25 | | of S_1 against | | | | 500 | 630 | 0 | -50 | 0 | -38 | 38 | 29 | | of the same b | pearings | | | | | _ | | 0 | | | | | | | | | 630 | 800 | 0 | -75 | 0 | -45 | 55 | 34 | | | | | | 800 | 1,000 | 0 | -100 | 0 | -60 | 75 | 45 | | | | | | 1,000 | 1,250 | 0 | -125 | _ | _ | 95 | _ | | | | | Table 3.6 (3) Height of bearings center washer | | | _ | Unit μm | |------------|---------------------|-------------|------------------------| | bo
dian | ninal ore neter d | Single dire | ection type ① □ | | over | incl. | high | low | | 80 | 120 | 0 | -150 | | 120 | 180 | 0 | -175 | | 180 | 250 | 0 | -200 | | 250 | 315 | 0 | -225 | | 315 | 400 | 0 | -300 | | 400 | 500 | 0 | -350 | | 500 | 630 | 0 | -400 | | 630 | 800 | 0 | -500 | | 800 | 1,000 | 0 | -600 | ¹ This standard is applied to flat back face bearing of class 0. Single plane mean Table 3.7 Tolerance of spherical thrust roller bearing Table 3.7 (1) Shaft washer | able 3.7 (1) Shart washer Unit μ m | | | | | | | | | | |--|-------|--|-----|--|----------------------------------|----------|--------------------------------|--|--| | Nominal bore diameter d mm | | Single plane mean bore diameter deviation Δ_{dmp} | | Single radial plane bore diameter variation V_{dp} | Face runout with bore $S_{ m d}$ | single o | eviation of direction opearing | | | | over | incl. | high | low | max | max | high | low | | | | 80 | 120 | 0 | -20 | 15 | 25 | +200 | -200 | | | | 120 | 180 | 0 | -25 | 19 | 30 | +250 | -250 | | | | 180 | 250 | 0 | -30 | 23 | 30 | +300 | -300 | | | | 250 | 315 | 0 | -35 | 26 | 35 | +350 | -350 | | | | 315 | 400 | 0 | -40 | 30 | 40 | +400 | -400 | | | | 400 | 500 | 0 | -45 | 34 | 45 | +450 | -450 | | | | 500 | 630 | 0 | -50 | 38 | 50 | +500 | -500 | | | | 630 | 800 | 0 | -75 | 55 | 60 | +750 | -750 | | | outside diameter outside diameter deviation d ΔD mp mm high incl. low over 120 180 0 -25 180 250 0 -30 250 315 0 -35 315 400 0 -40 400 500 0 -45 Table 3.7 (2) Housing washer Nominal 500 630 800 1,000 1,250 630 800 1,000 1,250 1,600 Table 3.8 Tolerance of thrust tapered roller bearings Table 3.8 (1) Shaft washer (metric series) | | ` ' | • | | | Unit μm | |--|--|---|--|---------------------------------------|--| | Nominal
outside diameter
d
mm | | Single plane mean bore diameter deviation | | Bearing hight deviation Δ_{Ts} | | | over | incl. | high | low | high | low | | 80
120
180
250
315
400 | 120
180
250
315
400
500 | 0
0
0
0 | -20
-25
-30
-35
-40
-45 | 0
0
0
0 | -150
-175
-200
-225
-300
-350 | | 500
630
800 | 630
800
1,000 | 0
0
0 | -50
-75
-100 | 0
0
0 | -400
-500
-600 | Table 3.8 (3) Shaft washer (inch series) | | | | - | | Unit μ m | |----------------|-----------|---|-----|--|--------------| | Nom
bore di | ameter | Single plane mean
bore diameter
deviation | | Bearing hight deviation Δ_{T} s | | | over | incl. | Δd mp | | Δ | 15 | | mm | mm | high | low | high | low | | - | 304.800 | +25 | 0 | +381 | -381 | | 304.800 | 609.600 | +51 | 0 | +381 | -381 | | 609.600 | 914.400 | +76 | 0 | +381 | -381 | | 914.400 | 1,219.200 | +102 | 0 | +381 | -381 | Table 3.8 (2) Housing washer (metric series) Unit μ n 0 0 0 0 0 -50 -75 -100 -125 -160 | | | | Unit μm | | |-------|-------------------|--|-------------|--| | | minal
diameter | Single plane mean
outside diameter
deviation | | | | r | nm | Δ | <i>D</i> mp | | | over | incl. | high |
low | | | 180 | 250 | 0 | -30 | | | 250 | 315 | 0 | -35 | | | 315 | 400 | 0 | -40 | | | 400 | 500 | 0 | -45 | | | 500 | 630 | 0 | -60 | | | 630 | 800 | 0 | -75 | | | 800 | 1,000 | 0 | -100 | | | 1,000 | 1,250 | 0 | -125 | | Table 3.8 (4) Housing washer (inch series) Unit μ n | | | | Oπ μπ | | |----------------------|------------------------|-----------------|-------------------------------|--| | outside | ninal
diameter
D | outside | ane mean
diameter
ation | | | over | incl. | Δ_{D} mp | | | | mm | mm | high | low | | | - | 304.800 | +25 | 0 | | | 304.800 | 609.600 | +51 | 0 | | | 609.600 | 914.400 | +76 | 0 | | | 914.400
1,219.200 | 1,219.200 | +102
+127 | 0 | | | , | | _ | - | | # 3.2 Limits and tolerances for chamfer and tapered bore Table 3.9 Allowable critical-value of bearing chamfer Table 3.9 (1) Radial bearing (except tapered roller bearing) | Unit mm | | | | | | | | |----------------------|-----------------------|-------|-----------------|--------------|--|--|--| | γ's min [●] | Nominal bore diameter | | Ƴs max O | r r 1s max | | | | | or | | | Radial | Axial | | | | | ₹1s min | over | incl. | direction | direction | | | | | 0.6 | - | 40 | 1 | 2 | | | | | | 40 | | 1.3 | 2 | | | | | 1 | - | 50 | 1.5 | 3 | | | | | | 50 | | 1.9 | 3 | | | | | 1.1 | - | 120 | 2 | 3.5 | | | | | | 120 | | 2.5 | 4 | | | | | 1.5 | _ | 120 | 2.3 | 4 | | | | | 1.0 | 120 | | 3 | 5 | | | | | | _ | 80 | 3 | 4.5 | | | | | 2 | 80 | 220 | 3.5 | 5 | | | | | | 220 | - | 3.8 | 6 | | | | | 2.1 | - | 280 | 4 | 6.5 | | | | | 2.1 | 280 | _ | 4.5 | 7 | | | | | | _ | 100 | 3.8 | 6 | | | | | 2.5 | 100 | 280 | 4.5 | 6 | | | | | | 280 | - | 5 | 7 | | | | | 3 | - | 280 | 5 | 8 | | | | | | 280 | _ | 5.5 | 8 | | | | | 4 | - | _ | 6.5 | 9 | | | | | 5 | - | | 8 | 10 | | | | | 6 | - | _ | 10 | 13 | | | | | 7.5 | _ | _ | 12.5 | 17 | | | | | 9.5 | _ | _ | 15 | 19 | | | | | 12 | _ | _ | 18 | 24 | | | | | 15 | - | _ | 21 | 30 | | | | | 19 | - | - | 25 | 38 | | | | 1 These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table. Table 3.9 (2) Tapered roller bearings of metric system | | mm | | |--|----|--| | | | | | | | | | Unit mm | |--------------------|---|---|-----|---------| | rs min ♥ Or rs min | Nomina
diameter
"d" or r
outside dia
OVEr | Nominal bore $rac{f 0}$ itameter of bearing "d" or nominal staide diameter "D" over incl. $rac{f 0}$ Radial A direction direction | | | | 0.3 | - | 40 | 0.7 | 1.4 | | | 40 | | 0.9 | 1.6 | | 0.6 | _ | 40 | 1.1 | 1.7 | | | 40 | | 1.3 | 2 | | 1 | _ | 50 | 1.6 | 2.5 | | | 50 | _ | 1.9 | 3 | | | - | 120 | 2.3 | 3 | | 1.5 | 120 | 250 | 2.8 | 3.5 | | | 250 | - | 3.5 | 4 | | | - | 120 | 2.8 | 4 | | 2 | 120 | 250 | 3.5 | 4.5 | | | 250 | - | 4 | 5 | | | _ | 120 | 3.5 | 5 | | 2.5 | 120 | 250 | 4 | 5.5 | | | 250 | - | 4.5 | 6 | | | _ | 120 | 4 | 5.5 | | 0 | 120 | 250 | 4.5 | 6.5 | | 3 | 250 | 400 | 5 | 7 | | | 400 | - | 5.5 | 7.5 | | | _ | 120 | 5 | 7 | | | 120 | 250 | 5.5 | 7.5 | | 4 | 250 | 400 | 6 | 8 | | | 400 | _ | 6.5 | 8.5 | | _ | _ | 180 | 6.5 | 8 | | 5 | 180 | _ | 7.5 | 9 | | | _ | 180 | 7.5 | 10 | | 6 | 180 | _ | 9 | 11 | | | | | | | ² These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table. Note: This standard will be applied to the bearings whose dimensional series (refer to the dimensional table) are specified in the standard of ISO $355\,$ or JIS B 1512. Please consult NTN Engineering on non-standard bearings. $[\]ensuremath{\mathbf{3}}$ Inner rings shall be in accordance with the division of "\$d\$" and outer rings with that of "D". Table 3.9 (3) Thrust bearings Unit mm | $r_{ m smax}$ or $r_{ m 1smax}$
Radial and axial direcition | |--| | 1.5 | | 2.2 | | 2.7 | | 3.5 | | 4 | | 4.5 | | 5.5 | | 6.5 | | 8 | | 10 | | 12.5 | | 15 | | 18 | | 21 | | 25 | | | These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table. Theoretical tapered hole Tapered hole having dimensional difference of the average bore diameter within the flat surface Table 3.10 (1) Tolerance and allowable values (Class 0) of tapered bore of radial bearings | | | | | Unit μ | | | |---------|-------|---------------|-----|----------------|-----------------|-----------------------------------| | d
mm | | Δd mp | | Δd 1mp | - Δd mp | <i>V</i> _{dp} 0 2 | | over | incl. | high | low | high | low | max | | 80 | 120 | + 54 | 0 | + 35 | 0 | 22 | | 120 | 180 | + 63 | 0 | + 40 | 0 | 40 | | 180 | 250 | + 72 | 0 | + 46 | 0 | 46 | | 250 | 315 | + 81 | 0 | + 52 | 0 | 52 | | 315 | 400 | + 89 | 0 | + 57 | 0 | 57 | | 400 | 500 | + 97 | 0 | + 63 | 0 | 63 | | 500 | 630 | +110 | 0 | + 70 | 0 | 70 | | 630 | 800 | +125 | 0 | + 80 | 0 | _ | | 800 | 1,000 | +140 | 0 | + 90 | 0 | - | | 1,000 | 1,250 | +165 | 0 | +105 | 0 | _ | | 1,250 | 1,600 | +195 | 0 | +125 | 0 | - | Table 3.10 (2) Allowable variations for radial bearing inner ring tapered bores standard taper ratio 1:30 (Class 0) Units μ m | | Offits #111 | | | | | | |------|-------------|---------------|-----|--------------------------------|-----|-----------------------------------| | d | | Δ_d mp | | Δd 1mp – Δd mp | | <i>V</i> _{dp} 0 2 | | m | m | | | | | | | over | incl. | high | low | high | low | max | | 80 | 120 | +20 | 0 | +35 | 0 | 22 | | 120 | 180 | +25 | 0 | +40 | 0 | 40 | | 180 | 250 | +30 | 0 | +46 | 0 | 46 | | 250 | 315 | +35 | 0 | +52 | 0 | 52 | | 315 | 400 | +40 | 0 | +57 | 0 | 57 | | 400 | 500 | +45 | 0 | +63 | 0 | 63 | | 500 | 630 | +50 | 0 | +70 | 0 | 70 | - Applies to all radial flat planes of inner ring tapered bore. - 2 Does not apply to diameter series 7 and 8. Note: Quantifiers For a standard taper ratio of 1:12 $d1 = d + \frac{1}{12}B$ For a standard taper ratio of 1:30 $d1 = d + \frac{1}{30} B$ $\Delta_{\textit{timp}} \quad \hbox{: Dimensional difference of the average bore } \\ \quad \text{diameter within the flat surface at the theoretical } \\ \quad \text{small end of the tapered bore.}$ \(\Delta_{\text{d1mp}}\) Dimensional difference of the average bore diameter within the flat surface at the theoretical large end of the tapered bore. V_{dp} : Unevenness of the bore diameter with the flat surface B: Nominal width of inner ring α : Half of the tapered bore's nominal taper angle For a standard taper ratio of 1:12 α = 2°23′9.4″ For a standard taper ratio of 1:30 α = 0°57′7.4″ # 4. Bearing Fits ### 4.1 Interference For rolling bearings, inner and outer rings are fixed on the shaft or in the housing so that relative movement does not occur between fitted surfaces during operation or under load. This relative movement (referred to as "creep") between the fitted surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. To help prevent this creeping movement, bearing rings and the shaft or housing are installed with one of three interference fits, a "tight fit" (also called shrink fit), "transition fit," or "loose fit" (also called clearance fit), and the degree of interference between their fitted surfaces varies. The most effective way to fix the fitted surfaces between a bearing's raceway and shaft or housing is to apply a "tight fit." The advantage of this tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; and when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases. ### 4.2 The necessity of a proper fit In some cases, improper fit may lead to damage and shorten bearing life, therefore it is necessary to make a careful analysis in selecting a proper fit. Some of the negative conditions caused by improper fit are listed below. - Raceway cracking, early peeling and displacement of raceway - Raceway and shaft or housing abrasion caused by creeping and fretting corrosion - Seizing caused by loss of internal clearances - Increased noise and lowered rotational accuracy due to raceway groove deformation ### 4.3 Fit selection Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of: - Shaft and housing material, wall thickness, finished surface accuracy, etc. - Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.) # 4.3.1 "Tight fit," "transition fit," or "loose fit" (1) For raceways under rotating loads, a tight fit is necessary. (refer to **Table 4.1**) "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction. For raceways under static loads, on the other hand, a loose fit is sufficient. (Example) Rotating inner ring load = the direction of the radial load on the inner ring is rotating relatively (2) For non-separable bearings, such as deep groove ball bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit. Table 4.1 Radial load and bearing fit | Illustration | Bearing rotation | Ring load | Fit | | | | | | |-----------------|------------------|--|---------------------------|--|--|--|--|--| | Static load | Rot Our | er ring: tatring Rotating inner ter ring: | Inner ring :
Tight fit | | | | | | | Unbalanced load | Sta Ou | er ring: ttionary ter ring: ter ring: tating | Outer ring :
Loose fit | | | | | | | Static load | Sta
Ou | ter ring: Static inner ter ring: ring load | Inner ring :
Loose fit | | | | | | | Unbalanced load | Rot Our | er ring: tating ring load ter ring: ttionary | Outer ring :
Tight fit | | | | | | # NTN #### 4.3.2 Recommended Fits Bearing fit is governed by the selection tolerances for bearing shaft diameters and housing bore diameters. Widely used fits for 0 Class tolerance bearings and various shaft and housing bore diameter tolerances are shown in **Fig. 4.1**. Generally-used, standard fits for most types of bearings and operating conditions are shown in **Tables 4.2 - 4.6**. Table 4.2: Fits for radial bearings Table 4.3: Fits for thrust bearings Table 4.4: Fits for electric motor bearings **Table 4.5**: Fits for inch series tapered roller bearings (ANSI Class 4) **Table 4.6**: Fits for inch series tapered roller bearings (ANSI Class 3 and 0) **Table 4.5**. shows fits and their numerical values. For special fits or applications, please consult **NTN** Engineering. #### 4.3.3 Interference minimum and maximum values The following points should be considered when it is necessary to calculate the interference for an application: - In calculating the minimum required amount of interference keep in mind that: - 1) interference is reduced by radial loads - 2) interference is reduced by differences between bearing temperature and ambient temperature - interference is reduced by variation of fitted surfaces - Maximum interference should be no more than 1:1000 of the shaft diameter or outer diameter. Required interference calculations are shown below. ### (1) Radial loads and required interference Interference between inner rings mounted on solid shafts is reduced when acted upon by radial loads. Calculation of the minimum required amount of interference in such cases is shown in formulae (4.1) and (4.2). $$F_{r} \leq 0.3 C_{or}$$ $$\Delta_{dF} = 0.08 (d \cdot F_{r}/B)^{1/2}$$ $$= 0.25 (d \cdot F_{r}/B)^{1/2}$$ $$F_{r} > 0.3 C_{or}$$ $$\Delta_{dF} = 0.02 (F_{r}/B)$$ $$= 0.2 (F_{r}/B)$$ $$N_{kqf}$$ $$N_{kqf}$$ Where. Δ_{dF} : Required effective interference for load μ m d: Nominal bore diameter mm B: Inner ring width mm F_r : Radial load N {kgf} C_{or} : Basic static rated load N {kgf} # (2) Temperature difference and required interference Interference between inner rings and steel shafts is reduced as a result of temperature increases (difference between bearing temperature and ambient temperature, $\Delta T)$ caused by bearing rotation. Calculation of the minimum required amount of interference in such cases is shown in formulae (4.3). $\Delta_{dT} = 0.0015 d \Delta T$(4.3) Δ_{aT} : Required effective interference for temperature difference μ m ΔT : Difference between bearing temperature and ambient temperature $^{\circ}C$ d: Bearing bore diameter mm ### (3) Fitted surface variation and required interference Interference between fitted surfaces is reduced by roughness and other slight variations of these surfaces which are flattened in the fitting process. The degree of reduced interference depends upon the finish treatment of these surfaces, but in general it is necessary to assume the following interference reductions. For ground shafts: $1.0\sim2.5 \mu$ m For lathed shafts: $5.0\sim7.0 \mu$ m ### (4) Maximum interference When bearing rings are installed with an interference fit, tension or compression stress may occur along their raceways. If interference is too great, this may cause damage to the rings and reduce bearing life. For these reasons, maximum interference should not exceed the previously mentioned ratio of 1:1,000 of shaft or outside diameter. ### 4.3.4 Other details - (1) Tight interference fits are recommended for, - Operating conditions with large vibration or shock loads - Applications using hollow shafts or housings with thin walls - Applications using housings made of light alloys or plastic - (2) Loose interference fits are preferable for, - Applications requiring high running accuracy - Applications using small sized bearings or thin walled bearings Fig. 4.1 - (3) Consideration must also be given to the fact that fit selection will affect internal bearing clearance selection. (refer to page insert A-29) - (4) A particular type of fit is recommended for SL type cylindrical roller bearings. Table 4.2 General standards for radial bearing fits (JIS Class 0, 6, 6X) Table 4.2 (1) Tolerance class of shafts commonly used for radial bearings (classes 0, 6X and 6) | Nature | - :. | Load conditions, | Load conditions,
Ball beari | | Cylindrical roller
Tapered roller b | | Self-aligning rolle | r bearings | Remarks | |--|--------------------------|---|---|----------------------|---|----------------------|---|----------------------------|---| | of load | Fit | magnitude | Shaft diameter
mm
over incl | Tolerance class | Shaft diameter
mm
over incl | Tolerance class | Shaft diameter
mm
over incl | Tolerance class | Hemarks | | Inde
Rc | = | Light or fluctuating variable load | 18 ~ 100
100 ~ 200 | js6
k6 | 40 ~ 140
140 ~ 200 | k6
m6 | | | When greater accuracy is required js5, k5, and m5 may be substituted for js6, k6, and m6. | | Indeterminate direction load
Rotating inner ring load | Tight fit / Transition t | Normal load | 18 ~ 100
100 ~ 140
140 ~ 200
200 ~ 280 | k5
m5
m6
n6 | 40 ~ 100
100 ~ 140
140 ~ 200
200 ~ 400 | m5
m6
n6
p6 | $40 \sim 65$ $65 \sim 100$ $100 \sim 140$ $140 \sim 280$ $280 \sim 500$ | m5
m6
n6
p6
r6 | Alteration of inner clearances to accommodate fit is not a consideration with single-row angular contact bearings and tapered roller bearings. Therefore, k5 and m5 may be substituted for k6 and m6. | | | Ħ | Heavy load or shock load | | | 50 ~ 140
140 ~ 200
200 ~ | n6
p6
r6 | 50 ~ 100
100 ~ 140
140 ~ 200 | n6
p6
r6 | Use bearings with larger internal clearances than CN clearance bearings. | | Static inner ring load | Transition | Inner ring axial displacement possible | All shaft | g6 | All shaft
diameters | g6 | All shaft | g6 | When greater accuracy is required use g5. For large bearings, f6 may be used. | | inner
load | tion fit | Inner ring axial displacement unnecessary | diameters | h6 | | h6 | diameters | h6 | When greater accuracy is required use h5. | | Centric axial load only | | All loads | All shaft
diameters | js6 | All shaft
diameters | js6 | All shaft
diameters | js6 | General; depending on the fit, shaft and inner rings are not fixed. | Table 4.2 (2) Fit with shaft (fits for tapered bore bearings (Class 0) with adapter assembly/withdrawal sleeve) | All loads | All bearing types | All aboft diameters | Tolerance | h9 / IT5 | General applications | |-----------|-------------------|---------------------|-----------|------------------|---------------------------| | All loads | All bearing types | All shaft diameters | -1 | h10/ IT7 | Transmission shafts, etc. | 1 Standards for light loads, normal loads, and heavy loads Light loads: equivalent radial load $\leq 0.06 C_{\rm r}$ \langle Normal loads: 0.06 $C_{\rm r}$ < equivalent radial load \leq 0.12 $C_{\rm r}$ Heavy loads: 0.12 C_r < equivalent radial load 2 IT5 and IT7 show shaft roundness tolerances, cylindricity tolerances, and related values. Note: All values and fits listed in the above tables are for solid steel shafts. Table 4.2 (3) Housing fits | Nature
of load | Housing | Fit | Load conditions, magnitude | Tolerance class | Outer ring axial
displacement ^❷ | Remarks | |--|------------------------|-------------------------|--|-----------------|--|--| | | | | All loads | H7 | Displacement possible | G7 also acceptable for large type bearings as well as outer rings and | | | Solio | Lс | All loads | G7 | Easy displacement | housings with large temperature differences. | | R | Solid or split housing | Loose | Light ¹ to normal load | H8 | Displacement possible | _ | | Rotating static | split | Ħ | Shaft and inner rings | G7 | Easy displacement | F7 also acceptable for large type bearings as
well as outer rings and housings with large | | ic o | | | reach high temperature | F7 | Easy displacement | temperature differences. | | uter | uter | | Requires silent operation | H6 | Displacement possible | | | g outer ring load
c outer ring load | | Transition or loose fit | High rotation accuracy required with light to | Js6 | Displacement not possible (in principle) | Applies primarily to ball bearings | | or | | on
fit | normal loads | K6 | Displacement not possible (in principle) | Applies primarily to roller bearings | | ind _ | | tra | Light to normal load | Js7 | Displacement possible | | | Direction indeterminate load | Solid housing | Tight to transition | Normal to heavy load | K7 | Displacement not possible (in principle) | When greater accuracy is required substitute Js6 for Js7 and K6 for K7. | | | hou | fit | Heavy shock load | M7 | Displacement not possible | | | ring | sing | | Light or variable load | M7 | Displacement not possible | | | er ring
ad or
rotati | | Tight fit | Normal to heavy load | N7 | Displacement not possible | Applies primarily to ball bearings | | Inner
ring static load or outer ring rotating load | | t fit | Heavy load (thin wall housing) or heavy shock load | P7 | Displacement not possible | Applies primarily to roller bearings | | Centered axial load only - Loose fit | | Loose fit | _ | provide | a tolerance class that will
clearance between outer
d housing. | _ | 1 Standards for light loads, normal loads, and heavy loads Light loads: equivalent radial load $\leq 0.06 C_r$ Heavy loads: 0.12 $C_{\rm r}$ < equivalent radial load Notes: 1. All values and fits listed in the above tables are for cast iron or steel housings. 2. In cases where only a centered axial load acts on the bearing, select a tolerance class that will provide clearance in the axial direction for the outer ring. Normal loads: 0.06 C_r < equivalent radial load \leq 0.12 C_r ² Indicates whether or not outer ring axial displacement is possible with non-separable type bearings. # Table 4.3 Standard fits for thrust bearings (JIS Class 0 and 6) Table 4.3 (1) Shaft fits | Bearing type | | Load conditions | Fit | Shaft diameter
mm
over incl | Tolerance class | |--------------------------------------|---------------|--|--------------------------|-----------------------------------|-----------------------------------| | All thrust bearings | | Centered axial load only | Transition fit | All sizes | js6 or h6 | | | လ္ခ | Inner ring static load | Transition fit | All sizes | js6 | | Self-aligning roller thrust bearings | Combined load | Inner ring rotating load or direction indeterminate load | Transition fit Tight fit | − ~ 200
200 ~ 400
400 ~ | k6 or js6
m6 or k6
n6 or m6 | Table 4.3 (2) Housing fits | Bearing type | | Load conditions | Fit | Tolerance
class | Remarks | | |---------------|----------|----------------------------------|----------------|--|---|--| | All thrust | Cal | ntered axial load only | | Select a tolerance class that will provide clearance between outer ring and housing. | | | | bearings | Cei | ntered axial load only | Loose fit | H8 | Greater accuracy required with thrust ball bearings | | | Self-aligning | Com | Outer ring static load | | H7 | | | | roller thrust | Combined | Direction Indeterminate | | K7 | Normal operating conditions | | | bearings | load | load or outer ring rotating load | Transition fit | M7 | For relatively large radial loads | | Note: All values and fits listed in the above tables are for cast iron or steel housings. Table 4.4 Fits for electric motor bearings | | | ft fits | Housing bore diameter | | | |-----------------------------|------------------------------|-----------------|-----------------------|-----------------|--| | Bearing type | Shaft diameter mm over incl. | Tolerance class | Housing fits | Tolerance class | | | Deep groove ball bearings | 18 ~100
100 ~160 | k5
m5 | All sizes | H6 or J6 | | | Cylindrical roller bearings | 40 ~160
160 ~200 | m5
n6 | All sizes | H6 or J6 | | Table 4.5 Fits for inch series tapered roller bearing (ANSI class 4) Table 4.5 (1) Fit with shaft | Load conditions | | Shaft diameter $d \mod$ over incl. | Cone bore tolerance Δ_{ds} high low | | Shaft to | olerance
low | Extreme
max | e fits ¹⁾ | Remark | | |----------------------|---|---|--|-------------|--|---|-------------------------|----------------------|------------------------------|--| | Rotating | Normal loads,
no shock | $76.2 \sim 304.8$
$304.8 \sim 609.6$
$609.6 \sim 914.4$ | +25
+51
+76 | 0
0
0 | + 64
+127
+190 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | cone load | Heavy loads or shock loads | $76.2 \sim 304.8$
$304.8 \sim 609.6$
$609.6 \sim 914.4$ | +25
+51
+76 | 0
0
0 | Use average tight cone fit of 0.5 μ m/mm, (0.0005 inch/inch) of cone bore, use a minimum fit of 25 μ m, 0.0010 inch tight. | | | | | | | Stationary | Cone axial
displacement
on shaft
necessary | $76.2 \sim 304.8$
$304.8 \sim 609.6$
$609.6 \sim 914.4$ | +25
+51
+76 | 0
0
0 | + 25
+ 51
+ 76 | 0
0
0 | 25T ~
51T ~
76T ~ | _ | Not applicable | | | Stationary cone load | Cone axial
displacement
on shaft
unnecessary | $76.2 \sim 304.8$
$304.8 \sim 609.6$
$609.6 \sim 914.4$ | +25
+51
+76 | 0
0
0 | 0
0
0 | - 25
- 51
- 76 | 0 ~
0 ~
0 ~ | 102L | when impact load is applied. | | Table 4.5 (2) Fit with housing Unit μ m | | Offic pin | | | | | | | | | |----------|---|--|---|------------------|------------------------------|------------------------------|---|---------------------------|--| | | Load conditions | Housing bore diameter D mm over incl. | Cup O.D. tolerance Δ_{Ds} high low | | Housing bore tolerance | | Extreme fits max min | Types of fit | | | C | Light and normal loads: cup easily axially displaceable | $76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$ | +25
+25
+51
+76 | 0
0
0 | + 76
+ 76
+152
+229 | + 51
+ 51
+102
+152 | $26L \sim 76L$ $26L \sim 76L$ $51L \sim 152L$ $76L \sim 229L$ | loose fit | | | | | $76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$ | +25
+25
+51
+76 | 0
0
0
0 | + 25
+ 51
+ 76
+127 | 0
0
+ 26
+ 51 | $25T \sim 25L$ $25T \sim 51L$ $25T \sim 76L$ $25T \sim 127L$ | tight
interference fit | | | G | Heavy loads:
cup not axially
displaceable | $76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$ | +25
+25
+51
+76 | 0
0
0
0 | - 25
- 25
- 25
- 25 | - 51
- 51
- 76
-102 | $76T \sim 25T$ $76T \sim 25T$ $127T \sim 25T$ $178T \sim 25T$ | Ai-pla fia | | | cup load | Cup not axially displaceable | $76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$ | +25
+25
+51
+76 | 0
0
0
0 | - 25
- 25
- 25
- 25 | - 51
- 51
- 76
-102 | $76T \sim 25T$ $76T \sim 25T$ $127T \sim 25T$ $178T \sim 25T$ | tight fit | | ¹ T= tight, L= loose Table 4.6 Fits for inch series tapered roller bearing (ANSI class 3 and 0) Table 4.6. (1) Fit with shaft | | | | J j | | | | | | |----------------------|-----------------------|----------------|--------|---------------------|----------------------------|---------|----------------------------|--| | Load conditions | | Shaft diameter | tolera | Cone bore tolerance | | lerance | Extreme fits ¹⁾ | | | | | over incl. | high | low | high | low | max min | | | Rotating cone load | Precision | ~ 304.8 | +13 | 0 | + 30 | + 18 | 30T \sim 5T | | | | machine tool spindles | 304.8 ~ 609.6 | +25 | 0 | + 64 | + 38 | 64T \sim 13T | | | ing | | 609.6 ~ 914.4 | +38 | 0 | +102 | + 64 | 102T \sim 26T | | | con | Heavy loads, | 76.2 ~ 304.8 | +13 | 0 | Use minimum tight cone fit | | | | | e | or high speed | 304.8 ~ 609.6 | +25 | 0 | of 0.25 | μm/mm 0 | .00025 inch/inch | | | ad | or shock | 609.6 ∼ 914.4 | +38 | 0 | of cone | bore. | | | | Stationary cone load | Precision | ~ 304.8 | +13 | 0 | + 13 | 0 | 30T ∼ 5T | | | ē | machine tool | 304.8 ~ 609.6 | +25 | 0 | + 25 | 0 | 64T \sim 13T | | | nary
pad | spindles | 609.6 ~ 914.4 | +38 | 0 | +102 | 0 | 102T ∼ 26T | | Note: Must be applied for maximum bore dia. 241.300mm (9.500 inch) in case of class 0 product. Table 4.6 (2) Fit with housing Unit μ m | | | | | | | | - · · · · · · · · · · · · · · · · · · · | | |---------------------|------------------------------|--|---|---|------------------------|------|---|------------------| | Load conditions | | Housing bore diameter D mm over incl. | Cup O.D. tolerance Δ_{Ds} high low | | Housing bore tolerance | | Extreme fits max min | Type of fit | | | | | | | | | | | | | | ~ 152.4 | +13 | 0 | + 38 | + 25 | 12L ∼ 38L | | | | Electing | 152.4 ~ 304.8 | +13 | 0 | + 38 | + 25 | 12L \sim 38L | | | | Floating | 304.8 ~ 609.6 | +25 | 0 | + 64 | + 38 | 13L ∼ 64L | | | | | 609.6 ~ 914.4 | +38 | 0 | + 89 | + 51 | 13L ∼ 89L | | | | | ~ 152.4 | +13 | 0 | + 25 | + 13 | 0 ~ 25L | loose fit | | တ္သ | Clamped | 152.4 ~ 304.8 | +13 | 0 | + 25 | + 13 | 0 ~ 25L | | | atic | | 304.8 ~ 609.6 | +25 | 0 | + 51 | + 25 | $0 \sim 51L$ | | | Stationary cup load | | 609.6 ~ 914.4 | +38 | 0 | + 76 | + 38 | $0 \sim 76L$ | | | Ź | | | | | | | | | | 은 | | ~ 152.4 | +13 | 0 | + 13 | 0 | 13T \sim 13L | | | 5 | Adjustable | 152.4 ~ 304.8 | +13 | 0 | + 13 | 0 | 13T \sim 13L | tight | | ac | Adjustable | 304.8 ~ 609.6 | +13 | 0 | + 25 | 0 | 25T \sim 25L | interference fit | | _ | | 609.6 ~ 914.4 | +38 | 0 | + 38 | 0 | 38T \sim 38L | | | | | ~ 152.4 | +13 | 0 | 0 | - 13 | 26T ~ 0 | | | | Nonadjustable | 152.4 ~ 304.8 | +13 | 0 | 0 | - 25 | 38T ∼ 0 | | | | or in carriers | 304.8 ~ 609.6 | +25 | 0 | 0 | - 25 | 50T ~ 0 | | | | | 609.6 ~ 914.4 | +38 | 0 | 0 | - 38 | 76T ~ 0 | | | | | ~ 152.4 | +13 | 0 | - 13 | - 25 | 38T ∼ 13T | tight fit | | 임무 | | | _ | | | - | | | | ptat | Nonadjustable | 152.4 ~ 304.8 | +13 | 0 | - 13 | - 38 | 51T ∼ 13T | | | ing | Nonadjustable or in carriers | 304.8 ~ 609.6 | +25 | 0 | - 13 | - 38 | 63T \sim 13T | | | g | | 609.6 ~ 914.4 | +38 | 0 | - 13 |
- 51 | 89T \sim 13T | | T= tight, L= loose Note: Must be applied for maximum cup OD 304.800mm (12.000 inch) in case of class 0 product. # 5. Bearing Internal Clearance ### 5.1 Bearing internal clearance Bearing internal clearance (initial clearance) is the amount of internal clearance a bearing has before being installed on a shaft or in a housing. As shown in **Fig. 5.1**, when either the inner ring or the outer ring is fixed and the other ring is free to move, displacement can take place in either an axial or radial direction. This amount of displacement (radially or axially) is termed the internal clearance and, depending on the direction, is called the radial internal clearance or the axial internal clearance. When the internal clearance of a bearing is measured, a slight measurement load is applied to the raceway so the internal clearance may be measured accurately. However, at this time, a slight amount of elastic deformation of the bearing occurs under the measurement load, and the clearance measurement value (measured clearance) is slightly larger than the true clearance. This discrepancy between the true bearing clearance and the increased amount due to the elastic deformation must be compensated for. These compensation values are given in **Table 5.1**. For roller bearings the amount of elastic deformation can be ignored. The internal clearance values for each bearing class are shown in **Tables 5.2** through **5.9**. Fig. 5.1 Internal clearance #### 5.2 Internal clearance selection The internal clearance of a bearing under operating conditions (effective clearance) is usually smaller than the same bearing's initial clearance before being installed and operated. This is due to several factors including bearing fit, the difference in temperature between the inner and outer rings, etc. As a bearing's operating clearance has an effect on bearing life, heat generation, vibration, noise, etc.; care must be taken in selecting the most suitable operating clearance. #### Effective internal clearance: The internal clearance differential between the initial clearance and the operating (effective) clearance (the amount of clearance reduction caused by interference fits, or clearance variation due to the temperature difference between the inner and outer rings) can be calculated by the following formula: $$\delta_{\text{eff}} = \delta_{\circ} - (\delta_{f} + \delta_{t}) \cdots (5.1)$$ where, δ _{eff} : Effective internal clearance, mm δ 。: Bearing internal clearance, mm δ₊ : Reduced amount of clearance due to interference, mm $\delta_{\, \rm t}\,$: Reduced amount of clearance due to temperature differential of inner and outer r, mm Table 5.1 Examples of applications where bearing clearances other than normal clearance are used | Operating conditions | Applications | Selected clearance | |--|--|--------------------| | With heavy or shock | Railway vehicle axles | C3 | | load, clearance is great. | Vibration screens | C3, C4 | | indeterminate load, | Railway vehicle traction motors | C4 | | both inner and outer rings are tight-fitted. | Tractors and final speed regulators | C4 | | Shaft or inner ring is heated. | Paper making machines and driers | C3, C4 | | nealeu. | Rolling mill table rollers | C3 | | To reduce shaft runout, clearance is adjusted. | Main spindles of lathes
(Double-row cylindrical roller
bearings) | C9NA,
C0NA | # (1) Reduced clearance due to interference When bearings are installed with interference fits on shafts and in housings, the inner ring will expand and the outer ring will contract; thus reducing the bearings' internal clearance. The amount of expansion or contraction varies depending on the shape of the bearing, the shape of the shaft or housing, dimensions of the respective parts, and the type of materials used. The differential can range from approximately 70% to 90% of the effective interference. $$\delta_f = (0.70 \sim 0.90) \Delta_{deff} \cdots (5.2)$$ where. $\delta_{\rm f}$: Reduced amount of clearance due to interference, mm Δ_{deff} : Effective interference, mm ### (2) Reduced internal clearance due to inner/outer ring temperature difference. During operation, normally the outer ring will range from 5 to 10°C cooler than the inner ring or rotating parts. However, if the cooling effect of the housing is large, the shaft is connected to a heat source, or a heated substance is conducted through the hollow shaft; the temperature difference between the two rings can be even greater. The amount of internal clearance is thus further reduced by the differential expansion of the two rings. $$\delta_{t} = \alpha \cdot \Delta T \cdot D_{0} \cdot \dots (5.3)$$ where. $\delta_{\,\,\mathrm{t}}\,$: Amount of reduced clearance due to heat differential, mm α : Bearing steel linear expansion coefficient 12.5 \times 10 $^{\circ}$ /°C ΔT : Inner/outer ring temperature differential, °C D_{\circ} : Outer ring raceway diameter, mm Outer ring raceway diameter, D_0 , values can be approximated by using formula (5.4) or (5.5). $$D_0 = 0.20 (d + 4.0D) \cdots (5.4)$$ For roller bearings (except self-aligning), $$D_0 = 0.25 (d + 3.0D) \cdots (5.5)$$ where, d: Bearing bore diameter, mm D: Bearing outside diameter, mm Table 5.2 Radial internal clearance of deep groove ball bearings Unit μm | | | | Unit μm | | | | |--------------------------|---------|---------|---------|---------|-----------|--| | Nominal bore diameted mm | er C2 | Normal | C3 | C4 | C5 | | | over incl. | min max | | | 80 100 | 1 18 | 12 36 | 30 58 | 53 84 | 75 120 | | | 100 120 | 2 20 | 15 41 | 36 66 | 61 97 | 90 140 | | | 120 140 | 2 23 | 18 48 | 41 81 | 71 114 | 105 160 | | | 140 160 | 2 23 | 18 53 | 46 91 | 81 130 | 120 180 | | | 160 180 | 2 25 | 20 61 | 53 102 | 91 147 | 135 200 | | | 180 200 | 2 30 | 25 71 | 63 117 | 107 163 | 150 230 | | | 200 225 | 2 35 | 25 85 | 75 140 | 125 195 | 175 265 | | | 225 250 | 2 40 | 30 95 | 85 160 | 145 225 | 205 300 | | | 250 280 | 2 45 | 35 105 | 90 170 | 155 245 | 225 340 | | | 280 315 | 2 55 | 40 115 | 100 190 | 175 270 | 245 370 | | | 315 355 | 3 60 | 45 125 | 110 210 | 195 300 | 275 410 | | | 355 400 | 3 70 | 55 145 | 130 240 | 225 340 | 315 460 | | | 400 450 | 3 80 | 60 170 | 150 270 | 250 380 | 350 510 | | | 450 500 | 3 90 | 70 190 | 170 300 | 280 420 | 390 570 | | | 500 560 | 10 100 | 80 210 | 190 330 | 310 470 | 440 630 | | | 560 630 | 10 110 | 90 230 | 210 360 | 340 520 | 490 690 | | | 630 710 | 20 130 | 110 260 | 240 400 | 380 570 | 540 760 | | | 710 800 | 20 140 | 120 290 | 270 450 | 430 630 | 600 840 | | | 800 900 | 20 160 | 140 320 | 300 500 | 480 700 | 670 940 | | | 900 1,000 | 20 170 | 150 350 | 330 550 | 530 770 | 740 1,040 | | | 1,000 1,120 | 20 180 | 160 380 | 360 600 | 580 850 | 820 1,150 | | | 1,120 1,250 | 20 190 | 170 410 | 390 650 | 630 920 | 890 1,260 | | Table 5.3 Radial internal clearance of double row and duplex angular contact ball bearings | Nominal bo | Nominal bore diameter d mm | | C1 | | 2 | No | Normal | | СЗ | | 4 | |------------|------------------------------|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----| | over | incl. | min | max | | 80 | 100 | 3 | 13 | 13 | 22 | 22 | 40 | 40 | 60 | 95 | 120 | | 100 | 120 | 3 | 15 | 15 | 30 | 30 | 50 | 50 | 75 | 110 | 140 | | 120 | 150 | 3 | 16 | 16 | 33 | 35 | 55 | 55 | 80 | 130 | 170 | | 150 | 180 | 3 | 18 | 18 | 35 | 35 | 60 | 60 | 90 | 150 | 200 | | 180 | 200 | 3 | 20 | 20 | 40 | 40 | 65 | 65 | 100 | 180 | 240 | | 200 | 225 | 3 | 25 | 25 | 50 | 50 | 75 | 75 | 115 | 210 | 270 | | 225 | 250 | 3 | 25 | 25 | 50 | 50 | 75 | 80 | 130 | 230 | 300 | | 250 | 280 | 3 | 30 | 30 | 55 | 55 | 85 | 90 | 150 | 260 | 340 | | 280 | 315 | 3 | 30 | 30 | 55 | 55 | 85 | 100 | 170 | 300 | 380 | | 315 | 400 | - | - | 40 | 65 | 60 | 85 | 110 | 180 | - | - | | 400 | 500 | - | - | 40 | 65 | 60 | 85 | 110 | 180 | - | - | Notes: 1. The clearance group in the table is applied only to contact angles in the table below. ^{2.} This table shows NTN standard clearances. | Contact angle symbol | Nominal contact angle | Applicable clearance group | |----------------------|-----------------------|----------------------------| | С | 15° | C1, C2 | | A | 30° | C2, Normal, C3 | | В | 40° | Normal, C3, C4 | Usually not to be indicated Table 5.4 Radial internal clearance of bearings for electric motor Unit μ m | Nominal bore diameter | Radial internal clearance CM | | | | | | | | |---|------------------------------|------------------------|-------------------|-----------------------|--|--|--|--| | $\begin{array}{cc} d & \text{mm} \\ \text{over} & \text{incl.} \end{array}$ | Deep groove
min | e ball bearings
max | Cylindrical remin | oller bearings
max | | | | | | 80 (incl.) 100 | 18 | 30 | 35 | 55 | | | | | | 100 120 | 18 | 30 | 35 | 60 | | | | | | 120 140 | 24 | 38 | 40 | 65 | | | | | | 140 160 | 24 | 38 | 50 | 80 | | | | | | 160 180 | — | | 60 | 90 | | | | | | 180 200 | — | _ | 65 | 100 | | | | | Notes: 1. Suffix CM is added to bearing numbers. Ex. 6220CM 2. Cylindrical roller bearings are non-interchangeable clearance. Table 5.5 Radial internal clearance of cylindrical roller bearings, needle roller bearings (Interchangeable, cylindrical bore bearings) Unit μ m | | - | = : | | | Onit µm | | |--|--|--|--|--|--------------------|--| | Nominal bore diameter d mm | C2 | Normal | С3 | C4 | C5 | | | over incl. | min max | | | 80 100 | 15 50 | 50 85 | 75 110 | 105 140 | 155 190 | | | 100 120 | 15 55 | 50 90 | 85 125 | 125 165 | 180 220 | | | 120 140 | 15 60 | 60 105 | 100 145 | 145
190 | 200 245 | | | 140 160 | 20 70 | 70 120 | 115 165 | 165 215 | 225 275 | | | 160 180 | 25 75 | 75 125 | 120 170 | 170 220 | 250 300 | | | 180 200 | 35 90 | 90 145 | 140 195 | 195 250 | 275 330 | | | 200 225 | 45 105 | 105 165 | 160 220 | 220 280 | 305 365 | | | 225 250 | 45 110 | 110 175 | 170 235 | 235 300 | 330 395 | | | 250 280 | 55 125 | 125 195 | 190 260 | 260 330 | 370 440 | | | 280 315 | 55 130 | 130 205 | 200 275 | 275 350 | 410 485 | | | 315 355 | 65 145 | 145 225 | 225 305 | 305 385 | 455 535 | | | 355 400 | 100 190 | 190 280 | 280 370 | 370 460 | 510 600 | | | 400 450
450 500
500 560 | 110 210
110 220
120 240 | 210 310
220 330
240 360 | 310 410
330 440
360 480 | 410 510
440 550
480 600 | 565 665
625 735 | | | 560 630 | 140 260 | 260 380 | 380 500 | 500 620 | | | | 630 710 | 145 285 | 285 425 | 425 565 | 565 705 | | | | 710 800 | 150 310 | 310 470 | 470 630 | 630 790 | | | | 800 900
900 1,000
1,000 1,120
1,120 1,250 | 180 350
200 390
220 430
230 470 | 350 520
390 580
430 640
470 710 | 520 690
580 770
640 850
710 950 | 690 860
770 960
850 1,060
950 1,190 | : :
: : | | Note: This table shows NTN standard clearances where "d > 500mm". Por information concerning clearance other than applicable clearance, please contact NTN Engineering. Table 5.6 Radial internal clearance of cylindrical roller bearings, needle roller bearings (non-interchangeable) | | al bore | | | | | Bea | aring with c | ylindrical | bore | | | | | |------------------------------|--------------------------------|-------------|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------------|------------------------------|----------------------------------|-------| | diam d | neter
mm | C1 | NA | C | 2NA | N | A [•] | С | 3NA | С | 4NA | С | 5NA | | over | incl. | min | max | | 80 | 100 | 10 | 25 | 25 | 45 | 45 | 70 | 80 | 105 | 105 | 125 | 155 | 180 | | 100 | 120 | 10 | 25 | 25 | 50 | 50 | 80 | 95 | 120 | 120 | 145 | 180 | 205 | | 120 | 140 | 15 | 30 | 30 | 60 | 60 | 90 | 105 | 135 | 135 | 160 | 200 | 230 | | 140 | 160 | 15 | 35 | 35 | 65 | 65 | 100 | 115 | 150 | 150 | 180 | 225 | 260 | | 160 | 180 | 15 | 35 | 35 | 75 | 75 | 110 | 125 | 165 | 165 | 200 | 250 | 285 | | 180 | 200 | 20 | 40 | 40 | 80 | 80 | 120 | 140 | 180 | 180 | 220 | 275 | 315 | | 200 | 225 | 20 | 45 | 45 | 90 | 90 | 135 | 155 | 200 | 200 | 240 | 305 | 350 | | 225 | 250 | 25 | 50 | 50 | 100 | 100 | 150 | 170 | 215 | 215 | 265 | 330 | 380 | | 250 | 280 | 25 | 55 | 55 | 110 | 110 | 165 | 185 | 240 | 240 | 295 | 370 | 420 | | 280 | 315 | 30 | 60 | 60 | 120 | 120 | 180 | 205 | 265 | 265 | 325 | 410 | 470 | | 315 | 355 | 30 | 65 | 65 | 135 | 135 | 200 | 225 | 295 | 295 | 360 | 455 | 520 | | 355 | 400 | 35 | 75 | 75 | 150 | 150 | 225 | 255 | 330 | 330 | 405 | 510 | 585 | | 400 | 450 | 45 | 85 | 85 | 170 | 170 | 255 | 285 | 370 | 370 | 455 | 565 | 650 | | 450 | 500 | 50 | 95 | 95 | 190 | 190 | 285 | 315 | 410 | 410 | 505 | 625 | 720 | | 500 | 560 | - | - | 100 | 210 | 210 | 320 | 350 | 450 | 450 | 550 | 720 | 815 | | 560 | 630 | - | - | 110 | 230 | 230 | 350 | 380 | 500 | 500 | 615 | 800 | 910 | | 630 | 710 | - | - | 130 | 260 | 260 | 400 | 435 | 570 | 570 | 695 | 900 | 1,030 | | 710 | 800 | - | - | 140 | 290 | 290 | 450 | 485 | 635 | 635 | 780 | 1,000 | 1,140 | | 800
900
1,000
1,120 | 900
1,000
1,120
1,250 | -
-
- | -
-
-
- | 160
180
200
220 | 330
360
400
440 | 330
360
400
440 | 500
560
620
690 | 540
600
670
750 | 700
780
900
1,000 | 700
780
900
1,000 | 860
970
1,100
1,220 | 1,130
1,270
1,410
1,580 | | $[\]bullet \ \, \text{For bearings with normal clearance, only NA is added to bearing numbers. } \ \, \text{Ex. NU310NA}$ Table 5.7 Axial internal clearance of metric double row and duplex tapered roller bearings (except series 329X, 322C, 323C) | | | nal bore
meter | | | Cont | act angle $\alpha \leq 2$ | $7^{\circ} (e \leq 0.76)$ | | | | |---|------|-------------------|-------|-------|-------|---------------------------|---------------------------|-------|-------|-------| | | d | | | C2 | Ne | ormal | | C3 | | C4 | | | over | incl. | min | max | min | max | min | max | min | max | | | 80 | 100 | 45 | 150 | 150 | 260 | 280 | 390 | 390 | 500 | | | 100 | 120 | 45 | 175 | 175 | 305 | 350 | 480 | 455 | 585 | | | 120 | 140 | 45 | 175 | 175 | 305 | 390 | 520 | 500 | 630 | | | 140 | 160 | 60 | 200 | 200 | 340 | 400 | 540 | 520 | 660 | | | 160 | 180 | 80 | 220 | 240 | 380 | 440 | 580 | 600 | 740 | | | 180 | 200 | 100 | 260 | 260 | 420 | 500 | 660 | 660 | 820 | | | 200 | 225 | 120 | 300 | 300 | 480 | 560 | 740 | 720 | 900 | | | 225 | 250 | 160 | 360 | 360 | 560 | 620 | 820 | 820 | 1,020 | | | 250 | 280 | 180 | 400 | 400 | 620 | 700 | 920 | 920 | 1,140 | | | 280 | 315 | 200 | 440 | 440 | 680 | 780 | 1,020 | 1,020 | 1,260 | | | 315 | 355 | 220 | 480 | 500 | 760 | 860 | 1,120 | 1,120 | 1,380 | | | 355 | 400 | 260 | 560 | 560 | 860 | 980 | 1,280 | 1,280 | 1,580 | | | 400 | 500 | 300 | 600 | 620 | 920 | 1,100 | 1,400 | 1,440 | 1,740 | | | 500 | 560 | 350 | 650 | 750 | 1,050 | 1,250 | 1,550 | 1,650 | 1,950 | | | 560 | 630 | 400 | 700 | 850 | 1,150 | 1,400 | 1,700 | 1,850 | 2,150 | | | 630 | 710 | 500 | 850 | 1,000 | 1,350 | 1,650 | 2,000 | 2,100 | 2,450 | | | 710 | 800 | 550 | 950 | 1,100 | 1,500 | 1,800 | 2,200 | 2,300 | 2,700 | | | 800 | 900 | 650 | 1,050 | 1,250 | 1,650 | 2,000 | 2,400 | 2,550 | 2,950 | | | 900 | 1,000 | 700 | 1,100 | 1,400 | 1,800 | 2,200 | 2,600 | 2,900 | 3,300 | | | ,000 | 1,120 | 750 | 1,250 | 1,500 | 2,000 | 2,500 | 3,000 | 3,250 | 3,750 | | | ,120 | 1,250 | 850 | 1,350 | 1,700 | 2,200 | 2,850 | 3,350 | 3,700 | 4,200 | | 1 | ,250 | 1,400 | 1,000 | 1,500 | 2,000 | 2,500 | 3,000 | 3,500 | 4,000 | 4,500 | Notes: 1. This table applies to bearings contained in the catalog. For information concerning other bearings or bearings using US customary unit, please contact NTN Engineering. ^{2.} The correlation of axial internal clearance (Δa) and radial internal clearance (Δr) is expressed as $\Delta r = 0.667 \cdot e \cdot \Delta a$. $[\]it e$: Constant (see dimensions table) ^{3.} Bearing series 329X, 330, 322C and 323Cdo not apply to the table. ^{4.} This table shows **NTN** standard clearances. Unit μ m | | Bearing with tapered bore | | | | | | | | | | | | al bore
neter | |------------------|---------------------------|-------------|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------------|------------------------------|------------------------------|--------------------------------| | C | 9NA ® | C | NA ® | C. | 1NA | C | 2NA | ١ | IA Φ | С | 3NA | d | mm | | min | max | over | incl. | | 10 | 25 | 20 | 35 | 25 | 45 | 45 | 70 | 80 | 105 | 105 | 125 | 80 | 100 | | 10 | 25 | 20 | 35 | 25 | 50 | 50 | 80 | 95 | 120 | 120 | 145 | 100 | 120 | | 15 | 30 | 25 | 40 | 30 | 60 | 60 | 90 | 105 | 135 | 135 | 160 | 120 | 140 | | 15 | 35 | 30 | 45 | 35 | 65 | 65 | 100 | 115 | 150 | 150 | 180 | 140 | 160 | | 15 | 35 | 30 | 45 | 35 | 75 | 75 | 110 | 125 | 165 | 165 | 200 | 160 | 180 | | 20 | 40 | 30 | 50 | 40 | 80 | 80 | 120 | 140 | 180 | 180 | 220 | 180 | 200 | | 20 | 45 | 35 | 55 | 45 | 90 | 90 | 135 | 155 | 200 | 200 | 240 | 200 | 225 | | 25 | 50 | 40 | 65 | 50 | 100 | 100 | 150 | 170 | 215 | 215 | 265 | 225 | 250 | | 25 | 55 | 40 | 65 | 55 | 110 | 110 | 165 | 185 | 240 | 240 | 295 | 250 | 280 | | 30 | 60 | 45 | 75 | 60 | 120 | 120 | 180 | 205 | 265 | 265 | 325 | 280 | 315 | | 30 | 65 | 45 | 75 | 65 | 135 | 135 | 200 | 225 | 295 | 295 | 360 | 315 | 355 | | 35 | 75 | 50 | 90 | 75 | 150 | 150 | 225 | 255 | 330 | 330 | 405 | 355 | 400 | | 45 | 85 | 60 | 100 | 85 | 170 | 170 | 255 | 285 | 370 | 370 | 455 | 400 | 450 | | 50 | 95 | 70 | 115 | 95 | 190 | 190 | 285 | 315 | 410 | 410 | 505 | 450 | 500 | | - | - | - | - | 100 | 210 | 210 | 320 | 350 | 450 | 450 | 550 | 500 | 560 | | - | - | - | - | 110 | 230 | 230 | 350 | 380 | 500 | 500 | 615 | 560 | 630 | | - | - | - | - | 130 | 260 | 260 | 400 | 435 | 570 | 570 | 695 | 630 | 710 | | - | - | - | - | 140 | 290 | 290 | 450 | 485 | 635 | 635 | 780 | 710 | 800 | | -
-
-
- | -
-
- | -
-
- | -
-
-
- | 160
180
200
220 | 330
360
400
440 | 330
360
400
440 | 500
560
620
690 | 540
600
670
750 | 700
780
900
1,000 | 700
780
900
1,000 | 860
970
1,100
1,220 | 800
900
1,000
1,120 | 900
1,000
1,120
1,250 | $\ensuremath{\mathbf{Q}}$ C9NA, C0NA and C1NA are applied only to precision bearings of Class 5 and higher. Unit μm | | | Co | ontact angle $lpha$ | $>$ 27 $^{\circ}$ ($e>0$. | 76) | | | Nominal bo | re diameter | |-----|-----|-----|---------------------|-----------------------------|-----|-----|-----|------------|-------------| | | C2 | No | mal | (| D3 | C4 | | d 1 | mm | | min | max | min | max | min | max | min | max | over | incl. | | 20 | 70 | 70 | 120 | 130 | 180 | 180 | 230 | 80 | 100 | | 20 | 70 | 70 | 120 | 150 | 200 | 210 | 260 | 100 | 120 | | 20 | 70 | 70 | 120 | 160 | 210 | 210 | 260 | 120 | 140 | | 30 | 100 | 100 | 160 | 180 | 240 | 240 | 300 | 140 | 160 | | 40 | 110 | 110 | 180 | 200 | 270 | 280 | 340 | 160 | 180 | | 50 | 120 | 120 | 190 | 230 | 300 | 310 | 380 | 180 | 200 | | 60 | 140 | 140 | 200 | 260 | 340 | 340 | 420 | 200 | 225 | | 80 | 160 | 170 | 260 | 290 | 380 | 380 | 470 | 225 | 250 | | 90 | 190 | 190 | 280 | 320 | 420 | 430 | 520 | 250 | 280 | | 90 | 200 | 200 | 310 | 360 | 470 | 470 | 580 | 280 | 315 | | 100 | 220 | 230 | 350 | 400 | 510 | 520 | 630 | 315 | 355 | |
120 | 260 | 260 | 400 | 450 | 590 | 590 | 730 | 355 | 400 | | 140 | 280 | 280 | 420 | 510 | 640 | 650 | 780 | 400 | 500 | | 160 | 310 | 310 | 460 | 530 | 650 | 680 | 820 | 500 | 630 | | 180 | 350 | 350 | 520 | 590 | 760 | 760 | 930 | 630 | 800 | Table 5.8 Axial internal clearance of double row and duplex tapered roller bearings (inch series) Table 5.8 (1) contact angle $\alpha < 12^{\circ}$ Unit μ m | | al bore ¹ | Contact angle $lpha <$ 12 $^{\circ}$ $(e <$ 0.32 $)$ | | | | | | | | |-------|----------------------|--|-----|-------|-------|-------|-------|-------|-------| | d | mm | С | 2 | No | ormal | | C3 | C4 | | | over | incl. | min | max | min | max | min | max | min | max | | 63.5 | 127 | 55 | 165 | 290 | 400 | 400 | 510 | 510 | 620 | | 127 | 203.2 | 85 | 230 | 320 | 470 | 470 | 620 | 620 | 770 | | 203.2 | 304.8 | 140 | 320 | 370 | 550 | 550 | 730 | 730 | 910 | | 304.8 | 406.4 | 200 | 420 | 660 | 880 | 880 | 1,100 | 1,100 | 1,320 | | 406.4 | 508 | 260 | 520 | 710 | 970 | 970 | 1,230 | 1,230 | 1,490 | | 508 | 609.6 | 340 | 640 | 790 | 1,090 | 1,090 | 1,390 | 1,390 | 1,690 | | 609.6 | 711.2 | 430 | 780 | 1,120 | 1,470 | 1,470 | 1,820 | 1,820 | 2,170 | | 711.2 | 762 | - | - | - | - | - | - | - | - | | 762 | 914.4 | - | - | - | - | - | - | - | - | ¹ Nominal bore diameter is the minimum size among the same series. Note: This table shows NTN standard clearances. Table 5.8 (2) $12^{\circ} \leq \text{contact angle } \alpha < 15^{\circ}$ Unit μ m | Nomi | nal bore ¹ | | $12^{\circ} \leq \text{Contact angle } \alpha < 15^{\circ} \ \ (0.32 \leq \theta < 0.40)$ | | | | | | | |-------|-----------------------|-----|---|-------|-------|-------|-------|-------|-------| | d | mm | C | 2 | No | ormal | | C3 | C4 | | | over | incl. | min | max | min | max | min | max | min | max | | 63.5 | 127 | 45 | 135 | 240 | 330 | 330 | 420 | 420 | 510 | | 127 | 203.2 | 70 | 190 | 270 | 390 | 390 | 510 | 510 | 630 | | 203.2 | 304.8 | 120 | 270 | 310 | 460 | 460 | 610 | 610 | 760 | | 304.8 | 406.4 | 160 | 340 | 550 | 730 | 730 | 910 | 910 | 1,090 | | 406.4 | 508 | 210 | 420 | 590 | 800 | 800 | 1,010 | 1,010 | 1,220 | | 508 | 609.6 | 280 | 530 | 650 | 900 | 900 | 1,150 | 1,150 | 1,400 | | 609.6 | 711.2 | 350 | 640 | 930 | 1,220 | 1,220 | 1,510 | 1,510 | 1,800 | | 711.2 | 762 | 420 | 750 | 990 | 1,320 | 1,320 | 1,650 | 1,650 | 1,980 | | 762 | 914.4 | 520 | 890 | 1,070 | 1,440 | 1,440 | 1,810 | 1,810 | 2,180 | ¹ Nominal bore diameter is the minimum size among the same series. Note: This table shows NTN standard clearances. Table 5.8 (3) $15^{\circ} \leq \text{contact angle } \alpha < 20^{\circ}$ Unit μ m | | | nal bore meter | | $15^{\circ} \leq \text{Contact angle } \alpha < 20^{\circ} \ \ (0.40 \leq \ell < 0.55)$ | | | | | | | |---|-------|------------------|-----|---|-----|-------|-------|-------|-------|-------| | | d | mm | C | 2 | No | ormal | | C3 | | C4 | | | over | incl. | min | max | min | max | min | max | min | max | | | 63.5 | 127 | 35 | 105 | 190 | 260 | 260 | 330 | 330 | 400 | | | 127 | 203.2 | 55 | 155 | 210 | 310 | 310 | 410 | 410 | 510 | | 2 | 203.2 | 304.8 | 90 | 210 | 240 | 360 | 360 | 480 | 480 | 600 | | ; | 304.8 | 406.4 | 130 | 270 | 440 | 580 | 580 | 720 | 720 | 860 | | 4 | 406.4 | 508 | 170 | 340 | 470 | 640 | 640 | 810 | 810 | 980 | | | 508 | 609.6 | 220 | 420 | 520 | 720 | 720 | 920 | 920 | 1,120 | | (| 609.6 | 711.2 | 280 | 510 | 740 | 970 | 970 | 1,200 | 1,200 | 1,430 | | | 711.2 | 762 | 340 | 600 | 780 | 1,040 | 1,040 | 1,300 | 1,300 | 1,560 | | - | 762 | 914.4 | 410 | 700 | 850 | 1,140 | 1,140 | 1,430 | 1,430 | 1,720 | Nominal bore diameter is the minimum size among the same series. Note: This table shows NTN standard clearances. Table 5.8 (4) $20^{\circ} \le \text{contact angle } \alpha < 30^{\circ}$ Unit μ m | | nal bore neter | $20^{\circ} \leq \text{Contact angle } \alpha < 30^{\circ} \ \ (0.55 \leq \ell < 0.87)$ | | | | | | | | |-------|------------------|---|-----|-----|------|-----|-------|-------|-------| | d | mm | C | 2 | No | rmal | | C3 | | C4 | | over | incl. | min | max | min | max | min | max | min | max | | 63.5 | 127 | 30 | 80 | 140 | 190 | 190 | 240 | 240 | 290 | | 127 | 203.2 | 40 | 110 | 160 | 230 | 230 | 300 | 300 | 370 | | 203.2 | 304.8 | 70 | 160 | 180 | 270 | 270 | 360 | 360 | 450 | | 304.8 | 406.4 | 95 | 195 | 320 | 420 | 420 | 520 | 520 | 620 | | 406.4 | 508 | 120 | 240 | 350 | 470 | 470 | 590 | 590 | 710 | | 508 | 609.6 | 160 | 310 | 380 | 530 | 530 | 680 | 680 | 830 | | 609.6 | 711.2 | 210 | 380 | 540 | 710 | 710 | 880 | 880 | 1,050 | | 711.2 | 762 | 250 | 440 | 580 | 770 | 770 | 960 | 960 | 1,150 | | 762 | 914.4 | 300 | 520 | 630 | 850 | 850 | 1,070 | 1,070 | 1,290 | [•] Nominal bore diameter is the minimum size among the same series. Note: This table shows NTN standard clearances. Table 5.8 (5) $30^{\circ} \le \text{contact angle } \alpha$ Unit μ m | | nal bore meter | | $30^{\circ} \leq \text{Contact angle } \boldsymbol{\alpha} \ (0.87 \leq e)$ | | | | | | | |-------|-----------------|-----|---|-----|------|-----|-----|-----|-----| | d | mm | C | 2 | No | rmal | (| C3 | C4 | | | over | incl. | min | max | min | max | min | max | min | max | | 63.5 | 127 | 15 | 50 | 90 | 125 | 125 | 160 | 160 | 200 | | 127 | 203.2 | 25 | 70 | 100 | 145 | 145 | 190 | 190 | 240 | | 203.2 | 304.8 | 45 | 100 | 110 | 170 | 170 | 230 | 230 | 290 | | 304.8 | 406.4 | 60 | 130 | 200 | 270 | 270 | 340 | 340 | 410 | | 406.4 | 508 | 80 | 160 | 220 | 300 | 300 | 380 | 380 | 460 | | 508 | 609.6 | 100 | 200 | - | - | - | - | - | - | | 609.6 | 711.2 | 130 | 250 | - | - | - | - | - | - | | 711.2 | 762 | 160 | 290 | - | - | - | - | - | - | | 762 | 914.4 | 190 | 330 | - | - | - | - | - | - | Nominal bore diameter is the minimum size among the same series. Note: This table shows NTN standard clearances. Table 5.9 Radial internal clearance of spherical roller bearings | Nominal bore diame | er | В | earing with cylindrical bo | ore | | |----------------------------|--------------------|----------------------|----------------------------|----------------------------|--------------------------| | d mm | C2 | Normal | СЗ | C4 | C5 | | over incl. | min max | | 80 100 | 35 60 | 60 100 | 100 135 | 135 180 | 180 225 | | 100 120
120 140 | 40 75
50 95 | 75 120
95 145 | 120 160
145 190 | 160 210
190 240 | 210 260
240 300 | | 140 160 | 60 110 | 110 170 | 170 220 | 220 280 | 280 350 | | 160 180
180 200 | 65 120
70 130 | 120 180
130 200 | 180 240
200 260 | 240 310
260 340 | 310 390
340 430 | | 200 225 | 80 140 | 140 220 | 220 290 | 290 380 | 380 470 | | 225 250
250 280 | 90 150
100 170 | 150 240
170 260 | 240 320
260 350 | 320 420
350 460 | 420 520
460 570 | | 280 315 | 110 190 | 190 280 | 280 370 | 370 500 | 500 630 | | 315 355 | 120 200 | 200 310 | 310 410 | 410 550 | 550 690 | | 355 400 | 130 220 | 220 340 | 340 450 | 450 600 | 600 750 | | 400 450
450 500 | 140 240
140 260 | 240 370
260 410 | 370 500
410 550 | 500 660
550 720 | 660 820
720 900 | | 500 560 | 150 280 | 280 440 | 440 600 | 600 780 | 780 1,000 | | 560 630 | 170 310 | 310 480 | 480 650 | 650 850 | 850 1,100 | | 630 710
710 800 | 190 350
210 390 | 350 530
390 580 | 530 700
580 770 | 700 920
770 1,010 | 920 1,190
1,010 1,300 | | 800 900 | 230 430 | 430 650 | 650 860 | 860 1,120 | 1,120 1,440 | | 900 1,000 | 260 480 | 480 710 | 710 930 | 930 1,220 | 1,220 1,570 | | 1,000 1,120 | 290 530 | 530 780 | 780 1,020 | 1,020 1,330 | 1,330 1,720 | | 1,120 1,250 | 320 580 | 580 860 | 860 1,120 | 1,120 1,460 | 1,460 1,870 | | 1,250 1,400
1,400 1,600 | 350 640
400 720 | 640 950
720 1,060 | 950 1,240
1,060 1,380 | 1,240 1,620
1,380 1,800 | 1,620 2,080 | | 1,600 1,800 | 450 810 | 810 1,180 | 1,180 1,550 | 1,550 2,000 | | Note: This table shows NTN standard clearances where " $d > 1,000 \mathrm{mm}$ ". Unit μ m | | E | Bearing with tapered bore |) | | Nominal bore diameter | |--|--|--|--|--|--| | C2 | Normal | СЗ | C4 | C5 | d mm | | min max | over incl. | | 55 80 | 80 110 | 110 140 | 140 180 | 180 230 | 80 100 | | 65 100 | 100 135 | 135 170 | 170 220 | 220 280 | 100 120 | | 80 120 | 120 160 | 160 200 | 200 260 | 260 330 | 120 140 | | 90 130
100 140
110 160 | 130 180
140 200
160 220 | 160 200
180 230
200 260
220 290 | 200 260
230 300
260 340
290 370 | 260 330
300 380
340 430
370 470 | 140 160
160 180
180 200 | | 120 180 | 180 250 | 250 320 | 320 410 | 410 520 | 200 225 | | 140 200 | 200 270 | 270 350 | 350 450 | 450 570 | 225 250 | | 150 220 | 220 300 | 300 390 | 390 490 | 490 620 | 250 280 | | 170 240 | 240 330 | 330 430 | 430 540 | 540 680 | 280 315 | | 190 270 | 270 360 | 360 470 | 470 590 | 590 740 | 315 355 | | 210 300 | 300 400 | 400 520 | 520 650 | 650 820 | 355 400 | | 230 330 | 330 440 | 440 570 | 570 720 | 720 910 | 400 450 | | 260 370 | 370 490 | 490 630 | 630 790 | 790 1,000 | 450 500 | | 290 410 | 410 540 | 540 680 | 680 870 | 870 1,100 | 500 560 | | 320 460 | 460 600 | 600 760 | 760 980 | 980 1,230 | 560 630 | | 350 510 | 510 670 | 670 850 | 850 1,090 | 1,090 1,360 | 630 710 | | 390 570 | 570 750 | 750 960 | 960 1,220 | 1,220 1,500 | 710 800 | | 440 640 | 640 840 | 840 1,070 | 1,070 1,370 | 1,370 1,690 | 800 900 | |
490 710 | 710 930 | 930 1,190 | 1,190 1,520 | 1,520 1,860 | 900 1,000 | | 530 770 | 770 1,030 | 1,030 1,300 | 1,300 1,670 | 1,670 2,050 | 1,000 1,120 | | 570 830
620 910
680 1,000
750 1,110 | 830 1,120
910 1,230
1,000 1,350
1,110 1,500 | 1,120 1,420
1,230 1,560
1,350 1,720
1,500 1,920 | 1,420 1,830
1,560 2,000
1,720 2,200
1,920 2,400 | 1,830 2,250
2,000 2,470
 | 1,120 1,250
1,250 1,400
1,400 1,600
1,600 1,800 | # 6. Lubrication ### 6.1 Lubrication of rolling bearings The purpose of bearing lubrication is to prevent direct metallic contact between the various rolling and sliding elements. This is accomplished through the formation of a thin oil (or grease) film on the contact surfaces. For rolling bearings, lubrication also has the following advantages: - (1) Friction and wear reduction - (2) Friction heat dissipation - (3) Prolonged bearing life - (4) Prevention of rust - (5) Protection against harmful elements In order to achieve the above effects, the most effective lubrication method for the operating conditions must be selected. Also, a good quality, reliable lubricant must be selected. In addition, an effectively designed sealing system that prevents the intrusion of damaging elements Fig. 6.1 Table 6.1 Oil volume, friction loss, bearing temperature (See Fig. 6.1) | | (*** 3 * / | | | | | | | | | |-------|---|---|--|--|--|--|--|--|--| | Range | Characteristics | Lubrication method | | | | | | | | | Α | When oil volume is extremely low, direct metallic contact occurs in places between the rolling elements and raceway surfaces. Bearing abrasion and seizing occur. | _ | | | | | | | | | В | A thin oil film develops over all surfaces, friction is minimal and bearing temperature is low. | Grease lubrication, oil mist, air-oil lubrication | | | | | | | | | С | As oil volume increases, heat buildup is balanced by cooling. | Circulating lubrication | | | | | | | | | D | Regardless of oil volume, temperature increases at a fixed rate. | Circulating lubrication | | | | | | | | | E | As oil volume increases, cooling predominates and bearing temperature decreases. | Forced circulation lubrication, Oil jet lubrication | | | | | | | | (dust, water, etc.) into the bearing interior, removes dust and other impurities from the lubricant, and prevents the lubricant from leaking to the outside, is also a requirement. Almost all rolling bearings use either grease or oil lubrication methods, but in some special applications, a solid lubricant such as molybdenum disulfide or graphite may be used. **Fig. 6.1** shows the relationship between oil volume, friction loss, and bearing temperature. **Table 6.1** details the characteristics of this relationship. # 6.2 Characteristics of grease and oil lubricants Grease and oil are the two general choices for lubrication: it is important to select lubricant with care. Please contact NTN Engineering when selecting a lubricant. The characteristics are show in table 6.2. Table 6.2 Comparison of grease lubrication and oil lubrication characteristics | Method | Grease
lubrication | Oil lubrication | |---------------------------|-----------------------|-------------------------| | Handling | 0 | Δ | | Reliability | 0 | 0 | | Cooling effect | × | (Circulation necessary) | | Seal structure | 0 | Δ | | Power loss | 0 | 0 | | Environment contamination | 0 | Δ | | High speed rotation | × | 0 | ○: Very good ○: Good △: Fair X: Poor ### 6.3 Grease lubrication Grease type lubricants are relatively easy to handle and require only the simplest sealing devices—for these reasons, grease is the most widely used lubricant for rolling bearings. ## 6.3.1 Types and characteristics of grease Lubricating greases are composed of either a mineral oil base or a synthetic oil base. To this base a thickener and other additives are added. The properties of all greases are mainly determined by the kind of base oil used and by the combination of thickening agent and various additives. Standard greases and their characteristics are listed in **Table 6.3**. As performance characteristics of even the same type of grease will vary widely from brand to brand, it is best to check the manufacturers' data when selecting a grease. Table 6.3 Grease varieties and characteristics | Grease name | | Lithium grease | | | Calcium compound base grease | |--|--|--|---|---|---| | Thickener | | Li soap | | Na soap | Ca+Na soap
Ca+Li soap | | Base oil | Mineral oil Diester oil | | Silicone oil | Mineral oil | Mineral oil | | Dropping point °C | Dropping point °C 170 ∼ 190 | | 200 ~ 250 | 150 ~ 180 | 150 ~ 180 | | Operating temperature range $^{\circ}$ C -30 \sim +130 | | -50 ∼ +130 | -50 ∼ +160 | -20 ∼ +130 | -20 ~ +120 | | Mechanical stability | Excellent | Good | Good | Excellent \sim Good | Excellent ~ Good | | Pressure resistance | Good | Good | poor | Good | Excellent ~ Good | | Water resistance | Good | Good | Good | Good ∼ poor | Good ∼ poor | | Applications | Widest range of applications. Grease used in all types of rolling bearings. | Excellent low temperature and wear characteristics. Suitable for small sized and miniature bearings. | Suitable for high and low temperatures. Unsuitable for heavy load applications due to low oil film strength. | Some emulsification when water is introduced. Excellent characteristics at relatively high temperatures. | Excellent pressure resistance and mechanical stability. Suitable for bearings receiving shock loads. | | Grease name | Aluminum grease | Non-soap base grease
Thickener | | | | |--------------------------------|--|--|---------------|--|--| | Thickener | Al soap | Bentone, silica gel, urea, carbon black fluorine compounds, etc. | | | | | Base oil | Mineral oil | Mineral oil | Synthetic oil | | | | Dropping point °C | Dropping point °C $70 \sim 90$ | | 250 or above | | | | Operating temperature range °C | -10 ∼ +80 | -10 ∼ +130 | -50 ∼ +200 | | | | Mechanical stability | Good ∼ poor | Good | Good | | | | Pressure resistance | Good | Good | Good | | | | Water resistance | Good | Good | Good | | | | Applications | Excellent viscosity characteristics. Suitable for bearings subjected to vibrations. | Can be used in a wide range of low to high temperatures. Shows excellent heat resistance, cold resistance, chemical resistance, and other characteristics when matched with a suitable base oil and thickener. Grease used in all types of rolling bearings | | | | #### 6.3.2 Base oil Natural mineral oil or synthetic oils such as diester oil, silicone oil and fluorocarbon oil are used as grease base oils. Mainly, the properties of any grease are determined by the properties of the base oil. Generally, greases with a low viscosity base oil are best suited for low temperatures and high speeds; while greases made from high viscosity base oils are best suited for heavy loads. #### 6.3.3 Thickening agents Thickening agents are compounded with base oils to maintain the semi-solid state of the grease. Thickening agents consist of two types of bases, metallic soaps and non-soaps. Metallic soap thickeners include: lithium, sodium, calcium, etc. Non-soap base thickeners are divided into two groups; inorganic (silica gel, bentonite, etc.) and organic (polyurea, fluorocarbon, etc.). The various special characteristics of a grease, such as limiting temperature range, mechanical stability, water resistance, etc. depend largely on the type of thickening agent used. For example, a sodium based grease is generally poor in water resistance properties, while greases with bentone, poly-urea and other non-metallic soaps as the thickening agent are generally superior in high temperature properties. # 6.3.4 Additives Various additives are added to greases to improve various properties and efficiency. For example, there are anti-oxidants, high-pressure additives (EP additives), rust preventives, and anti-corrosives. For bearings subject to heavy loads and/or shock loads, a grease containing high-pressure additives should be used. For comparatively high operating temperatures or in applications where the grease cannot be replenished for long periods, a grease with an oxidation stabilizer is best to use. ### 6.3.5 Consistency The consistency of a grease, i.e. the stiffness and liquidity, is expressed by a numerical index. The NLGI values for this index indicate the relative softness of the grease; the larger the number, the stiffer the grease. The consistency of a grease is determined by the amount of thickening agent used and the viscosity of the base oil. For the lubrication of rolling bearings, greases with the NLGI consistency numbers of 1, 2, and 3 are used. General relationships between consistency and application of grease are shown in **Table 6.4**. Table 6.4 Consistency of grease | NLGI
Consis-
tency No. | JIS (ASTM)
Worked
penetration | Applications |
------------------------------|-------------------------------------|--| | 0 | 355~385 | For centralized greasing use | | 1 | 310~340 | For centralized greasing use | | 2 | 265~295 | For general use and sealed bearing use | | 3 | 220~250 | For general and high temperature use | | 4 | 175~205 | For special use | ### 6.3.6 Mixing of greases When greases of different kinds are mixed together, the consistency of the greases will change (usually softer), the operating temperature range will be lowered, and other changes in characteristics will occur. As a general rule, greases with different bases oil, and greases with different thickener agents should never be mixed. Also, greases of different brands should not be mixed because of the different additives they contain. However, if different greases must be mixed, at least greases with the same base oil and thickening agent should be selected. But even when greases of the same base oil and thickening agent are mixed, the quality of the grease may still change due to the difference in additives. For this reason, changes in consistency and other qualities should be checked before being applied. ### 6.3.7 Amount of grease The amount of grease used in any given situation will depend on many factors relating to the size and shape of the housing, space limitations, bearing's rotating speed and type of grease used. As a general rule, housings and bearings should be only filled from 30% to 60% of their capacities. Table 6.5 Bearings space ratio K | Table 0.5 Dealings space fallo A | | | |-------------------------------------|---------------------------------------|----------| | Bearing type | Retainer type | K | | Ball bearings | Pressed retainer | 61 | | NU-type cylindrical roller bearings | Pressed retainer
Machined retainer | 50
36 | | N-type cylindrical roller bearings | Pressed retainer
Machined retainer | 55
37 | | Tapered roller bearings | Pressed retainer | 46 | | Spherical roller bearings | Pressed retainer
Machined retainer | 35
28 | - Remove 160 series - 2 Remove NU4 series - 3 Remove N4 series Where speeds are high and temperature rises need to be kept to a minimum, a reduced amount of grease should be used. Excessive amount of grease cause temperature rise which in turn causes the grease to soften and may allow leakage. With excessive grease fills oxidation and deterioration may cause lubricating efficiency to be lowered. # 6.4 Solid grease (for bearings with solid grease) "Solid grease" is a lubricant composed mainly of lubricating grease and ultra-high polymer polyethylene. Solid grease has the same viscosity as grease at normal temperature, but by applying a special heat treatment process, this special grease solidifies retaining a large proportion of the lubricant within the bearing. The result of this solidification is that the grease does not easily leak from the bearing, even when the bearing is subjected to strong vibrations or centrifugal force. Bearings with solid grease are available in two types: the spot-pack type in which solid grease is injected into the retainer, and the full-pack type in which all empty space around the rolling elements is filled with solid grease. Spot-pack solid grease is standard for deep groove ball bearings, small diameter ball bearings, and bearing units. Full-pack solid grease is standard for self-aligning ball bearings, self-aligning roller bearings, and needle roller bearings. Primary advantages: - (1) Clean working environment with minimal grease leakage - (2) Low bearing torque with spot-pack type solid grease For more details, please refer to the NTN special catalog for **Solid grease bearings**. Fig. 6.3 Deep groove ball bearing with spot-pack solid grease (Z shield) (Standard for deep groove ball bearings) Fig. 6.4 Self-aligning roller bearing with full-pack solid grease (Standard for self-aligning roller bearings) # 6.5 Oil lubrication Oil lubrication is suitable for applications that require bearing-generated heat or heat applied to the bearing from other sources be carried away from the bearing and dissipated to the outside. Table 6.6 shows the main methods of oil lubrication. | Table 6.6 Oil lubrication meth | ods | | | |--|------------------|---|---| | Lubrication method | Example | Lubrication method | Example | | (Oil bath lubrication) Oil bath lubrication is the most generally used method of lubrication and is widely used for low to moderate rotation speed applications. For horizontal shaft applications, oil level should be maintained at approximately the center of the lowest rolling element, according to the oil gauge, when the bearing is at rest. For vertical shafts at low speeds, oil level should be maintained at 50-80% submergence of the rolling elements. | | (Disc lubrication) In this method, a partially submerged disc rotates and pulls oil up into a reservoir from which it then drains down through the bearing, lubricating it. | | | (Oil spray lubrication) ● In this method, an impeller or similar device mounted on the shaft draws up oil and sprays it onto the bearing. This method can be used at considerably high speeds. | | (Oil mist lubrication) Using pressurized air, lubricating oil is atomized before passing through the bearing. Due to the low lubricant resistance, this method is well suited to high speed applications. | Oil supply plug Oil supply plug Oil exhaust Plug Oil exhaust plug | | (Drip lubrication) In this method, oil is collected above the bearing and allowed to drip down into the housing where it becomes a lubricating mist as it strikes the rolling elements. Another version allows only slight amounts of oil to pass through the bearing. Used at relatively high speeds for light to moderate load applications. In most cases, oil volume is a few drops per minute. | | (Air-oil lubrication) In this method, the required minimum amount of lubricating oil is measured and fed to each bearing at ideal intervals using compressed air. With fresh lubricating oil constantly being fed to the bearing, and with the cooling effect of the compressed air, bearing temperature rise can be minimized. Because the required oil quantity is infinitesimal, the working environment can be kept clean. Air-oil lubrication units are available from NTN. | Mist separator Air Oil Ine Air filter Solenoid valve Air filter Air Pressure switch | | (Circulating lubrication) Used for bearing cooling applications or for automatic oil supply systems in which the oil supply is centrally located. One of the advantages of this method is that oil cooling devices and filters to maintain oil purity can be installed within the system. In order for oil to thoroughly lubricate the bearing, oil inlets and outlets must be provided on opposite sides of the bearing. | Oil exhaust plug | (Oil jet lubrication) • This method lubricates by injecting oil under high pressure directly into the side of the bearing. This is a reliable system for high speed, high temperature or otherwise severe conditions. • Used for lubricating the bearings in jet engines, gas turbines, and other high speed equipment. • Under-race lubrication for machine tools is one example of this type of lubrication. | | # 6.5.1 Selection of lubricating oil Under normal operating conditions, **spindle oil**, **machine oil**, **turbine oil**, and other mineral oils are widely used for the lubrication of rolling bearings. However, for temperatures **above 150°C or below -30°C**, synthetic oils such as **diester oil**, **silicone oil**, and **fluorocarbon oil** are used. For lubricating oils, viscosity is one of the most important properties and it determines an oil's lubricating efficiency. If viscosity is too low, formation of the oil film will be insufficient, and damage will occur to the load carrying surfaces of the bearing. If viscosity is too high, viscous resistance will also be great and result in temperature increases and friction loss. In general, for higher speed applications a lower viscosity oil should be used; for heavier load applications, a higher viscosity oil should be used. In regard to operating temperature and lubrication, **Table 6.7** lists the required oil viscosity for different types of rolling bearings. **Fig. 6.3** is an oil viscosity—operating temperature comparison chart for the purpose of selecting a lubrication oil with viscosity characteristics appropriate to an application. **Table 6.8** lists the selection standards for lubricating oil viscosity with reference to bearing operating conditions. Table 6.7 Required lubricating oil viscosity for bearings | Bearing type | Dynamic viscosity mm ² /s | |---|--------------------------------------| | Ball bearings, Cylindrical roller bearings,
Needle roller bearings | 13 | | Self-aligning roller bearings, Tapered roller bearings, Needle roller thrust bearings | 20 | | Self-aligning
roller thrust bearings | 30 | ### 6.5.2 Oil quantity In forced oil lubrication systems, the heat radiated away by the housing and surrounding parts plus the heat carried away by the lubricating oil is approximately equal to the amount of heat generated by the bearing and other sources. For standard housing applications, the quantity of oil required can be found by formula (6.2). where, Q: Quantity of oil for one bearing cm³/min. K: Allowable oil temperature rise factor (Table 6.9) q: Minimum oil quantity cm³/min. (Fig. 6.4) Because the amount of heat radiated will vary according to the type of housing, for actual operation it is advisable that the quantity of oil calculated by formula (6.2) be multiplied by a factor or 1.5 or 2.0. Then, the amount of oil can be adjusted to correspond to actual operating conditions. Fig. 6.3 Relation between lubricating oil viscosity and temperature Table 6.8 Selection standards for lubricating oils (reference) | Bearing operating | dn-value | Lubricating | oil ISO viscosity grade (VG) | Cuitable begins | |-------------------|--------------------------------|-------------|------------------------------|--| | temperature
°C | dri-value | Normal load | Heavy load or shock load | Suitable bearing | | −30 ~ 0 | Up to allowable speed limiting | 22, 32 | 46 | All types | | | 15,000 Up to | 46, 68 | 100 | All types | | 0- 60 | 15,000 ~80,000 | 32, 46 | 68 | All types | | 0~ 60 | 80,000 ~150,000 | 22, 32 | 32 | All types but thrust ball bearings | | | 150,000~500,000 | 10 | 22, 32 | Single row radial ball bearings, cylindrical roller bearings | | | 15,000 Up to | 150 | 220 | All types | | 00 100 | 15,000 ~80,000 | 100 | 150 | All types | | 60~100 | 80,000 ~150,000 | 68 | 100, 150 | All types but thrust ball bearings | | | 150,000~500,000 | 32 | 68 | Single row radial ball bearings, cylindrical roller bearings | | 100 ~150 | Up to allowable speed limiting | | 320 | All types | | 0~ 60 | Up to allowable speed limiting | | 46, 68 | Solf oligning roller bearings | | 60~100 | Up to allowable speed limiting | | 150 | Self-aligning roller bearings | Notes: 1. Applied when lubrication method is either oil bath or circulating lubrication. 2. Please consult NTN Engineering in cases where operating conditions fall outside the range covered by this table. Table 6.9 Factor K | Expelled oil temp minus supplied oil temp °C | K | |--|------| | 10 | 1.5 | | 15 | 1 | | 20 | 0.75 | | 25 | 0.6 | Furthermore, if it is assumed for calculation purposes that no heat is radiated by the housing, and that all bearing heat is removed by the oil, then the value in **Fig. 6.3** for shaft diameter, d = 0, regardless of actual shaft diameter. **(Example)** For tapered roller bearing **30220U** mounted on a flywheel shaft with a radial load of 9.5 kN (969 kgf), operating at 1,800 min⁻¹, what is the amount of lubricating oil required to keep the bearing temperature rise below 15°C. $$d = 100 \text{ mm},$$ $dn = 100 \times 1,800 = 18 \times 10^4$ From **Fig. 6.4** $q = 180 \text{cm}^3 / \text{min}$ Assume the bearing temperature is approximately equal to the expelled oil temperature, from **Table 6.9**, since $$K = 1$$ $$Q=1\times180=180$$ cm³ / min #### 6.5.3 Relubrication intervals The intervals at which lubricating oil should be changed varies depending upon operating conditions, oil quantity, and type of oil used. In general, for oil bath lubrication where the operating temperature is 50°C or less, oil should be replaced once a year. When the operating temperature is between 80°C – 100°C, oil should be replaced at least every three months. For important equipment, it is advisable that lubricating efficiency and oil purity deterioration be checked regularly to determine when oil replacement is necessary. Fig. 6.4 Oil quantity guidelines # 7. Bearing Materials ### 7.1 Raceway and rolling element materials While the contact surfaces of a bearing's raceways and rolling elements are subjected to repeated heavy stress, they still must maintain high precision and rotational accuracy. To accomplish this, the raceways and rolling elements must be made of a material that has high hardness, is resistant to rolling fatigue, is wear resistant, and has good dimensional stability. The most common cause of fatigue cracking in bearings is the inclusion of non-metallic impurities in the steel. By using pure materials low in these non-metallic impurities, the rolling fatigue life of the bearing is lengthened. For all NTN bearings, steel low in oxygen content and non-metallic impurities, then refined by a vacuum degassing process as well as outside hearth smelting, is used. For bearings requiring especially high reliability and long life, steels of even higher in purity, such as vacuum smelted steel (VIM, VAR, CEVM) and electro-slag melted steel (ESR), are used. ## 1) High/mid carbon alloy steel In general, steel varieties which can be hardened not just on the surface but also deep hardened by the so-called "through hardening method" are used for the raceways and rolling elements of bearings. Foremost among these is high carbon chromium bearing steel, which is widely used. For large type bearings and bearings with large cross sectional dimensions, induction hardened bearing steel incorporating manganese or molybdenum is used. Also in use is midcarbon chromium steel incorporating silicone and manganese, which gives it hardening properties comparable to high carbon chromium steel. # 2) Case hardened (carburized) steel Because of its combination of a hard surface layer which has been carburized and hardened to an appropriate depth, and a relatively pliable inner core, case hardened steel has excellent efficiency against shock loads. NTN uses case hardened steel for almost all of its tapered roller bearings. In terms of case hardened steel for NTN's other bearings, chromium steel and chrome molybdenum steel are used for small to medium sized bearings, and nickel chrome molybdenum steel is used for large sized bearings. ### 3) Heat resistant bearing steel When bearings made of ordinary high carbon chromium steel which have undergone standard heat treatment are used at temperatures above 120°C for long durations, unacceptably large dimensional changes can occur. For this reason, a dimension stabilizing treatment (TS treatment) has been devised for very high temperature applications. Through application of this dimension stabilizing treatment, shortening of rolling fatigue life due to decreases in bearing hardness at high temperatures can be avoided. (refer to page insert A-6 1.3.2) For standard high temperature bearings used at temperatures from 150°C – 200°C, the addition of silicone to the steel improves heat resistance and results in a bearing with excellent rolling fatigue life with minimal dimensional change or softening at high temperatures. A variety of heat resistant steels are also incorporated in bearings to minimize softening and dimensional changes when used at high temperatures. Two of these are high speed molybdenum steel and high speed tungsten steel. For bearings requiring heat resistance in high speed applications, there is also heat resistant case hardening molybdenum steel. ### 4) Corrosion resistant bearing steel For applications requiring high corrosion resistance, stainless steel is used. To achieve this corrosion resistance a large proportion of the alloying element chrome is added to martensite stainless steel. ### 5) Induction hardened steel Besides the use of surface hardening steel, induction hardening is also utilized for bearing raceway surfaces, and for this purpose mid-carbon steel is used for its lower carbon content instead of through hardened steel. For induction hardening of the deep layers required for larger bearings and bearings with large surface dimensions, mid-carbon steel is fortified with chrome and molybdenum. ### 6) Other bearing materials For ultra high speed applications and applications requiring very high level corrosion resistance, ceramic bearing materials such as Si_3N_4 are also available. #### 7.2 Cage materials Bearing cage materials must have the strength to withstand rotational vibrations and shock loads. These materials must also have a low friction coefficient, be light weight, and be able to withstand bearing operation temperatures. For small and medium sized bearings, pressed cages of cold or hot rolled steel with a low carbon content of approx. 0.1% are used. However, depending on the application, austenitic stainless steel is also used. For large bearings, machined cages of machine structural carbon steel or high tensile cast brass are widely used, although aluminum alloy and other material cages are also available. For aircraft engine bearings, high tensile brass, midcarbon nickel, chrome, or molybdenum steel is used after undergoing various heat treatments and high temperature tempering. The sliding properties of these materials may also be enhanced when silver plated. Injection molded plastic cages are now widely used: most are made from fiberglass reinforced heat resistant polyamide resin. Plastic cages are light weight, corrosion resistant and have excellent damping and sliding properties. Heat resistant polyamide resins now enable the production of cages that perform well in applications ranging between -40°C – 120°C. However, they are not recommended for use at temperatures exceeding 120°C. # MEMO |
 | |---|---|---|---|---|--|--|--|--|--|--|--|---|---|--|---|--|---|--|----------|----------|------|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 | \vdash | \dashv | \vdash | | | | | | | | | | | | | | | | | - | | | | | | \vdash | \dashv | | | 1 | 1 | 1 | I | 1 | | | | | | | | 1 | | | i | | i | | | . | | # **General Bearings** # INDEX OF BEARING TABLES | Deep Groove Ball BearingsB- 5 | |--| | Angular Contact Poll Postings | | Angular Contact Ball BearingsB-15 | | Angular contact ball bearings (single, duplex)B-18 | | Double row angular contact ball bearingsB-32 | | | | Cylindrical Roller Bearings | | Single row cylindrical roller bearingsB-40 | | Multi-row cylindrical roller bearings ···································· | | | | 4-row cylindrical roller bearings ······B-64 | | SL type cylindrical roller bearings ·······B-80 | | SL type cylindrical roller bearings for sheaves ············B-84 | | | | Tapered Roller Bearings | | Single row tapered roller bearings (Metric system sizes)B- 96 | | Single row tapered roller bearings (Inch system sizes)B-106 | | Double row tapered roller bearings (outside direction) (Metric system sizes) ···B-124 | | Double row tapered roller bearings (outside direction) (Inch system sizes) ······B-140 | | Double row tapered roller bearings (inside direction) (Metric system sizes) ······B- | 152 | |--|--------------------------| | Double row tapered roller bearings (inside direction) (Inch system sizes) ······B- | 162 | | Double row steep slope tapered roller bearings (outside direction) ······B- | 170 | | Double row steep slope tapered roller bearings (inside direction)B- | 172 | | Four row tapered roller bearingsB- | 180 | | Sealed four row tapered roller bearingsB- | 200 | | | | | Spherical Roller Bearings | 203 | | Spherical Roller Bearings Thrust Bearings | | | | 227 | | Thrust Bearings···································· | 227
230 | | Thrust Bearings B- Thrust bearings B- Thrust roller bearings B- | 227
230 | | Thrust Bearings B- Thrust bearings B- Thrust roller bearings B- | 227
230
234
240 | # 1. Structure and Characteristics A widely used bearing, the deep groove ball bearing takes its name from the track formed on both the inner and outer rings of the bearing. The bearings can sustain radial and axial loads and the resultant forces of these loads and they are suitable for high speed operation. The dimensional table below represents the various cage models and special shapes. **Drawing A** is the pressed cage; **drawing B** shows the machined cage; **drawings C** through **F** show the position and shape of the notch on the inner ring; and **drawing G** shows a bearing with the key groove on the inner ring. Pressed cages are generally used, though machined cages are used for larger sized bearings, or bearings for high speed rotation. Deep groove ball bearings drawing # 2. Dimensional Accuracy/Rotation Accuracy Refer to Table 3.3 (Page A-12) # 3. Recommended Fitting Refer to Table 4.2 (Page A-24) # 4. Bearing Internal Clearance Refer to Table 5.2 (Page A-30) # 5. Permissible slant angle 0.0006-0.003 radian # 6. General Operating Cautions Slippage between the balls and raceways may occur when bearings are operated under small loads (about $F_{\rm r} \le 0.01 C_{\rm or}$) and may cause smearing. This is most apparent when using large size deep groove ball bearings due to the large cage mass. Please consult NTN Engineering for further details. | $\frac{F_{\rm a}}{C_{\rm or}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}}$ | $\leq e$ | $\frac{F}{F}$ | $\frac{r_a}{r_r} > e$ | | | |--------------------------------|------|-------------------------------|----------|---------------|-----------------------|--|--| | Cor | | X | Y | X | Y | | | | 0.010 | 0.18 | | | | 2.46 | | | | 0.020 | 0.20 | | | | 2.14 | | | | 0.040 | 0.24 | 0.24 | | | 1.83 | | | | 0.070 | 0.27 | | | | 1.61 | | | | 0.10 | 0.29 | 1 | 0 | 0.56 | 1.48 | | | | 0.15 | 0.32 | • | 0 | 0.50 | 1.35 | | | | 0.20 | 0.35 | | | | 1.25 | | | | 0.30 | 0.38 | | | | 1.13 | | | | 0.40 | 0.41 | | | | 1.05 | | | | 0.50 | 0.44 | | | | 1.00 | | | static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r} # d 100~140mm | | Вс | oundary di | mensio | ns | dynamic | Basic loa
static | d ratings
dynamic | static | Bearing
numbers | Drawing
No. | d
ns | Mass | | | |---|-----|------------|----------|---------------|------------|---------------------|----------------------|----------------|--------------------|----------------|------------|-----------------|-------------------|-----------| | | | mn | า | | kΝ | 1 | kg | f | | | | mm | | kg | | | | | | | | | | | | | $d_{ m a}$ | $D_{\rm a}$ | $\gamma_{\rm as}$ | | | | d | D | B | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | min | max | max | (approx.) | | | | | | | | | | | | _ | | | | | | | | 125 | 13 | 1 | 19.6 | 21.2 | 2,000 | 2,160 | 6820 | Α | 105 | 120 | 1 | 0.31 | | | | 140 | 20 | 1.1 | 41 | 39.5 | 4,200 | 4,050 | 6920 | Α | 106.5 | 133.5 | 1 | 0.78 | | | 100 | 150 | 16 | 1 | 35 | 36.5 | 3,600 | 3,750 | 16020 | Α | 105 | 145 | 1 | 0.91 | | | 100 | 150 | 24 | 1.5 | 60 | 54 | 6,150 | 5,500 | 6020 | Α | 108 | 142 | 1.5 | 1.15 | | | | 180 | 34 | 2.1 | 122 | 93 | 12,500 | 9,450 | 6220 | Α | 111 | 169 | 2 | 3.14 | | | | 215 | 47 | 3 | 173 | 141 | 17,600 | 14,400 | 6320 | Α | 113 | 202 | 2.5 | 7 | | | | 130 | 13 | 1 | 19.8 | 22 | 2,020 | 2,240 | 6821 | Α | 110 | 125 | 1 | 0.33 | | | | 145 | 20 | 1.1 | 42.5 | 42 | 4,300 | 4,300 | 6921 | A | 111.5 | 138.5 | 1 | 0.81 | | | | 160 | 18 | 1.1 | 52 | 50.5 | 5,300 | 5,150 | 16021 | A | 110 | 155.5 | 1 | 1.2 | | | 105 | 160 | 26 | 2 | 72.5 | 65.5 | 7,400 | 6,700 | 6021 | A | 114 | 151 | 2 | 1.59 | | | | 190 | 36 | 2.1 | 133 | 105 | 13,600 | 10,700 | 6221 | A | 116 | 179 | 2 | 3.7 | | | | 225 | 49 | 3 | 184 | 153 | 18,700 | 15,700 | 6321 | A | 118 | 212 | 2.5 | 8.05 | | | | 223 | 43 | 3 | 104 | 155 | 10,700 | 13,700 | 0321 | ^ | 110 | 212 | 2.5 | 0.03 | | | | 140 | 16 | 1 | 24.9 | 28.2 | 2,540 | 2,880 | 6822 | Α | 115 | 135 | 1 | 0.51 | | | | 150 | 20 | 1.1 | 43.5 | 44.5 | 4,450 | 4,550 | 6922 | Α | 116.5 | 143.5 | 1 | 0.85 | | | 110 | 170 | 19 | 1 | 57.5 | 56.5 | 5,850 | 5,800 | 16022 | Α | 115 | 165 | 1 | 1.46 | | | 110 | 170 | 28 | 2 | 82 | 73 | 8,350 | 7,450 | 6022 | Α | 119 | 161 | 2 | 1.96 | | | | 200 | 38 | 2.1 | 144 | 117 | 14,700 | 11,900 | 6222 | Α | 121 | 189 | 2 | 4.36 | | | | 240 | 50 | 3 | 205 | 179 | 20,900 | 18,300 | 6322 | Α | 123 | 227 | 2.5 | 9.54 | | | | 150 | 16 | 1 | 28.9 | 33 | 2,950 | 3,350 | 6824 | Α | 125 | 145 | 1 | 0.55 | | | | 165 | 22 | 1.1 | 53 | 54 | 5,400 | 5,500 | 6924 | A | 126.5 | 158.5 | 1 | 1.15 | | | | 180 | 19 | 1 | 63 | 63.5 | 6,450 | 6,450 | 16024 | A | 125 | 175 | 1 | 1.56 | | | 120 | 180 | 28 | 2 | 85 | 79.5 | 8,650 | 8,100 | 6024 | A | 129 | 171 | 2 | 2.07 | | | | 215 | 40 | 2.1 | 155 | 131 | 15,900 | 13,400 | 6224 | A | 131 | 204 | 2 | 5.15 | | | | 260 | 55 | 3 | 207 | 185 | 21,100 | 18,800 | 6324 | Α | 133 | 247 | 2.5 | 12.4 | | ı | | 165 | 18 | 1.1 | 37 | 41 | 3,750 | 4,200 | 6826 | Α | 136.5 | 158.5 | 1 | 0.8 | | | | 180 | 24 | 1.5 | 65 | 41
67.5 | 6,650 | 4,200
6,850 | 6926 | A | 136.5 | 172 | 1.5 | 1.52 | | | | 200 | 22 | 1.5 | 80 | 79.5 | 8,150 | 8,100 | 16026 | A | 136.5 | 193.5 | 1.5 | 2.31 | | | 130 | | 33 | 2 | 106 | 79.5
101 | 10,800 | 10,300 | 6026 | A | 130.5 | 193.5 | 2 | 3.16 | | | | 200
230 | 33
40 | 3 | 167 | 146 | 17,000 | 14,900 | 6226 | A | 143 | 217 | 2.5 | 5.82 | | | | 280 | 58 | 4 | 229 | 214 | 23,400 | 21,800 | 6326 | A | 146 | 264 | 3 | 15.3 | | | | 200 | 56 | 4 | 223 | ۷۱ ۲ | 23,400 | 21,000 | 0320 | ^ | 140 | ۷0 4 | J | 10.0 | | | | 175 | 18 | 1.1 | 38.5 | 44.5 | 3,900 | 4,550 | 6828 | Α | 146.5 | 168.5 | 1 | 0.85 | | | 140 | 190 | 24 | 1.5 | 66.5 | 71.5 | 6,800 | 7,300 | 6928 | Α | 148 | 182 | 1.5 | 1.62 | | | 140 |
210 | 22 | 1.1 | 82 | 85 | 8,350 | 8,650 | 16028 | Α | 146.5 | 203.5 | 1 | 2.45 | | | | 210 | 33 | 2 | 110 | 109 | 11,200 | 11,100 | 6028 | Α | 149 | 201 | 2 | 3.35 | ^{Drawing details are shown in Page B-5. Smallest allowable dimension for chamfer dimension r.} | $\frac{Fa}{Cor}$ | e | $\frac{F_{ m a}}{F_{ m r}}$ | ≤ e | $\frac{F}{F}$ | | |------------------|------|-----------------------------|------------|---------------|------| | Cor | | X | Y | X | Y | | 0.010 | 0.18 | | | | 2.46 | | 0.020 | 0.20 | | | | 2.14 | | 0.040 | 0.24 | | | | 1.83 | | 0.070 | 0.27 | | | 1.61 | | | 0.10 | 0.29 | 1 | 0 | 0.56 | 1.48 | | 0.15 | 0.32 | • | " | 0.50 | 1.35 | | 0.20 | 0.35 | | | | 1.25 | | 0.30 | 0.38 | | | | 1.13 | | 0.40 | 0.41 | | | | 1.05 | | 0.50 | 0.44 | | | | 1.00 | static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r} # *d* 140∼180mm | Во | oundary di | mensio | ns | dynamic | Basic loa | d ratings
dynamic | static | Bearing numbers | Drawing
No. | • Ab | utment an | | Mass | |-----|------------|----------|-----------------|------------|-------------|----------------------|-------------|-----------------|----------------|------------|-------------|-------------|--------------| | | mm | 1 | | k۱ | | kg | | | | | mm | | kg | | | | | | | | | | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | | | d | D | В | $r_{ m s min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | min | max | max | (approx.) | | | 250 | 42 | 3 | 166 | 150 | 17,000 | 15,300 | 6228 | Α | 153 | 237 | 2.5 | 7.57 | | 140 | 300 | 42
62 | 3
4 | 253 | 246 | 17,000
25,800 | 25,100 | 6328 | A | 156 | 237
284 | 2.5
3 | 7.57
18.5 | | | 300 | 02 | | 230 | 240 | 25,000 | 25,100 | 0020 | ^ | 130 | 204 | 0 | 10.5 | | 145 | 220 | 38 | 2.5 | 126 | 115 | 12,800 | 11,800 | SC2951 | В | 157 | 208 | 2 | 5.07 | | | 190 | 20 | 1.1 | 47.5 | 55 | 4,850 | 5,600 | 6830 | Α | 156.5 | 183.5 | 1 | 1.16 | | | 210 | 28 | 2 | 85 | 90.5 | 8,650 | 9,200 | 6930 | Α | 159 | 201 | 2 | 2.47 | | | 225 | 24 | 1.1 | 96.5 | 101 | 9,850 | 10,300 | 16030 | Α | 156.5 | 218.5 | 1 | 3.07 | | 150 | 225 | 35 | 2.1 | 126 | 126 | 12,800 | 12,800 | 6030 | Α | 161 | 214 | 2 | 4.08 | | 130 | 230 | 35 | 2.5 | 120 | 118 | 12,300 | 12,100 | SC3002 | С | 162 | 218 | 2 | 5.18 | | | 230 | 35 | 2.5 | 120 | 118 | 12,300 | 12,100 | SC3007 | G | 162 | 218 | 2 | 5.18 | | | 270 | 45 | 3 | 176 | 168 | 18,000 | 17,100 | 6230 | Α | 163 | 257 | 2.5 | 9.41 | | | 320 | 65 | 4 | 274 | 284 | 28,000 | 28,900 | 6330 | Α | 166 | 304 | 3 | 22 | | | 200 | 20 | 1.1 | 48.5 | 57 | 4,950 | 5,800 | 6832 | Α | 166.5 | 193.5 | 1 | 1.23 | | | 220 | 28 | 2 | 87 | 96 | 8,850 | 9,800 | 6932 | A | 169 | 211 | 2 | 2.61 | | | 229.5 | 33 | 2.5 | 108 | 111 | 11,000 | 11,300 | SC3209 | В | 172 | 218 | 2 | 4.35 | | | 229.5 | 36 | 2.5 | 120 | 119 | 12,200 | 12,100 | SC3207 | В | 172 | 218 | 2 | 4.75 | | 160 | 230 | 33 | 2.5 | 108 | 111 | 11,000 | 11,300 | SC3210 | В | 172 | 218 | 2 | 4.39 | | | 240 | 25 | 1.5 | 99 | 108 | 10,100 | 11,000 | 16032 | Α | 168 | 232 | 1.5 | 3.64 | | | 240 | 38 | 2.1 | 143 | 144 | 14,500 | 14,700 | 6032 | Α | 171 | 229 | 2 | 5.05 | | | 290 | 48 | 3 | 185 | 186 | 18,900 | 19,000 | 6232 | Α | 173 | 277 | 2.5 | 11.7 | | | 340 | 68 | 4 | 278 | 286 | 28,300 | 29,200 | 6332 | Α | 176 | 324 | 3 | 26 | | | 215 | 22 | 1.1 | 60 | 70.5 | 6,100 | 7,200 | 6834 | Α | 176.5 | 208.5 | 1 | 1.63 | | | 230 | 28 | 2 | 86 | 95.5 | 8,750 | 9,750 | 6934 | Α | 179 | 221 | 2 | 2.74 | | 470 | 260 | 28 | 1.5 | 119 | 128 | 12,100 | 13,100 | 16034 | Α | 178 | 252 | 1.5 | 4.93 | | 170 | 260 | 42 | 2.1 | 168 | 172 | 17,200 | 17,600 | 6034 | Α | 181 | 249 | 2 | 6.76 | | | 310 | 52 | 4 | 212 | 223 | 21,700 | 22,800 | 6234 | Α | 186 | 294 | 3 | 14.5 | | | 360 | 72 | 4 | 325 | 355 | 33,500 | 36,000 | 6334 | Α | 186 | 344 | 3 | 30.7 | | | 225 | 22 | 1.1 | 60.5 | 73 | 6,200 | 7,450 | 6836 | В | 186.5 | 218.5 | 1 | 2.03 | | | 250 | 33 | 2 | 110 | 119 | 11,200 | 12,200 | 6936 | В | 189 | 241 | 2 | 4.76 | | | 265 | 33 | 2.5 | 113 | 127 | 11,500 | 13,000 | SC3605 | В | 192 | 253 | 2 | 6.08 | | 180 | 280 | 31 | 2 | 117 | 134 | 11,900 | 13,600 | 16036 | A | 189 | 271 | 2 | 6.49 | | 100 | 280 | 46 | 2.1 | 189 | 199 | 19,300 | 20,300 | 6036 | A | 191 | 269 | 2 | 8.8 | | | 320 | 52 | 4 | 227 | 241 | 23,200 | 24,600 | 6236 | A | 196 | 304 | 3 | 15.1 | | | 380 | 75 | 4 | 355 | 405 | 36,000 | 41,500 | 6336 | A | 196 | 364 | 3 | 35.6 | | | | | • | | | , | , 3 0 0 | | 1 | | | - | | ^{Drawing details are shown in Page B-5. Smallest allowable dimension for chamfer dimension r.} | $\frac{F_{\rm a}}{C_{\rm or}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}}$ | $\frac{F_{\rm a}}{F_{\rm r}} \leq e$ | | $\frac{\frac{a}{r}}{r} > e$ | |--------------------------------|------|-------------------------------|--------------------------------------|------|-----------------------------| | Cor | | X | Y | X | Y | | 0.010 | 0.18 | | | | 2.46 | | 0.020 | 0.20 | | | | 2.14 | | 0.040 | 0.24 | | | | 1.83 | | 0.070 | 0.27 | | | | 1.61 | | 0.10 | 0.29 | 1 | 0 | 0.56 | 1.48 | | 0.15 | 0.32 | • | 0 | 0.50 | 1.35 | | 0.20 | 0.35 | | | | 1.25 | | 0.30 | 0.38 | | | | 1.13 | | 0.40 | 0.41 | | | 1.05 | | | 0.50 | 0.44 | | | | 1.00 | static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r} # d 190~260mm | В | oundary di
mm | | ns | dynamic
kľ | static | nd ratings
dynamic
kg | static
f | Bearing
numbers | Drawing
No. | | Abutment ar illet dimension mm | | Mass
kg | |------|-------------------------|----|---------------|---------------|-------------|-----------------------------|-------------|--------------------|----------------|------------|--------------------------------|-------------|-------------------| | | | ' | | Ki | • | Kg | | | | $d_{ m a}$ | D_{a} | $r_{ m as}$ | ĸg | | d | D | B | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | min | max | max | (approx.) | | | | | | | | | | | | | | | | | | 240 | 24 | 1.5 | 73 | 88 | 7,450 | 9,000 | 6838 | В | 198 | 232 | 1.5 | 2.62 | | | 260 | 33 | 2 | 113 | 127 | 11,500 | 13,000 | 6938 | В | 199 | 251 | 2 | 4.98 | | | 269.5 | 33 | 2.5 | 117 | 134 | 11,900 | 13,600 | SC3805 | G | 202 | 258 | 2 | 5.87 | | 190 | 290 | 31 | 2 | 134 | 156 | 13,700 | 15,900 | 16038 | Α | 199 | 281 | 2 | 6.77 | | | 290 | 46 | 2.1 | 197 | 215 | 20,100 | 21,900 | 6038 | Α | 201 | 279 | 2 | 9.18 | | | 340 | 55 | 4 | 255 | 281 | 26,000 | 28,700 | 6238 | Α | 206 | 324 | 3 | 18.2 | | | 400 | 78 | 5 | 355 | 415 | 36,000 | 42,500 | 6338 | Α | 210 | 380 | 4 | 41 | | | | | | | | <u> </u> | <u> </u> | | | | | | | | 195 | 270 | 35 | 2.5 | 130 | 147 | 13,300 | 15,000 | SC3904 | В | 207 | 258 | 2 | 5.94 | | | 250 | 24 | 1.5 | 74 | 91.5 | 7,550 | 9,300 | 6840 | В | 208 | 242 | 1.5 | 2.73 | | | 280 | 38 | 2.1 | 157 | 168 | 16,000 | 17,100 | 6940 | В | 211 | 269 | 2 | 7.1 | | 200 | 310 | 34 | 2 | 142 | 160 | 14,400 | 16,300 | 16040 | Α | 209 | 301 | 2 | 8.68 | | 200 | 310 | 51 | 2.1 | 218 | 243 | 22,200 | 24,800 | 6040 | Α | 211 | 299 | 2 | 11.9 | | | 360 | 58 | 4 | 269 | 310 | 27,400 | 31,500 | 6240 | Α | 216 | 344 | 3 | 21.6 | | | 420 | 80 | 5 | 410 | 500 | 42,000 | 51,000 | 6340 | Α | 220 | 400 | 4 | 46.3 | | | 270 | 24 | 1.5 | 76.5 | 98 | 7,800 | 10,000 | 6844 | В | 228 | 262 | 1.5 | 3 | | | 300 | 38 | 2.1 | 160 | 180 | 16,400 | 18,400 | 6944 | В | 231 | 289 | 2 | 7.69 | | | 309.5 | 38 | 2.5 | 176 | 202 | 18,000 | 20,600 | SC4401 | В | 232 | 298 | 2 | 8.77 | | 000 | 319.5 | 46 | 2.5 | 193 | 220 | 19,700 | 22,400 | SC4405 | В | 232 | 308 | 2 | 12 | | 220 | 340 | 37 | 2.1 | 181 | 216 | 18,500 | 22,000 | 16044 | Α | 231 | 329 | 2 | 11.3 | | | 340 | 56 | 3 | 241 | 289 | 24,600 | 29,400 | 6044 | Α | 233 | 327 | 2.5 | 15.7 | | | 400 | 65 | 4 | 297 | 365 | 30,500 | 37,000 | 6244 | Α | 236 | 384 | 3 | 30.2 | | | 460 | 88 | 5 | 410 | 520 | 42,000 | 53,000 | 6344 | Α | 240 | 440 | 4 | 60.8 | | 230 | 329.5 | 40 | 2.5 | 191 | 227 | 19,500 | 23,100 | SC4605 | В | 242 | 318 | 2 | 10.8 | | 230 | 339.5 | 45 | 3 | 224 | 266 | 22,800 | 27,200 | SC4609 | G | 244 | 326 | 2.5 | 13.7 | | | 300 | 28 | 2 | 85 | 112 | 8,650 | 11,400 | 6848 | В | 249 | 291 | 2 | 4.6 | | | 320 | 38 | 2.1 | 170 | 203 | 17,300 | 20,700 | 6948 | В | 251 | 309 | 2 | 8.28 | | 0.40 | 360 | 37 | 2.1 | 178 | 217 | 18,200 | 22,100 | 16048 | Α | 251 | 349 | 2 | 12.1 | | 240 | 360 | 56 | 3 | 249 | 310 | 25,400 | 32,000 | 6048 | Α | 253 | 347 | 2.5 | 16.8 | | | 440 | 72 | 4 | 360 | 470 | 36,500 | 48,000 | 6248 | В | 258 | 422 | 3 | 51.7 | | | 500 | 95 | 5 | 440 | 590 | 45,000 | 60,000 | 6348 | В | 262 | 478 | 4 | 93.6 | | 250 | 349.5 | 46 | 2.5 | 214 | 262 | 21,800 | 26,700 | SC5003 | В | 262 | 338 | 2 | 13.4 | | 260 | 320 | 28 | 2 | 87 | 120 | 8,900 | 12,200 | 6852 | В | 269 | 311 | 2 | 5 | ^{Drawing details are shown in Page B-5. Smallest allowable dimension for chamfer dimension r.} | $\frac{F_{\rm a}}{C_{\rm or}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} \leq e$ | | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | |--------------------------------|------|--------------------------------------|---|-----------------------------------|------|--| | Cor | | X | Y | X | Y | | | 0.010 | 0.18 | | | | 2.46 | | | 0.020 | 0.20 | | | | 2.14 | | | 0.040 | 0.24 | | | | 1.83 | | | 0.070 | 0.27 | | | | 1.61 | | | 0.10 | 0.29 | 1 | 0 | 0.56 | 1.48 | | | 0.15 | 0.32 | ' | 0 | 0.50 | 1.35 | | | 0.20 | 0.35 | | | | 1.25 | | | 0.30 | 0.38 | | | | 1.13 | | | 0.40 | 0.41 | | | | 1.05 | | | 0.50 | 0.44 | | | | 1.00 | | static P_{or} =0.6 F_r +0.5 F_a When P_{or} < F_r use P_{or} = F_r # d 260~340mm | Во | oundary di | imensio | ns | dynamic | static | ad ratings
dynamic | static | Bearing numbers | Drawing
No. | | Abutment an fillet dimensio | | Mass | |------|------------|----------|----------------|------------|-------------|-----------------------|-------------
--|----------------|------------|-----------------------------|--------------|-----------| | | mn | n | | k١ | I | kg | f | | | | mm | | kg | | d | D | B | 0 | C | C | C | $C_{ m or}$ | | | $d_{ m a}$ | D_{a} | $r_{\rm as}$ | () | | a | D | D | $r_{ m s min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | min | max | max | (approx.) | | | 360 | 46 | 2.1 | 222 | 280 | 22,600 | 28,500 | 6952 | В | 271 | 349 | 2 | 13.9 | | | 379.5 | 56 | 4 | 253 | 320 | 25,800 | 32,500 | SC5206 | G | 278 | | 3 | 20.8 | | | 400 | 44 | 3 | 227 | 299 | 23,200 | 30,500 | 16052 | A | 273 | | 2.5 | 18.5 | | 260 | 400 | 65 | 4 | 291 | 375 | 29,700 | 38,500 | 6052 | Α | 276 | | 3 | 25 | | | 480 | 80 | 5 | 400 | 540 | 41,000 | 55,000 | 6252 | В | 282 | | 4 | 65.7 | | | 540 | 102 | 6 | 505 | 710 | 51,500 | 72,500 | 6352 | В | 288 | 512 | 5 | 116 | | | | | | | | | | | | | | | | | | 350 | 33 | 2 | 137 | 177 | 13,900 | 18,100 | 6856 | В | 289 | _ | 2 | 7.4 | | | 360 | 38 | 2.5 | 147 | 191 | 14,900 | 19,500 | SC5605 | В | 292 | | 2 | 9.47 | | | 380 | 46 | 2.1 | 227 | 299 | 23,200 | 30,500 | 6956 | В | 291 | | 2 | 14.8 | | 280 | 420 | 44 | 3 | 232 | 315 | 23,700 | 32,500 | 16056 | В | 293 | _ | 2.5 | 23 | | | 420 | 65 | 4 | 325 | 420 | 33,000 | 43,000 | 6056 | В | 296 | | 3 | 31 | | | 500 | 80 | 5 | 440 | 600 | 44,500 | 61,000 | 6256 | В | 302 | _ | 4 | 70.9 | | | 580 | 108 | 6 | 530 | 760 | 54,000 | 77,500 | 6356 | В | 308 | 552 | 5 | 142 | | 290 | 419.5 | 60 | 5 | 277 | 375 | 28,300 | 38,500 | SC5803 | G | 312 | 398 | 4 | 26.8 | | | 380 | 38 | 2.1 | 162 | 210 | 16,500 | 21,500 | 6860 | В | 311 | 369 | 2 | 10.5 | | | 420 | 56 | 3 | 276 | 375 | 28,200 | 38,500 | 6960 | В | 313 | | 2.5 | 23.5 | | 300 | 460 | 50 | 4 | 292 | 410 | 29,800 | 42,000 | 16060 | В | 316 | 444 | 3 | 32.5 | | | 460 | 74 | 4 | 355 | 480 | 36,000 | 49,000 | 6060 | В | 316 | 444 | 3 | 43.8 | | | 540 | 85 | 5 | 465 | 670 | 47,500 | 68,500 | 6260 | В | 322 | 518 | 4 | 88.9 | | | 429.5 | 60 | 4 | 275 | 380 | 28,000 | 38,500 | SC6201 | В | 328 | 412 | 3 | 25.8 | | 310 | 450 | 50 | 4 | 286 | 420 | 29,200 | 42,500 | SC6203 | В | 328 | | 3 | 25.9 | | | 400 | 38 | 2.1 | 168 | 228 | 17,200 | 23,200 | 6864 | В | 331 | 389 | 2 | 10.9 | | | 440 | 56 | 3 | 285 | 405 | 29,000 | 41,000 | 6964 | В | 333 | | 2.5 | 24.8 | | | 449.5 | 56 | 3 | 276 | 395 | 28,200 | 40,500 | SC6406 | В | 334 | | 2.5 | 27.6 | | 320 | 470 | 70 | 4 | 330 | 475 | 34,000 | 48,500 | SC6403 | В | 338 | 452 | 3 | 40.4 | | | 480 | 50 | 4 | 300 | 440 | 30,500 | 45,000 | 16064 | В | 336 | 464 | 3 | 34.2 | | | 480 | 74 | 4 | 370 | 530 | 38,000 | 54,000 | 6064 | В | 336 | 464 | 3 | 46.1 | | | | 92 | 5 | 530 | 805 | 54,500 | 82,500 | 6264 | В | 342 | 558 | 4 | 110 | | | 580 | 92 | 0 | 000 | | | | the state of s | | | | | | | | | | | | 236 | 17 400 | 24 000 | 6868 | 2 | 351 | 409 | 2 | 11.5 | | | 420 | 38 | 2.1 | 170 | 236 | 17,400 | 24,000 | 6868 | 2
B | 351 | | 2 | 11.5 | | 3/10 | 420
460 | 38
56 | 2.1 | 170
293 | 430 | 29,800 | 44,000 | 6968 | В | 353 | 447 | 2.5 | 26.2 | | 340 | 420 | 38 | 2.1 | 170 | | | | | | | 447
468 | | | ^{Drawing details are shown in Page B-5. Smallest allowable dimension for chamfer dimension r.} | $\frac{F_{\rm a}}{C_{\rm or}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} \leq e$ | | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | |--------------------------------|------|--------------------------------------|---|-----------------------------------|------|--| | Cor | | X | Y | X | Y | | | 0.010 | 0.18 | | | | 2.46 | | | 0.020 | 0.20 | | | | 2.14 | | | 0.040 | 0.24 | | | | 1.83 | | | 0.070 | 0.27 | | | | 1.61 | | | 0.10 | 0.29 | 1 | 0 | 0.56 | 1.48 | | | 0.15 | 0.32 | | " | 0.50 | 1.35 | | | 0.20 | 0.35 | | | | 1.25 | | | 0.30 | 0.38 | | | | 1.13 | | | 0.40 | 0.41 | | | | 1.05 | | | 0.50 | 0.44 | | | | 1.00 | | static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r} # d 340~480mm | Вс | oundary d
mr | | s | dynamic
kl | static | ad ratings
dynamic | static | Bearing
numbers | Drawing ⁶
No. | | butment ar
et dimension | | Mass
kg | |-------|------------------------|-------|---------------|---------------|-------------|-----------------------|-------------|--------------------|-----------------------------|-------------------------------------|----------------------------|-------------|-------------------| | | 1111 | 11 | | KI | V | kį | yı | | | $d_{\scriptscriptstyle \mathrm{a}}$ | $D_{\rm a}$ | $r_{ m as}$ | kg | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | min | max | max | (approx.) | | 340 | 620 | 92 | 6 | 530 | 820 | 54,000 | 83,500 | 6268 | В | 368 | 592 | 5 | 129 | | 355.6 | 469.9 | 57.15 | 5 | 233 | 340 | 23,800 | 34,500 | SC7101 | В | 377.5 | 448 | 4 | 26.3 | | | 440 | 38 | 2.1 | 187 | 258 | 19,100 | 26,300 | 6872 | В | 371 | 429 | 2 | 12.3 | | | 480 | 56 | 3 | 300 | 455 | 30,500 | 46,500 | 6972 | В | 373 | 467 | 2.5 | 27.5 | | 360 | 509.5 | 70 | 5 | 340 | 515 | 34,500 | 52,500 | SC7205 | В | 382 | 488 | 4 | 45 | | 300 | 540 | 57 | 4 | 350 | 550 | 36,000 | 56,000 | 16072 | В | 376 | 524 | 3 | 49.3 | | | 540 | 82 | 5 | 440 | 670 | 44,500 | 68,000 | 6072 | В | 380 | 520 | 4 | 64.7 | | | 650 | 95 | 6 | 555 | 905 | 57,000 | 92,000 | 6272 | В | 388 | 622 | 5 | 145 | | | 480 | 46 | 2.1 | 231 | 340 | 23,600 | 34,500 | 6876 | В | 391 | 469 | 2 | 19.7 | | 000 | 520 | 65 | 4 | 325 | 510 | 33,000 | 52,000 | 6976 | В | 396 | 504 | 3 | 39.8 | | 380 | 560 | 57 | 4 | 360 | 590 | 37,000 | 60,000 | 16076 | В | 398 | 542 | 3 | 50.1 | | | 560 | 82 | 5 | 455 | 725 | 46,500 | 74,000 | 6076 | В | 400 | 540 | 4 | 67.5 | | | 500 | 46 | 2.1 | 226 | 340 | 23,100 | 34,500 | 6880 | В | 411 | 489 | 2 | 20.6 | | | 540 | 65 | 4 | 335 | 535 | 34,000 | 54,500 | 6980 | В | 416 | 524 | 3 | 41.6 | | 400 | 600 | 63 | 5 | 370 | 620 | 38,000 | 63,000 | 16080 | В | 422 | 578 | 4 | 65.8 | | | 600 | 90 | 5 | 510 | 825 | 52,000 | 84,000 | 6080 | В | 420 | 580 | 4 | 87.6 | | | 720 | 130 | 6 | 610 | 1,080 | 62,000 | 110,000 | SC8002 | D | 428 | 692 | 5 | 226 | | | 520 | 46 | 2.1 | 260 | 405 | 26,500 | 41,500 | 6884 | В | 431 | 509 | 2 | 21.6 | | 420 | 560 | 65 | 4 | 340 | 560 | 35,000 | 57,000 | 6984 | В | 436 | 544 | 3 | 43.4 | | | 620 | 90 | 5 | 530 | 895 | 54,000 | 91,000 | 6084 | В | 440 | 600 | 4 | 91.1 | | | 540 | 46 | 2.1 | 264 | 420 | 26,900 | 43,000 | 6888 | В | 451 | 529 | 2 | 22.5 | | | 599 | 80 | 4 | 425 | 720 | 43,000 | 73,500 | SC8803 | В | 458 | 581 | 3 | 64 | | 440 | 600 | 74 | 4 | 365 | 615 | 37,500 | 63,000 | 6988 | В | 456 | 584 | 3 | 60 | | | 650 | 94 | 6 | 525 | 900 | 53,500 | 92,000 | 6088 | В | 468 | 622 | 5 | 104 | | 450 | 629 | 80 | 4 | 435 | 770 | 44,500 | 78,500 | SC9001 | F | 468 | 611 | 3 | 76 | | | 580 | 56 | 3 | 315 | 515 | 32,000 | 52,500 | 6892 | В | 473 | 567 | 2.5 | 34.8 | | 460 | 620 | 74 | 4 | 375 | 645 | 38,500 | 66,000 | 6992 | В | 476 | 604 | 3 | 62.2 | | | 680 | 100 | 6 | 605 | 1,080 | 62,000 | 110,000 | 6092 | В | 488 | 652 | 5 | 122 | | 400 | 600 | 56 | 3 | 320 | 540 | 32,500 | 55,000 | 6896 | В | 493 | 587 | 2.5 | 36.2 | | 480 | 650 | 78 | 5 | 430 | 770 | 44,000 | 78,500 | 6996 | В | 500 | 630 | 4 | 73 | ^{Drawing details are shown in Page B-5. Smallest allowable dimension for chamfer dimension r.} | $\frac{Fa}{Cor}$ | e | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≤ e | $\frac{F}{F}$ | $\frac{\frac{a}{r}}{r} > e$ | |------------------|------|-------------------------------|------------|---------------|-----------------------------| | Cor | | X | Y | X | Y | | 0.010 | 0.18 | | | | 2.46 | | 0.020 | 0.20 | | | | 2.14 | | 0.040 | 0.24 | | | | 1.83 | | 0.070 | 0.27 | | | | 1.61 | | 0.10 | 0.29 | 1 | 0 | 0.56 | 1.48 | | 0.15 | 0.32 | ' | 0 | 0.50 | 1.35 | | 0.20 | 0.35 | | | | 1.25 | | 0.30 | 0.38 | | | 1.13 | | | 0.40 | 0.41 | | | | 1.05 | | 0.50 | 0.44 | | | | 1.00 | static P_{or} =0.6 F_r +0.5 F_a
When P_{or} < F_r use P_{or} = F_r # **d** 480∼710mm | | Boundary d | | ons | dynamic | static | ad ratings
dynamic | static | Bearing
numbers | Drawing
No. | | Abutment ar fillet dimension | | Mass | |----------|------------|-----|---------------|------------|-------------|-----------------------|-------------|--------------------|----------------|----------------|------------------------------|-----------------|-----------| | | mı | m | | kl | N | k | gf | | | 7 | mm | | kg | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | (approx.) | | α | D | D | s min | $O_{ m r}$ | Oor | $\sigma_{\rm r}$ | Oor | | | 111111 | IIIdA | IIIax | (αρριολ.) | | 480 | 700 | 100 | 6 | 605 | 1,090 | 61,500 | 111,000 | 6096 | В | 508 | 672 | 5 | 126 | | | 620 | 56 | 3 | 325 | 560 | 33,500 | 57,000 | 68/500 | В | 513 | | 2.5 | 37.5 | | 500 | 670 | 78 | 5 | 445 | 805 | 45,500 | 82,500 | 69/500 | В | 520 | | 4 | 75.5 | | 500 | 669 | 100 | 5 | 545 | 980 | 55,500 | 100,000 | SC10006 | В | 522 | | 4 | 103 | | | 720 | 100 | 6 | 630 | 1,170 | 64,000 | 120,000 | 60/500 | В | 528 | 692 | 5 | 130 | | 520 | 719 | 100 | 5 | 560 | 1,050 | 57,000 | 107,000 | SC10403 | В | 542 | 697 | 4 | 118 | | | 650 | 56 | 3 | 330 | 580 | 34,000 | 59,500 | 68/530 | В | 543 | 637 | 2.5 | 39.5 | | 530 | | 82 | 5 | 455 | 845 | 46,500 | 86,000 | 69/530 | В | 552 | | 4 | 89.1 | | | 780 | 112 | 6 | 645 | 1,270 | 66,000 | 129,000 | 60/530 | В | 558 | | 5 | 178 | | | | | | | , - | , | -, | | | | | | | | | 680 | 56 | 3 | 335 | 600 | 34,000 | 61,500 | 68/560 | В | 573 | 667 | 2.5 | 41.5 | | 560 | 750 | 85 | 5 | 525 | 1,020 | 53,500 | 104,000 | 69/560 | В | 582 | 728 | 4 | 103 | | | 820 | 115 | 6 | 705 | 1,410 | 72,000 | 143,000 | 60/560 | В | 588 | 792 | 5 | 200 | | 570 | 790 | 115 | 6 | 705 | 1,400 | 72,000 | 143,000 | SC11401 | В | 598 | 762 | 5 | 166 | | | 730 | 60 | 3 | 375 | 705 | 38,500 | 72,000 | 68/600 | В | 613 | 717 | 2.5 | 51.7 | | 600 | 800 | 90 | 5 | 590 | 1,200 | 60,500 | 122,000 | 69/600 | В | 622 | 778 | 4 | 122 | | | 870 | 118 | 6 | 725 | 1,510 | 74,000 | 154,000 | 60/600 | В | 628 | | 5 | 228 | | 610 | 869 | 120 | 5 | 725 | 1,510 | 74,000 | 154,000 | SC12203 | Е | 632 | 847 | 4 | 223 | | | 710 | 69 | 4 | 210 | 395 | 21,400 | 40,000 | SC12601 | В | 648 | 692 | 3 | 36 | | | 790 | 69 | 4 | 420 | 820 | 43,000 | 84,000 | 68/630 | В | 648 | | 3 | 71.6 | | 630 | 850 | 100 | 6 | 680 | 1,450 | 69,500 | 148,000 | 69/630 | В | 658 | _ | 5 | 158 | | | 920 | 128 | 7.5 | 840 | 1,770 | 85,500 | 181,000 | 60/630 | В | 666 | | 6 | 280 | | | 020 | .20 | 7.0 | 0.0 | 1,7.70 | | 101,000 | 00,000 | | 000 | | Ů | 200 | | 650 | 919 | 118 | 6 | 840 | 1,780 | 85,500 | 181,000 | SC13007 | В | 678 | 891 | 5 | 246 | | | 820 | 69 | 4 | 425 | 850 | 43,000 | 86,500 | 68/670 | В | 688 | 802 | 3 | 75.1 | | 670 | 900 | 103 | 6 | 700 | 1,530 | 71,000 | 156,000 | 69/670 | В | 698 | 872 | 5 | 181 | | | 980 | 136 | 7.5 | 975 | 2,120 | 99,500 | 216,000 | 60/670 | В | 706 | 944 | 6 | 336 | | | 870 | 74 | 4 | 440 | 910 | 44,500 | 92,500 | 68/710 | В | 728 | 852 | 3 | 91.1 | | 710 | | 106 | 6 | 715 | 1,600 | 72,500 | 163,000 | 69/710 | В | 738 | | 5 | 205 | | | 1,030 | 140 | 7.5 | 1,020 | 2,310 | 104,000 | 235,000 | 60/710 | В | 746 | | 6 | 379 | | | 1,030 | 140 | 7.5 | 1,020 | 2,310 | 104,000 | 233,000 | 00//10 | ь | 740 | 334 | O | 319 | ^{Drawing details are shown in Page B-5. Smallest allowable dimension for chamfer dimension r.} | $\frac{Fa}{Cor}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} \leq e$ | | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | |------------------|------|--------------------------------------|---|-----------------------------------|------|--| | Cor | | X | Y | X | Y | | | 0.010 | 0.18 | | | | 2.46 | | | 0.020 | 0.20 | | | | 2.14 | | | 0.040 | 0.24 | | | | 1.83 | | | 0.070 | 0.27 | | | | 1.61 | | | 0.10 | 0.29 | 1 | 0 | 0.56 | 1.48 | | | 0.15 | 0.32 | ' | " | 0.50 | 1.35 | | | 0.20 | 0.35 | | | | 1.25 | | | 0.30 | 0.38 | | | 1.13 | | | | 0.40 | 0.41 | | | | 1.05 | | | 0.50 | 0.44 | | | | 1.00 | | static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r} # d 750~1,320mm | Boundary dimensions | | dynamic | Basic lo
static | ad ratings
dynamic | static | Bearing numbers | Drawing No. | Drawing Abutment and No. fillet dimensions | | | Mass | | | |---------------------|-----------|---------|--------------------|-----------------------|-------------|-----------------|-------------|--|-----|------------|------------------|--------------|-----------| | | mr | m | | kl | N | k | gf | | | | mm | | kg | | | | | | | | | | | | $d_{ m a}$ | D_{a} | $r_{\rm as}$ | | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | min | max | max | (approx.) | | | 000 | 70 | _ | 405 | 1 0 1 0 | 40.500 | 100,000 | C0/7F0 | _ D | 770 | 000 | 4 | 107 | | | 920 | 78 | 5 | 485 | 1,040 | 49,500 | 106,000 | 68/750 | В | 772 | 898 | 4 | 107 | | 750 | 1,000 | 112 | 6 | 725 | 1,670 | 74,000 | 171,000 | 69/750 | В | 778 | 972 | 5 | 238 | | | 1,070 | 140 | 7.5 | 925 | 2,210 | 94,500 | 225,000 | SC15002 | С | 765 | 1,055 | 6 | 403 | | | 1,090 | 150 | 7.5 | 1,050 | 2,500 | 107,000 | 255,000 | 60/750 | В | 765 | 1,075 | 6 | 457 | | | 980 | 82 | 5 | 485 | 1,070 | 49.500 | 110,000 | 68/800 | В | 822 | 958 | 4 | 127 | | 800 | 1,060 | 115 | 6 | 800 | 1,900 | 81,500 | 194,000 | 69/800 | В | 828 | 1,032 | 5 | 270 | | 000 | 1,150 | 155 | 7.5 | 1,090 | 2,690 | 111,000 | 274,000 | 60/800 | В | 836 | 1,114 | 6 | 515 | | | ., | | | .,000 | _,000 | , | | 00,000 | _ | | ., | | | | 820 | 1,160 | 160 | 7.5 | 1,020 | 2,540 | 104,000 | 259,000 | SC16401 | С | 856 | 1,124 | 6 | 524 | | | 1,030 | 82 | 5 | 500 | 1,140 | 51,000 | 116,000 | 68/850 | В | 872 | 1,008 | 4 | 135 | | 850 | 1,120 | 118 | 6 | 900 | 2,240 | 92,000 | 228,000 | 69/850 | В | 878 | 1,092 | 5 | 305 | | 030 | 1,220 | 165 | 7.5 | 1,120 | 2,880 | 114,000 | 294,000 | 60/850 | В | 886 | 1,184 | 6 | 615 | | | 1,220 | 100 | 7.0 | 1,120 | 2,000 | 111,000 | 201,000 | 00/000 | | 000 | 1,101 | | | | | 1,090 | 85 | 5 | 610 | 1,450 | 62,500 | 148,000 | 68/900 | В | 922 | 1,068 | 4 | 156 | | 900 | 1,180 | 122 | 6 | 920 | 2,340 | 93,500 | 238,000 | 69/900 | В | 928 | 1,152 | 5 | 346 | | | 1,280 | 170 | 7.5 | 1,150 | 3,100 | 117,000 | 315,000 | 60/900 | В | 936 | 1,244 | 6 | 685 | | | | | _ | | | | | | _ | | | | | | 050 | 1,150 | 90 | 5 | 630 | 1,550 | 64,500 | 158,000 | 68/950 | В | 972 | 1,128 | 4 | 184 | | 950 | 1,250 | 132 | 7.5 | 935 | 2,430 | 95,000 | 248,000 | 69/950 | В | 986 | 1,214 | 6 | 424 | | | 1,360 | 180 | 7.5 | 1,130 | 3,050 | 116,000 | 310,000 | 60/950 | В | 986 | 1,324 | 6 | 855 | | | 1,220 | 100 | 6 | 710 | 1,790 | 72,000 | 183,000 | 68/1000 | В 1 | 1,028 | 1,192 | 5 | 237 | | 1,000 | 1,320 | 140 | 7.5 | 1,010 | 2,700 | 103,000 | 275,000 | 69/1000 | | 1,036 | 1,284 | 6 | 506 | | ,,,,,, | 1,420 | 185 | 7.5 | 1,160 | 3,200 | 119,000 | 330,000 | 60/1000 | | 1,036 | 1,384 | 6 | 945 | | | 1,12 | | | ., | -, | | | | _ | , | ., | | | | | 1,280 | 100 | 6 | 730 | 1,910 | 74,500 | 195,000 | 68/1060 | B 1 | ,088 | 1,252 | 5 | 250 | | 1,060 | 1,400 | 150 | 7.5 | 1,200 | 3,400 | 122,000 | 345,000 | 69/1060 | | ,096 | 1,364 | 6 | 610 | | | 1,500 | 195 | 9.5 | 1,190 | 3,350 | 121,000 | 345,000 | 60/1060 | B 1 | 1,104 | 1,456 | 8 | 1,126 | | | 1,360 | 106 | 6 | 885 | 2,410 | 90,500 | 246,000 | 68/1120 | В | 1,148 | 1,332 | 5 | 307 | | 1,120 | 1,460 | 150 | 7.5 | 1,230 | 3,550 | 125,000 | 360,000 | 69/1120 | | 1,156 | 1,424 | 6 | 640 | | .,0 | 1,580 | 200 | 9.5 | 1,170 | 3,350 | 120,000 | 340,000 | 60/1120 | | I,164 | 1,536 | 8 | 1,258 | | | .,000 | | 0.0 | ., | 0,000 | .20,000 | - 10,000 | 00,1120 | | ., | 1,000 | | .,200 | | 4 400 | 1,420 | 106 | 6 | 920 | 2,580 | 94,000 | 264,000 | 68/1180 | В 1 | 1,208 | 1,392 | 5 | 322 | | 1,180 | 1,540 | 160 | 7.5 | 1,250 | 3,700 | 127,000 | 375,000 | 69/1180 | | ,216 | 1,504 | 6 | 762 | | | | | | | | | | | | | | | | | 1,250 | 1,500 | 112 | 6 | 925 | 2,670 | 94,500 | 272,000 | 68/1250 | B 1 | 1,278 | 1,472 | 5 | 376 | | 1,320 | 1,600 | 122 | 6 | 1,100 | 3,300 | 112,000 | 335,000 | 68/1320 | В 1 | 1,348 | 1,572 | 5 | 495 | | | Drawing d | | shown in | | - | • | • | | _ | | | | | ^{Drawing details are shown in Page B-5. Smallest allowable dimension for chamfer dimension r.} # 1. Structure and Characteristics # 1. 1 Single row angular contact ball bearings / duplex angular contact ball bearings A line connecting the contact points of both the ball and inner ring and ball and outer ring forms an angle to a line drawn radially: that angle is called the contact angle. An angular contact ball bearing, while designed for radial loads, can accommodate single direction axial loads. Under radial loads and the resulting axial force component, the bearings are generally used in a duplex arrangement. More information on types and characteristics of duplexed angular contact ball bearings is shown in Table 1. Cage types and special features of single and multi–row angular contact ball bearings are show in Fig.1. Drawings A through F feature the inner ring guide cage. Drawings B and C illustrate cages with lubrication ports. Drawings D and E feature a rolling element guide cage: E also shows the cage with a lubrication port. Note that the inner ring width in drawing F is larger than that of the outer ring. Table 1 Duplex angular contact ball bearings | Arrangem | ent type | | Characteristics | |--|----------|---------------------------|--| | Back-to-back
duplex
arrangement
(Code: DB) | | These bearings support | Since the distance "I" between the cone pressure apexes of bearing is large, the load capacity of the moment load is high. Permissible slant angle is small. | | Face-to-face
duplex arrangement
(Code: DF) | | direction of axial loads. | The distance "I" between the cone pressure apexes of bearing is small in comparison with the back-to-back duplex arrangement, the load capacity of the moment load is low. Permissible slant angle is larger than the back-to-back duplex arrangement type. | Notes: 1. Since the bearings are manufactured in a set to adjust for the internal clearance or pre-loading, parts with same serial number must be used for assembly. 2. Combination of more than 3 bearings may occur. Please consult NTN Engineering for details. Fig.1 Single row/duplex angular contact ball bearings ## 1. 2 Double row angular contact ball bearings Two single row angular contact ball bearings when duplexed back-to-back (DB) so that the inner ring forms one piece are used to create double row angular contact ball bearings. Alternatively, the bearings may be duplexed face-to-face (DF) with the outer ring as one piece. These bearings support radial and axial loads in either direction: back-to-back duplexed bearings also support moment loads. The cage type and special shape of the double row angular contact ball bearings are shown in **Fig.2** with the list of drawing numbers in the dimensions table. The **drawings A** and **B** are the front-to-front duplex arrangement; drawing 2 is a bearing with a lubricating port; **drawings** from **C** to **G** show the back-to-back duplex arrangement and the different position of the lubricating ports whether or not there are lubricating grooves. **Drawing C** shows the inner ring width larger than that of outer ring. Fig.2 Double row angular contact ball bearings drawing # 2. Dimensional Accuracy/Rotation Accuracy ## Refer to Table 3.3 (Page A-12) Single row/Duplex angular contact ball bearings Double row angular contact ball bearings ### 3. Recommended Fitting #### Refer to Table 4.2 (Page A-24) Single row/Duplex angular contact ball bearings Double row angular contact ball bearings # 4. Bearing Internal Clearance ### Refer to Table 5.3 (Page A-31) Duplex angular contact ball bearings Double row angular contact ball bearings # 5. Cautions for Operation When the bearing loads are small(about $F_r \leq 0.02 C_{\rm or}$) or the ratio between the axial and radial loads of the duplex bearing exceeds the value "e", slippage may occur between the balls and the raceways. This slippage may cause smearing. Particularly with large size angular contact ball bearings, this tendency is significant since the ball and cage mass is large. Please consult with NTN Engineering for further details. back-to-back arrangement (DB) face-to-face arrangement (DF) | | d | 100~130mm | 1 | |--|---|-----------|---| |--|---|-----------|---| | | Во | oundar | | ensions | | contact
angle | dynamic | static | oad ratings
dynamic | static | Bearing numbers | Drawing [©] | Load center | Mass | |-----|-------|--------|----|---------------|----------------|------------------|------------|-------------|------------------------|-------------|-----------------|----------------------|-------------|-----------------| | | | | mm | | | | L | sir
(N | ngle | gf | single | | mm | single | | d | D | В | C | $r_{ m smin}$ | $r_{ m lsmin}$ | α | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | a | kg
(approx.) | | | | | | | | | | | | | | | | ,,,, | | | 125 | 13 | _ | 1 | 0.6 | 30 | 21.2 | 25.2 | 2,160 | 2,570 | 7820 | Α | 39 | 0.36 | | | 140 | 20 | _ | 1.1 | 0.6 | 30 | 48.0 | 52.5 | 4,900 | 5,350 | 7920 | Α | 44.5 | 0.93 | | | 150 | 24 | _ | 1.5 | 1 | 30 | 68.5 | 70.5 | 6,950 | 7,200 | 7020 | Α | 48 | 1.47 | | 100 | 150 | 24 | _ | 1.5 | 1 | 40 | 61.0 | 63.5 | 6,250 | 6,500 | 7020B | Α | 64.5 | 1.49 | | 100 | 180 | 34 | _ | 2.1 | 1.1 | 30 | 144 | 126 | 14,700 | 12,800 | 7220 | Α | 57.5 | 3.2 | | | 180 | 34 | _ | 2.1 | 1.1 | 40 | 130 | 114 | 13,300 | 11,700 | 7220B | Α | 76 | 3.26 | | | 215 | 47 | _ | 3 | 1.1 | 30 | 207 | 193 | 21,100 | 19,700 | 7320 | A | 69 | 7.18 | | | 215 | 47 | _ | 3 | 1.1 | 40 | 190 | 178 | 19,400 | 18,100 | 7320B | Α | 89.5 | 7.32 | | | 130 | 13 | _ | 1 | 0.6 | 30 | 21.7 | 26.5 | 2,210 | 2,700 | 7821 | Α | 40.5 | 0.37 | | | 145 | 20 | _ | 1.1 | 0.6 | 30 | 48.5 | 54.5 | 4,950 | 5,550 | 7921 | Α | 46 | 0.97 | | | 160 | 26 | _ | 2 | 1 | 30 | 80.0 | 81.5 | 8,150 | 8,350 | 7021 | Α | 51.5 | 1.86 | | 105 | 160 | 26 | _ | 2 | 1 | 40 | 71.5 | 73.5 | 7,300 | 7,500 | 7021B | Α | 68.6 | 1.88 | | 105 | 190 | 36 | _ | 2.1 | 1.1 | 30 | 157 | 142 | 16,000 | 14,400 | 7221 | Α | 60.5 | 3.79 | | | 190 | 36 | _ | 2.1 | 1.1 | 40 | 142 | 129 | 14,500 | 13,100 | 7221B | Α | 80 | 3.87 | | | 225 | 49 | _ | 3 | 1.1 | 30 | 220 | 210 | 22,400 | 21,500 | 7321 | Α | 72 | 8.2 | | | 225 | 49 | _ | 3 | 1.1 | 40 | 202 | 194 | 20,600 | 19,700 | 7321B | Α | 93.5 | 8.36 | | | 140 | 16 | _ | 1 | 0.6 | 30 | 31.0 | 38.0 | 3,200 | 3,850 | 7822 | Α | 44 | 0.58 | | | 150 | 20 | _ | 1.1 | 0.6 | 30 | 49.5 | 56.0 | 5,050 | 5,700 | 7922 | Α | 47.5 | 1.01 | | | 170 | 28 | _ | 2 | 1 | 30 | 92.0 | 93.0 | 9,350 | 9,450 | 7022 | Α | 54.5 | 2.3 | | 110 | 170 | 28 | _ | 2 | 1 | 40 | 82.5 | 83.5 | 8,400 | 8,550 | 7022B | Α | 72.8 | 2.34 | | 110 | 200 | 38 | _ | 2.1 | 1.1 | 30 | 170 | 158 | 17,300 | 16,100 | 7222 | Α | 64 | 4.45 | | | 200 | 38 | _ | 2.1 | 1.1 | 40 | 154 | 144 | 15,700 | 14,700 | 7222B | Α | 84 | 4.54 | | | 240 | 50 | _ | 3 | 1.1 | 30 | 246 | 246 | 25,100 | 25,100 | 7322 | Α | 76 | 9.6 | | | 240 | 50 | _ | 3 | 1.1 | 40 | 226 | 226 | 23,000 | 23,100 | 7322B | Α | 99 | 9.8 | | | 150 | 16 | _ | 1 | 0.6 | 30 | 31.5 | 40.0 | 3,250 | 4,050 | 7824 | Α | 47 | 0.63 | | | 165 | 22 | _ | 1.1 | 0.6 | 30 | 61.0 | 69.5 | 6,200 | 7,100 | 7924 | Α | 52 | 1.66 | | | 180 | 28 | _ | 2 | 1 | 30 | 93.5 | 98.5 | 9,550 | 10,000 | 7024 | Α | 57.5 | 2.47 | | 120 | 180 | 28 | _ | 2 | 1 | 40 | 84.0 | 89.0 | 8,550 | 9,050 | 7024B | Α | 77 | 2.51 | | 120 | 215 | 40 | _ | 2.1 | 1.1 | 40 | 165 | 162 | 16,900 | 16,500 | 7224B | Α | 90.5 | 6.26 | | | 215 | 40 | _ | 2.1 | 1.1 | 30 | 183 | 177 | 18,600 | 18,100 | 7224 | Α | 68.5 | 6.26 | | | 260 | 55 | _ | 3 | 1.1 | 30 | 246 | 252 | 25,100 | 25,700 | 7324 | Α | 82.5 | 14.7 | | | 260 | 55 | _ | 3 | 1.1 | 40 | 225 | 231 | 23,000 | 23,600 | 7324B | Α | 107 | 14.7 | | | 165 | 18 | _ | 1.1 | 0.6 | 30 | 42.0 | 53.0 | 4,300 | 5,400 | 7826 | Α | 51.5 | 0.91 | | 130 | 180 | 24 | _ | 1.5 | 1 | 30 | 75.0 | 87.5 | 7,650 | 8,900 | 7926 | A | 56.5 | 1.82 | | | 199.5 | 33 | _ | 2.5 | 1 | 30 | 117 | 125 | 12,000 | 12,900 | SF2652 | | 64 | 3.74 | ^{Drawing details are shown in Page B-15. Smallest allowable dimension for chamfer dimension r or r_i.} | Con- | | | Sin | gle | | DB, DF | | | | | |-------|------|------------------------------|-----|---------------|------|---------------|---------------|---------------|------|--| | tact | e | $F_{\rm a}/F_{\rm r} \leq e$ | | $F_a/F_r > e$ | | $F_{\rm a}/I$ | 7r ≤ e | $F_a/F_r > e$ | | | | angle | | X | Y | X | Y | X | Y | X | Y | | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | static Por=XoFr+YoFa | Con-
tact | Sin | gle | DB, DF | | | | | |--------------|-------|-------|--------|------|--|--|--| | angle | X_0 | Y_0 | X_0 | Yo | | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | dynamic Static dynamic (duplex) | | | static | num | ring
bers
olex) | Loa
cent
mn | er | f | Abutmen
illet dime
mm | nsions | | | | |---------------------------------|-------------|------------|-------------|------|-----------------------|-------------------|------|------------|-----------------------------|--------------|--------------|--|--| | | KN | , | cgf | (30) | , | a | | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | $r_{ m las}$ | | | | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | DB | DF | DB | DF | min | max | max | max | | | | | | | | | | | | | | | | | | | 34.0 | 50.5 | 3,500 | 5,150 | DB | DF | 78 | 52 | 105.5 | 119.5 | 1 | 0.6 | | | | 78.0 | 105 | 7,950 | 10,700 | DB | DF | 109 | 69 | 107 | 133 | 1 | 0.6 | | | | 111 | 141 | 11,300 | 14,400 | DB | DF | 120 | 72 | 108.5 | 141.5 | 1.5 | 1 | | | | 76.5 | 127 | 10,100 | 13,000 | DB | DF | 129 | 81 | 108.5 | 141.5 | 1.5 | 1 | | | | 233 | 251 | 23,800 | 25,600 | DB | DF | 149 | 81 | 112 | 168 | 2 | 1 | | | | 212 | 229 | 21,600 | 23,300 | DB | DF | 186 | 118 | 112 | 168 | 2 | 1 | | | | 335 | 385 | 34,500 | 39,500 | DB | DF | 185 | 91 | 114 | 201 | 2.5 | 1 | | | | 310 | 355 | 31,500 | 36,000 | DB | DF | 226 | 132 | 114 | 201 | 2.5 | 1 | | | | | | | | | | | | | | | | | | | 35.0 | 53.0 | 3,600 | 5,400 | DB | DF | 81 | 55 | 110.5 | 124.5 | 1 | 0.6 | | | | 79.0 | 109 | 8,050 | 11,100 | DB | DF | 112 | 72 | 112 | 138 | 1 | 0.6 | | | | 130 | 163 | 13,300 | 16,700 | DB | DF | 129 | 77 | 115 | 150 | 2 | 1 | | | | 116 | 147 | 11,900 | 15,000 | DB | DF | 137 | 85 | 115 | 150 | 2 | 1 | | | | 254 | 283 | 25,900 | 28,900 | DB | DF | 157 | 85 | 117 | 178 | 2 | 1 | | | | 231 | 258 | 23,500 | 26,300 | DB | DF | 196 | 124 | 117 | 178 | 2 | 1 | | | | 355 | 420 | 36,500 | 43,000 | DB | DF | 193 | 95 | 119 | 211 | 2.5 | 1 | | | | 330 | 385 | 33,500 | 39,500 | DB | DF | 236 | 138 | 119 | 211 | 2.5 | 1 | | | | | | | | | | | | | | | | | | | 50.5 | 76.0 | 5,150 | 7,750 | DB | DF | 88 | 56 | 115.5 | 134.5 | 1 | 0.6 | | | | 80.0 | 112 | 8,150 | 11,400 | DB | DF | 115 | 75 | 117 | 143 | 1 | 0.6 | | | | 149 | 186 | 15,200 | 18,900 | DB | DF | 137 | 81 | 120 | 160 | 2 | 1 | | | | 134 | 167 | 13,600 | 17,100 | DB | DF | 145.5 | 89.5 | 120 | 160 | 2 | 1 | | | | 276 | 315 | 28,100 | 32,500 | DB | DF | 166 | 90 | 122 | 188 | 2 | 1 | | | | 250 | 289 | 25,500 | 29,400 | DB | DF | 206 | 130 |
122 | 188 | 2 | 1 | | | | 400 | 490 | 41,000 | 50,000 | DB | DF | 202 | 102 | 124 | 226 | 2.5 | 1 | | | | 365 | 455 | 37,500 | 46,000 | DB | DF | 248 | 148 | 124 | 226 | 2.5 | 1 | | | | 51.5 | 79.5 | 5,250 | 8,100 | DB | DF | 94 | 62 | 125.5 | 144.5 | 1 | 0.6 | | | | 99.0 | 139 | 10,100 | 14,200 | DB | DF | 126 | 82 | 123.3 | 158 | 1 | 0.6 | | | | 152 | 197 | 15,500 | 20,100 | DB | DF | 143 | 87 | 130 | 170 | 2 | 1 | | | | 136 | 178 | 13,900 | 18,100 | DB | DF | 154 | 98 | 130 | 170 | 2 | 1 | | | | 269 | 325 | 27,400 | 33,000 | DB | DF | 221 | 141 | 132 | 203 | 2 | 1 | | | | 297 | 355 | 30,500 | 36,000 | DB | DF | 177 | 97 | 132 | 203 | 2 | 1 | | | | 400 | 505 | 41,000 | 51,500 | DB | DF | 220 | 110 | 134 | 246 | 2.5 | | | | | 365 | 460 | 37,500 | 47,000 | DB | DF | 269 | 159 | 134 | 246 | 2.5 | 1 | | | | 500 | 100 | 07,000 | 17,000 | | ٥. | 200 | 100 | 104 | 2.10 | 2.0 | ' | | | | 68.5 | 106 | 6,950 | 10,800 | DB | DF | 103 | 67 | 137 | 158 | 1 | 0.6 | | | | 121 | 175 | 12,400 | 17,800 | DB | DF | 137 | 89 | 138.5 | 171.5 | 1.5 | 1 | | | | 191 | 251 | 19,400 | 25,600 | DB | DF | 128.5 | 62.5 | 142 | 187.5 | 2 | 1 | | | | | | • | • | | | | | | | | | | | d 130~160mm | | E | Bounda | ry dime | ensions | | contact
angle | dynamic | static | oad ratings
dynamic | static | Bearing numbers | Drawing No. | Description Load Conter | Mass | |------|------------|------------|---------|---------------|------------------|------------------|------------|-------------|------------------------|--------------------|-----------------|-------------|-------------------------|-----------------| | | | | mm | | | | | sir
kN | ngle | . a.f | single | | ma.ma | single | | d | D | В | C | $r_{ m smin}$ | $r_{ m ls min}$ | α | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | c gf $C_{ m or}$ | | | $\frac{mm}{a}$ | kg
(approx.) | | | | | | | | | | | | | | | | · · · · · · · | | | 200 | 33 | _ | 2 | 1 | 30 | 117 | 125 | 12,000 | 12,800 | 7026 | Α | 64 | 3.73 | | | 200 | 33 | _ | 2 | 1 | 40 | 105 | 113 | 10,700 | 11,500 | 7026B | Α | 86 | 3.78 | | | 205 | 24 | _ | 2.5 | 1 | 30 | 75.0 | 90.0 | 7,650 | 9,150 | SF2608 | Α | 60.5 | 2.98 | | 130 | 230 | 40 | _ | 3 | 1.1 | 30 | 196 | 198 | 20,000 | 20,200 | 7226 | Α | 72 | 7.15 | | | 230 | 40 | _ | 3 | 1.1 | 40 | 177 | 180 | 18,100 | 18,300 | 7226B | Α | 95.5 | 7.15 | | | 280 | 58 | _ | 4 | 1.5 | 30 | 273 | 293 | 27,900 | 29,800 | 7326 | Α | 88 | 17.6 | | | 280 | 58 | _ | 4 | 1.5 | 40 | 250 | 268 | 25,500 | 27,400 | 7326B | Α | 115 | 17.6 | | | 175 | 18 | _ | 1.1 | 0.6 | 30 | 43.0 | 55.5 | 4,350 | 5,650 | 7828 | Α | 54.5 | 0.97 | | | 190 | 24 | _ | 1.5 | 1 | 30 | 75.5 | 90.0 | 7,700 | 9,150 | 7928 | Α | 59.5 | 1.94 | | | 210 | 33 | _ | 2 | 1 | 30 | 120 | 133 | 12,200 | 13,500 | 7028 | Α | 67 | 3.96 | | | 210 | 33 | _ | 2 | 1 | 40 | 107 | 119 | 10,900 | 12,100 | 7028B | Α | 90 | 4.01 | | 140 | 250 | 42 | _ | 3 | 1.1 | 30 | 203 | 215 | 20,700 | 21,900 | 7228 | Α | 77.5 | 8.78 | | | 250 | 42 | _ | 3 | 1.1 | 40 | 183 | 195 | 18,700 | 19,900 | 7228B | Α | 103 | 8.78 | | | 300 | 62 | _ | 4 | 1.5 | 30 | 300 | 335 | 30,500 | 34,500 | 7328 | Α | 94.5 | 21.5 | | | 300 | 62 | _ | 4 | 1.5 | 40 | 275 | 310 | 28,100 | 31,500 | 7328B | Α | 123 | 21.5 | | 145 | 220 | 38 | _ | 2.5 | 1.5 | 30 | 148 | 158 | 15,100 | 16,100 | SF2951 | А | 71.7 | 5.15 | | | 190 | 20 | _ | 1.1 | 0.6 | 30 | 54.5 | 70.5 | 5,550 | 7,200 | 7830 | Α | 59 | 1.35 | | | 210 | 28 | _ | 2 | 1 | 30 | 97.5 | 117 | 9,900 | 11,900 | 7930 | Α | 66 | 2.96 | | | 225 | 35 | _ | 2.1 | 1.1 | 30 | 137 | 154 | 14,000 | 15,700 | 7030 | Α | 71.5 | 4.82 | | 4.04 | 225 | 35 | _ | 2.1 | 1.1 | 40 | 122 | 138 | 12,500 | 14,000 | 7030B | Α | 96 | 4.88 | | 150 | 270 | 45 | _ | 3 | 1.1 | 30 | 232 | 259 | 23,700 | 26,400 | 7230 | Α | 83 | 11 | | | 270 | 45 | _ | 3 | 1.1 | 40 | 210 | 235 | 21,400 | 24,000 | 7230B | Α | 111 | 11 | | | 320 | 65 | _ | 4 | 1.5 | 30 | 330 | 380 | 33,500 | 39,000 | 7330 | Α | 100 | 25.1 | | | 320 | 65 | _ | 4 | 1.5 | 40 | 300 | 350 | 30,500 | 36,000 | 7330B | Α | 131 | 25.1 | | | 200 | 20 | _ | 1.1 | 0.6 | 30 | 55.5 | 74.0 | 5,650 | 7,550 | 7832 | Α | 62 | 1.42 | | | 215 | 28 | 25 | 2.5 | 1.1 | 40 | 75.5 | 93.0 | 7,700 | 9,450 | SF3208 | F | 91 | 2.74 | | | 220 | 28 | _ | 2 | 1 | 30 | 98.5 | 121 | 10,000 | 12,300 | 7932 | Α | 69 | 3.13 | | | 229.5 | 33 | _ | 2.5 | 1 | 40 | 111 | 128 | 11,300 | 13,100 | SF3209 | Α | 98.5 | 4.52 | | | 229.5 | 33 | _ | 2.5 | 1 | 40 | 111 | 128 | 11,300 | 13,100 | SF3214 | С | 98.5 | 4.52 | | 160 | 230 | 33 | _ | 2.5 | 1 | 30 | 124 | 147 | 12,600 | 15,000 | SF3210 | Α | 73 | 4.15 | | | 240 | 38 | _ | 2.1 | 1.1 | 30 | 155 | 176 | 15,800 | 18,000 | 7032 | Α | 77 | 5.96 | | | 240 | 38 | _ | 2.1 | 1.1 | 40 | 139 | 158 | 14,100 | 16,100 | 7032B | Α | 103 | 5.98 | | | 290 | 48 | _ | 3 | 1.1 | 30 | 263 | 305 | 26,800 | 31,500 | 7232 | Α | 89 | 13.7 | | | 290 | 48 | _ | 3 | 1.1 | 40 | 238 | 279 | 24,200 | 28,400 | 7232B | Α | 118 | 13.7 | | | 340 | 68 | _ | 4 | 1.5 | 30 | 345 | 420 | 35,500 | 43,000 | 7332 | Α | 106 | 29.8 | | | Drawing of | letails ar | e show | n in Page | B-15. | | | | | | | | | | ^{Drawing details are shown in Page B-15. Smallest allowable dimension for chamfer dimension r or r.} | Con- | | | Sin | gle | | DB, DF | | | | | |-------|------|------------------------------|-----|-------------------------|------|---------------|---------------|---------------|------|--| | tact | e | $F_{\rm a}/F_{\rm r} \leq e$ | | $F_{\rm a}/F_{\rm r}>e$ | | $F_{\rm a}/I$ | 7r ≤ e | $F_a/F_r > e$ | | | | angle | • | X | Y | X | Y | X | Y | X | Y | | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | static Por=XoFr+YoFa | Con-
tact | Sin | gle | DB, DF | | | | | |--------------|-------|-------|--------|------|--|--|--| | angle | X_0 | Y_0 | Xo | Yo | | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | dynamic | dynamic Basic load ratings static dynamic (duplex) | | static | num | ring
bers
olex) | Load
center
mm | | Abutment and fillet dimensions mm | | | • | |-------------|--|------------------|------------------|----------|-----------------------|----------------------|-------------|-----------------------------------|--------------|-------------|--------------| | | KN (du _r | , | gf | (50) | , | a | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | DB | DF | DB | DF | min | max | max | max | | | | | | | | | | | | | | | 191 | 251 | 19,400 | 25,600 | DB | DF | 161 | 95 | 140 | 190 | 2 | 1 | | 171 | 226 | 17,400 | 23,100 | DB | DF | 171.5 | 105.5 | 140 | 190 | 2 | 1 | | 122 | 180 | 12,500 | 18,300 | DB | DF | 120.5 | 72.5 | 142 | 193 | 2 | 1 | | 320 | 395 | 32,500 | 40,500 | DB | DF | 184 | 104 | 144 | 216 | 2.5 | 1 | | 288 | 360 | 29,400 | 36,500 | DB | DF | 231 | 151 | 144 | 216 | 2.5 | 1 | | 445 | 585 | 45,500 | 59,500 | DB | DF | 234 | 118 | 148 | 262 | 3 | 1.5 | | 405 | 535 | 41,500 | 54,500 | DB | DF | 288 | 172 | 148 | 262 | 3 | 1.5 | | | | • | | | | | | | | | | | 69.5 | 111 | 7,100 | 11,300 | DB | DF | 109 | 73 | 147 | 168 | 1 | 0.6 | | 123 | 180 | 12,500 | 18,300 | DB | DF | 143 | 95 | 148.5 | 181.5 | 1.5 | 1 | | 194 | 265 | 19,800 | 27,000 | DB | DF | 167 | 101 | 150 | 200 | 2 | 1 | | 174 | 237 | 17,700 | 24,200 | DB | DF | 180 | 114 | 150 | 200 | 2 | 1 | | 330 | 430 | 33,500 | 44,000 | DB | DF | 197 | 113 | 154 | 236 | 2.5 | 1 | | 297 | 390 | 30,500 | 40,000 | DB | DF | 248 | 164 | 154 | 236 | 2.5 | 1 | | 490 | 670 | 50,000 | 68,500 | DB | DF | 251 | 127 | 158 | 282 | 3 | 1.5 | | 445 | 615 | 45,500 | 63,000 | DB | DF | 308 | 184 | 158 | 282 | 3 | 1.5 | | 241 | 315 | 24,500 | 32,000 | DB | DF | 143.5 | 67.5 | 157 | 208 | 2 | 1.5 | | | | | | | | | | | | | | | 88.5 | 141 | 9,000 | 14,400 | DB | DF | 118 | 78 | 157 | 183 | 1 | 0.6 | | 158 | 234 | 16,100 | 23,900 | DB | DF | 160 | 104 | 160 | 200 | 2 | 1 | | 222 | 305 | 22,700 | 31,500 | DB | DF | 178 | 108 | 162 | 213 | 2 | 1 | | 199 | 275 | 20,300 | 28,100 | DB | DF | 192.5 | 122.5 | 162 | 213 | 2 | 1 | | 375 | 515 | 38,500 | 53,000 | DB | DF | 211 | 121 | 164 | 256 | 2.5 | 1 | | 340 | 470 | 34,500 | 48,000 | DB | DF | 267 | 177 | 164 | 256 | 2.5 | 1 | | 535 | 765 | 54,500 | 78,000 | DB | DF | 265 | 135 | 168 | 302 | 3 | 1.5 | | 490 | 700 | 50,000 | 71,500 | DB | DF | 327 | 197 | 168 | 302 | 3 | 1.5 | | 00.5 | 148 | 0.000 | 15 100 | DP. | DF | 104 | 84 | 167 | 100 | 4 | 0.6 | | 90.5
123 | 148
186 | 9,200
12,500 | 15,100
18,900 | DB
DB | —
— | 124
182.5 | 84
132.5 | 167
172 | 193
203 | 1
2 | 0.6
1 | | 160 | 241 | 16,300 | | DB | DF | 162.5 | 132.5 | 172 | 210 | 2 | 1 | | 180 | 24 i
256 | 18,300 | 24,600 | DB | DF | 196.5 | 130.5 | 170 | 217.5 | 2 | 1 | | 180 | 256
256 | | 26,100 | _
_ | DF | | 130.5 | 172 | | 2 | 1 | | 201 | 293 | 18,300
20,500 | 26,100
29,900 | DB | DF | 196.5
145.5 | 79.5 | 172 | 217.5
218 | 2 | 1 | | 252 | 293
355 | 25,700 | 29,900
36,000 | DB | DF | 145.5
192 | 79.5
116 | 172 | 228 | 2 | 1 | | 252
225 | 315 | | | DB | DF | 206 | 130 | 172 | 228 | 2 | 1 | | 425 | | 23,000 | 32,500
62,500 | DB | DF | 206 | | 174 | 226
276 | 2.5 | 1 | | 425
385 | 615
555 | 43,500
39,500 | 57,000 | | DF | | 130 | | | 2.5 | 1 | | 385
565 | 555
845 | | 86,000 | DB
DB | DF | 284
280 | 188
144 | 174
178 | 276
322 | 2.5
3 | 1
1.5 | | 202 | 040 | 57,500 | 00,000 | νD | DF | ∠00 | 144 | 1/0 | 322 | 3 | 1.5 | *d* 160∼195mm | The late | single
kg
(approx.)
29.8
1.88
3.29
7.96
8.02
17
17
35.3 |
---|---| | 160 340 68 - 4 1.5 40 315 385 32,000 39,500 7332B A 139 | (approx.) 29.8 1.88 3.29 7.96 8.02 17 17 | | 170 | 29.8
1.88
3.29
7.96
8.02
17
17 | | 170 215 | 1.88
3.29
7.96
8.02
17 | | 170 230 28 - 2 1 30 102 129 10,400 13,100 7934 A 71.5 260 42 - 2.1 1.1 30 186 214 18,900 21,900 7034 A 83 83 83 83 83 83 83 | 3.29
7.96
8.02
17 | | 170 260 42 — 2.1 1.1 40 166 193 17,000 19,700 7034B A 111.5 310 52 — 4 1.5 30 295 360 30,000 36,500 7234 A 95.5 310 52 — 4 1.5 40 266 325 27,200 33,000 7234B A 127 360 72 — 4 1.5 30 390 485 39,500 49,500 7334 A 113 360 72 — 4 1.5 40 355 445 36,000 45,500 7334B A 147 250 33 — 2 1 30 131 163 13,400 16,600 7936 A 78.5 259.5 33 — 2.5 1 30 178 211 18,200 21,500 \$F3629 C | 8.02
17
17 | | 180 310 52 4 1.5 30 295 360 30,000 36,500 7234 A 95.5 310 52 4 1.5 40 266 325 27,200 33,000 7234B A 127 360 72 4 1.5 30 390 485 39,500 49,500 7334 A 113 360 72 4 1.5 40 355 445 36,000 45,500 7334B A 147 225 22 1.1 0.6 30 70.0 95.0 7,100 9,700 7836 A 69.5 259.5 33 22 1 30 131 163 13,400 16,600 7936 A 78.5 259.5 33 2.5 1 40 138 166 14,100 16,900 5F3618 B 109 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 25.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 25.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 25.5 1 30 155 190 15,800 19,400 5F3641 C 80 320 52 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 4 1.5 40 276 350 28,100 35,500 7336 A 118 380 75 4 1.5 40 375 40 375 490 38,000 50,000 7336B A 74 74 74 7536 F 108 240 240 240 240 240 240 240 2 | 17
17 | | 180 52 - 4 | 17 | | 180 360 72 - | | | 180 360 72 - 4 1.5 40 355 445 36,000 45,500 7334B A 147 | 55.5 | | 180 250 | 35.3 | | 180 259.5 33 - 2.5 1 40 138 166 14,100 16,900 SF3618 B 109 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3629 C 80 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3639 B 80 259.5 33 - 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 - 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 - 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 1.98 | | 180 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3629 C 80 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3639 B 80 259.5 33 - 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 - 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 - 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 4.87 | | 180 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3639 B 80 259.5 33 - 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 - 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 - 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 5.7 | | 180 259.5 33 — 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 — 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 — 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 — 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 <td>5.8</td> | 5.8 | | 280 46 — 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 — 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 — 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 <td>5.75</td> | 5.75 | | 280 46 — 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 — 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 — 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 5.65
10.4 | | 320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 10.4 | | 320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 — 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 17.7 | | 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 17.7 | | 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 40.9 | | 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 — 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 40.9 | | 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5 | 2.55 | | | 4.16 | | | 5.1
5.1 | | 269.5 33 - 2.5 1.5 30 132 168 13,500 17,100 SF3802 A 83 | 5.1
5.95 | | 269 5 33 - 2.5 2.5 40 134 166 13.600 16.900 \$F3807 R 113 | 6.05 | | 190 290 46 - 2.1 1.1 30 224 280 22,800 28,600 7038 A 92.5 | 10.8 | | 290 46 - 2.1 1.1 40 201 253 20,400 25,800 7038B A 124 | 10.9 | | 340 55 - 4 1.5 30 305 390 31,000 39,500 7238 A 104 | 21.3 | | 340 55 - 4 1.5 40 273 355 27,800 36,000 7238B A 139 | 21.3 | | 400 78 - 5 2 30 430 585 44,000 59,500 7338 A 124 | 47 | | 400 78 — 5 2 40 390 535 40,000 54,500 7338B A 163 | 47 | | 195 270 35 - 2.5 1.5 30 153 196 15,600 20,000 SF3901 C 84.5 | 6.2 | ^{Drawing details are shown in Page B-15. Smallest allowable dimension for chamfer dimension r or r_i.} | Con- | | | Sin | gle | | | DB, | DF | | | | | |-------|------|------------------|-----|---------------|---------------|---|---------------|---------------|------|--|--|--| | tact | e | $F_a/F_r \leq e$ | | $F_{\rm a}/F$ | $F_a/F_r > e$ | | 7r ≤ e | $F_a/F_r > e$ | | | | | | angle | | X | Y | X | Y | X | Y | X | Y | | | | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | | | 40° | 1.14 | 1 | 0 | 0.35 | 0.57
 1 | 0.55 | 0.57 | 0.93 | | | | static Por=XoFr+YoFa | Con-
tact | Sin | gle | DB, DF | | | | | |--------------|-------|-------|--------|-------|--|--|--| | angle | X_0 | Y_0 | X_0 | Y_0 | | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | dynamic | static
(dup | ad ratings
dynamic
plex) | static | num | ring
ibers
olex) | Loa
cent
mr | ter | | Abutmen
illet dime
mm | nsions | | |------------------|----------------|--------------------------------|-------------|-----|------------------------|-------------------|-------|------------|-----------------------------|--------------|--------------| | $C_{ m r}$ | KN | | kgf
C | DB | DF | DB a | DF | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | $r_{ m las}$ | | C_{r} | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | DB | DF | DB | DF | min | max | max | max | | 515 | 770 | 52,500 | 79,000 | DB | DF | 346 | 210 | 178 | 322 | 3 | 1.5 | | 111 | 181 | 11,300 | 18,500 | DB | DF | 133 | 89 | 177 | 208 | 1 | 0.6 | | 165 | 257 | 16,900 | 26,200 | DB | DF | 171 | 115 | 180 | 220 | 2 | 1 | | 300 | 430 | 31,000 | 43,500 | DB | DF | 208 | 124 | 182 | 248 | 2 | 1 | | 270 | 385 | 27,600 | 39,500 | DB | DF | 222.5 | 138.5 | 182 | 248 | 2 | 1 | | 480 | 715 | 49,000 | 73,000 | DB | DF | 243 | 139 | 188 | 292 | 3 | 1.5 | | 435 | 650 | 44,000 | 66,500 | DB | DF | 306 | 202 | 188 | 292 | 3 | 1.5 | | 630 | 970 | 64,500 | 99,000 | DB | DF | 298 | 154 | 188 | 342 | 3 | 1.5 | | 575 | 890 | 59,000 | 90,500 | DB | DF | 366 | 222 | 188 | 342 | 3 | 1.5 | | 113 | 190 | 11,600 | 19,400 | DB | DF | 139 | 95 | 187 | 218 | 1 | 0.6 | | 213 | 325 | 21,700 | 33,500 | DB | DF | 190 | 124 | 190 | 240 | 2 | 1 | | 224 | 330 | 22,800 | 34,000 | DB | _ | 217.5 | 151.5 | 192 | 247.5 | 2 | 1 | | 290 | 420 | 29,600 | 43,000 | _ | DF | 160 | 94 | 192 | 247.5 | 2 | 1 | | 290 | 420 | 29,600 | 43,000 | DB | DF | 160 | 80 | 192 | 247.5 | 2 | 1 | | 251 | 380 | 25,600 | 38,500 | _ | DF | 160 | 94 | 192 | 247.5 | 2 | 1 | | 355 | 530 | 36,500 | 54,000 | DB | DF | 225 | 133 | 192 | 268 | 2 | 1 | | 320 | 480 | 32,500 | 49,000 | DB | DF | 239 | 147 | 192 | 268 | 2 | 1 | | 495 | 770 | 50,500 | 78,500 | DB | DF | 248 | 144 | 198 | 302 | 3 | 1.5 | | 450 | 700 | 45,500 | 71,000 | DB | DF | 314 | 210 | 198 | 302 | 3 | 1.5 | | 665 | 1,070 | 68,000 | 109,000 | DB | DF | 311 | 161 | 198 | 362 | 3 | 1.5 | | 605 | 975 | 62,000 | 99,500 | DB | DF | 385 | 235 | 198 | 362 | 3 | 1.5 | | 138 | 232 | 14,100 | 23,700 | DB | DF | 148 | 100 | 198.5 | 231.5 | 1.5 | 1 | | 175 | 276 | 17,800 | 28,200 | DB | _ | 215.5 | 157.5 | 202 | 243 | 2 | 1.5 | | 216 | 335 | 22,000 | 34,500 | _ | DF | 163 | 97 | 200 | 249.5 | 2 | 1 | | 216 | 335 | 22,000 | 34,500 | DB | DF | 196 | 130 | 200 | 250 | 2 | 1 | | 215 | 335 | 21,900 | 34,500 | DB | DF | 166 | 83 | 202 | 257.5 | 2 | 1.5 | | 217 | 330 | 22,100 | 34,000 | DB | _ | 226 | 160 | 202 | 257.5 | 2 | 2 | | 365 | 560 | 37,000 | 57,000 | DB | DF | 231 | 139 | 202 | 278 | 2 | 1 | | 325 | 505 | 33,000 | 51,500 | DB | DF | 247.5 | 155.5 | 202 | 278 | 2 | 1 | | 495 | 780 | 50,000 | 79,500 | DB | DF | 263 | 153.5 | 208 | 322 | 3 | 1.5 | | 445 | 705 | 45,000 | 79,300 | DB | DF | 333 | 223 | 208 | 322 | 3 | 1.5 | | 695 | 1,170 | 71,000 | 119,000 | DB | DF | 326 | 170 | 212 | 378 | 4 | 2 | | 635 | 1,170 | 64,500 | 109,000 | DB | DF | 404 | 248 | 212 | 378 | 4 | 2 | | 249 | 390 | 25,400 | 40,000 | _ | DF | 169 | 99 | 207 | 258 | 2 | 1.5 | *d* 200∼250mm | | Boundary dimensions | | | | contact angle | dynamic | Basic Id | oad ratings
dynamic | static | Bearing numbers | Drawing | Load center | Mass | | |-------|---------------------|------|----|---------------|----------------|---------|------------|------------------------|------------------|-----------------|---------|-------------|-------|-----------| | | | | mm | | | | · | siı | ngle | | single | | | single | | | | | | | | | kľ | | | gf | | | mm | kg | | d | D | B | C | $r_{ m smin}$ | $r_{ m lsmin}$ | α | $C_{ m r}$ | $C_{ m or}$ | C_{r} | $C_{ m or}$ | | | a | (approx.) | | | | | | | | | | | | | | | | | | | 250 | 24 | _ | 1.5 | 1 | 30 | 87.0 | 122 | 8,850 | 12,400 | 7840 | Α | 77 | 2.68 | | | 279.5 | 38 | _ | 2.5 | 1.5 | 40 | 165 | 202 | 16,800 | 20,600 | SF4006 | Α | 119.5 | 7.15 | | | 280 | 38 | _ | 2.1 | 1.1 | 30 | 185 | 231 | 18,900 | 23,600 | 7940 | Α | 88.5 | 7.15 | | | 289.5 | 38 | _ | 2.5 | 1.5 | 40 | 188 | 238 | 19,200 | 24,200 | SF4017 | С | 122 | 8.25 | | 200 | 310 | 51 | _ | 2.1 | 1.1 | 30 | 252 | 325 | 25,700 | 33,000 | 7040 | Α | 99 | 14 | | 200 | 310 | 51 | _ | 2.1 | 1.1 | 40 | 226 | 293 | 23,000 | 29,900 | 7040B | Α | 132.5 | 14.1 | | | 360 | 58 | _ | 4 | 1.5 | 30 | 335 | 450 | 34,500 | 46,000 | 7240 | Α | 110 | 25.3 | | | 360 | 58 | _ | 4 | 1.5 | 40 | 305 | 410 | 31,000 | 41,500 | 7240B | Α | 146 | 25.3 | | | 420 | 80 | _ | 5 | 2 | 30 | 450 | 605 | 46,000 | 62,000 | 7340 | Α | 130 | 53.1 | | | 420 | 80 | _ | 5 | 2 | 40 | 410 | 555 | 42,000 | 56,500 | 7340B | Α | 170 | 53.1 | | 203.2 | 330.2 | 88.9 | _ | 3 | 1.5 | 30 | 219 | 285 | 22,400 | 29,100 | SF4104 | Α | 99 | 14.7 | | | 070 | 0.4 | | | | | | 404 | 0.100 | 40.000 | =0.44 | | 00.5 | 2.24 | | | 270 | 24 | _ | 1.5 | 1 | 30 | 89.0 | 131 | 9,100 | 13,300 | 7844 | Α | 82.5 | 2.91 | | | 300 | 38 | _ | 2.1 | 1.1 | 30 | 187 | 239 | 19,000 | 24,300 | 7944 | A | 94 | 7.74 | | | 300 | 38 | 35 | 2.5 | 1.5 | 40 | 149 | 189 | 15,200 | 19,300 | SF4407 | F | 126.5 | 7.25 | | | 309.5 | 38 | _ | 2.1 | 1.1 | 40 | 190 | 246 | 19,400 | 25,100 | SF4421 | В | 130 | 8.9 | | 220 | 309.5 | 38 | _ | 2.1 | 1.1 | 40 | 190 | 246 | 19,400 | 25,100 | SF4433 | С | 130 | 8.9 | | | 319.5 | 46 | _ | 2.1 | 1.1 | 35 | 226 | 299 | 23,000 | 30,500 | SF4438 | С | 117.5 | 12.2 | | | 340 | 56 | _ | 3 | 1.1 | 30 | 286 | 390 | 29,100 | 39,500 | 7044 | Α | 109 | 18.2 | | | 340 | 56 | _ | 3 | 1.1 | 40 | 238 | 325 | 24,300 | 33,000 | 7044B | Α | 145.5 | 18.4 | | | 400 | 65 | _ | 4 | 1.5 | 30 | 345 | 485 | 35,000 | 49,500 | 7244 | Α | 122 | 37.1 | | | 460 | 88 | _ | 5 | 2 | 30 | 495 | 725 | 50,500 | 74,000 | 7344 | Α | 142 | 72.4 | | 230 | 329.5 | 40 | _ | 2.5 | 1.5 | 40 | 154 | 202 | 15,700 | 20,600 | SF4614 | Е | 135.5 | 11 | | | 300 | 28 | _ | 2 | 1 | 30 | 101 | 155 | 10,300 | 15,800 | 7848 | Α | 92 | 4.49 | | | 320 | 38 | _ | 2.1 | 1.1 | 30 | 193 | 255 | 19,600 | 26,000 | 7948 | Α | 100 | 8.34 | | | 329.5 | 40 | _ | 2.1 | 1.1 | 30 | 221 | 305 | 22,600 | 31,000 | SF4839 | С | 102.5 | 10 | | | 329.5 | 40 | _ | 2.5 | 1.5 | 40 | 197 | 265 | 20,100 | 27,000 | SF4814 | Α | 139.5 | 10.1 | | 040 | 329.5 | 40 | _ | 2.5 | 1.5 | 40 | 197 | 265 | 20,100 | 27,000 | SF4818 | В | 139.5 | 10.1 | | 240 | 340 | 40 | _ | 2.5 | 1.5 | 30 | 211 | 289 | 21,500 | 29,400 | SF4802 | Α | 160.5 | 11.5 | | | 360 | 56 | _ | 3 | 1.1 | 30 | 279 | 400 | 28,500 | 40,500 | 7048 | Α | 114.5 | 19.5 | | | 360 | 56 | _ | 3 | 1.1 | 40 | 249 | 355 | 25,400 | 36,000 | 7048B | Α | 154 | 19.8 | | | 440 | 72 | _ | 4 | 1.5 | 30 | 420 | 630 | 42,500 | 64,500 | 7248 | Α | 135.5 | 49.8 | | | 500 | 95 | _ | 5 | 2 | 30 | 515 | 795 | 52,500 | 81,000 | 7348 | Α | 154.5 | 92.2 | | 250 | 340 | 38 | _ | 2.5 | 1 | 40 | 169 | 222 | 17,200 | 22,600 | SF5005 | F | 141.5 | 9.55 | | 250 | 349.5 | 46 | _ | 3 | 1.5 | 30 | 233 | 325 | 23,700 | 33,000 | SF5004 | A | 109.5 | 13.6 | | | Drowing de | | | | | | | | - , | , | | | | | ^{Drawing details are shown in Page B-15. Smallest allowable dimension for chamfer dimension r or r_i.} # Equivalent bearing load dynamic $P_r = XF_r + YF_a$ | Con- | | | Sing $F_{\mathrm{a}}/F_{\mathrm{r}} \leq e^{-1}$ | | | | DB, | DF | | |-------|------|---------------|--|------|---------------|--------|---------------|---------------|------| | tact | e | $F_{\rm a}/I$ | | | $F_a/F_r > e$ | | 7r ≤ e | $F_a/F_r > e$ | | | angle | | X | Y | X | Y | X | Y | X | Y | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 0.55 | | 0.57 | 0.93 | static Por=XoFr+YoFa | Con-
tact | Sin | gle | DB, DF | | | | | |--------------|-------|-------|--------|-------|--|--|--| | angle | X_0 | Y_0 | X_0 | Y_0 | | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | dynamic | dynamic Basic load ratings dynamic static dynamic (duplex) KN | | static | num | ring
bers
olex) | Loa
cent
mn | ter | f | Abutmer
illet dime | nsions | . | |------------|---|------------|-------------|---------|-----------------------|-------------------|-------|-----------------|-----------------------|-------------|--------------| | | KN | , | kgf | (00) | J. J. J. | a | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | DB | DF | DB | DF | min | max | max | max | | | | | | | | | | | | | | | 141 | 244 | 14,400 | 24,900 | DB | DF | 154 | 106 | 208.5 | 241.5 | 1.5 | 1 | | 268 | 405 | 27,400 | 41,000 | DB | DF | 239 | 163 | 212 | 267.5 | 2 | 1.5 | | 300 | 465 | 30,500 | 47,000 | DB | DF | 215 | 139 | 212 | 268 | 2 | 1 | | 305 | 475 | 31,000 | 48,500 | _ | DF | 243.5 | 167.5 | 212 | 277.5 | 2 | 1.5 | | 410 | 650 | 41,500 | 66,000 | DB | DF | 249 | 147 | 212 | 298 | 2 | 1 | | 365 | 585 | 37,500 | 60,000 | DB | DF | 265 | 163 | 212 | 298 | 2 | 1 | | 550 | 900 | 56,000 | 92,000 | DB | DF | 278 | 162 | 218 | 342 | 3 | 1.5 | | 495 | 815 | 50,500 | 83,000 | DB | DF | 350 | 234 | 218 | 342 | 3 | 1.5 | | 730 | 1,210 | 74,500 | 124,000 | DB | DF | 340 | 180 | 222 | 398 | 4 | 2 | | 665 | 1,110 | 68,000 | 113,000 | DB | DF | 420 | 260 | 222 | 398 | 4 | 2 | | | , - | , | -, | | | | | | | | | | 355 | 570 | 36,500 | 58,000 | DB | DF | 198.5 | 109.5 | 217.2 | 316.2 | 2.5 | 1.5 | | | | | | | | | | | | | | |
145 | 261 | 14,800 | 26,600 | DB | DF | 165.5 | 117.5 | 228.5 | 261.5 | 1.5 | 1 | | 305 | 475 | 31,000 | 48,500 | DB | DF | 226 | 150 | 232 | 288 | 2 | 1 | | 243 | 380 | 24,700 | 38,500 | DB | _ | 253 | 183 | 232 | 288 | 2 | 1.5 | | 310 | 490 | 31,500 | 50,000 | DB | _ | 260.5 | 184.5 | 232 | 297.5 | 2 | 1 | | 310 | 490 | 31,500 | 50,000 | _ | DF | 260.5 | 184.5 | 232 | 297.5 | 2 | 1 | | 365 | 600 | 37,500 | 61,000 | _ | DF | 235 | 143 | 232 | 307.5 | 2 | 1 | | 465 | 780 | 47,500 | 79,500 | DB | DF | 217.5 | 105.5 | 234 | 326 | 2.5 | 1 | | 385 | 650 | 39,500 | 66,000 | DB | DF | 291 | 179 | 234 | 326 | 2.5 | 1 | | 560 | 975 | 57,000 | 99,000 | DB | DF | 244 | 114 | 238 | 382 | 3 | 1.5 | | 805 | 1,450 | 82,000 | 148,000 | DB | DF | 284.5 | 108.5 | 242 | 438 | 4 | 2 | | | | | | | | | | | | | | | 251 | 405 | 25,600 | 41,000 | DB | _ | 270.8 | 191 | 242 | 317.5 | 2 | 1.5 | | 104 | 010 | 10.000 | 01.500 | DD | DE | 104 | 100 | 050 | 000 | 0 | 4 | | 164 | 310 | 16,800 | 31,500 | DB | DF | 184 | 128 | 250 | 290 | 2 | 1 | | 315 | 510 | 32,000 | 52,000 | DB | DF | 238 | 162 | 252 | 308 | 2 | 1 | | 360 | 605 | 36,500 | 62,000 | _
DD | DF | 204.5 | 124.5 | 252 | 317.5 | 2 | 1 | | 320 | 530 | 32,500 | 54,000 | DB | DF | 279 | 199 | 252 | 317.5 | 2 | 1.5 | | 320 | 530
535 | 32,500 | 54,000 | DB | _
DE | 279
207 F | 199 | 252 | 317.5 | 2 | 1.5 | | 345 | 575 | 35,000 | 59,000 | DB | DF | 207.5 | 127.5 | 252 | 328 | 2 | 1.5 | | 455 | 795 | 46,000 | 81,000 | DB | DF | 229.5 | 117.5 | 254 | 346 | 2.5 | 1 | | 405 | 710 | 41,500 | 72,500 | DB | DF | 308 | 196 | 254 | 346 | 2.5 | 1 | | 680 | 1,260 | 69,000 | 129,000 | DB | DF | 271 | 127 | 258 | 422 | 3 | 1.5 | | 840 | 1,590 | 85,500 | 162,000 | DB | DF | 309 | 119 | 262 | 478 | 4 | 2 | | 275 | 445 | 28,000 | 45,500 | DB | _ | 282.5 | 212.5 | 262 | 328 | 2 | 1 | | 380 | 650 | 38,500 | 66,000 | DB | DF | 202.5 | 127 | 264 | 335.5 | 2.5 | 1.5 | | 300 | 050 | 30,300 | 00,000 | DB | DF | ۵۱۵ | 14/ | 20 4 | 555.5 | ۷.5 | 1.5 | (DB) (DF) *d* 260∼340mm | Boundary dimensions | | | | contact angle | dynamic | Basic Id | oad ratings
dynamic | static | Bearing numbers | Drawing No. | • Load center | Mass | | | |---------------------|-----------|----------|---------|------------------|----------------|----------|------------------------|-------------|-----------------|-------------|---------------|------------|-------|-----------| | | | | mm | | | g.c | a,a | | ngle | o.ao | single | | | single | | | | | | | | | ŀ | κN | k | cgf | | | mm | kg | | d | D | B | C | $r_{\rm s min}$ | $r_{ m lsmin}$ | α | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | a | (approx.) | | | | | | | | | | | | | | _ | | | | | 320 | 28 | _ | 2 | 1 | 30 | 127 | 192 | 12,900 | 19,600 | 7852 | Α | 97.5 | 4.83 | | | 360 | 46 | _ | 2.1 | 1.1 | 30 | 258 | 375 | 26,300 | 38,000 | 7952 | Α | 112 | 14 | | | 369.5 | 46 | _ | 2.5 | 1.5 | 40 | 235 | 340 | 23,900 | 34,500 | SF5206 | | 155 | 16.1 | | | 369.5 | 46 | _ | 2.5 | 1.5 | 40 | 235 | 340 | 23,900 | 34,500 | SF5225 | | 155 | 15.7 | | | 369.5 | 46 | _ | 2.5 | 1.5 | 40 | 235 | 340 | 23,900 | 34,500 | SF5224 | | 155 | 15.7 | | 260 | 369.5 | 46 | _ | 2.5 | 1.5 | 30 | 242 | 350 | 24,700 | 35,500 | SF5210 | D | 114 | 15.7 | | | 379.5 | 56 | _ | 4 | 2 | 40 | 264 | 385 | 26,900 | 39,500 | SF5218 | Α | 162.5 | 19.1 | | | 400 | 65 | _ | 4 | 1.5 | 30 | 315 | 455 | 32,000 | 46,500 | 7052 | Α | 128 | 28.7 | | | 400 | 65 | _ | 4 | 1.5 | 40 | 282 | 410 | 28,700 | 41,500 | 7052B | Α | 171 | 29 | | | 480 | 80 | _ | 5 | 2 | 30 | 480 | 750 | 48,500 | 76,500 | 7252 | Α | 147 | 66 | | | 540 | 102 | _ | 6 | 3 | 30 | 590 | 960 | 60,000 | 98,000 | 7352 | Α | 166.5 | 115 | | | 250 | 33 | _ | 0 | 1 | 20 | 164 | 247 | 16.700 | 05.000 | 7056 | ^ | 107 F | 7.17 | | | 350 | 33
46 | _ | 2 | | 30 | 164 | | 16,700 | 25,200 | 7856
7956 | A | 107.5 | | | | 380 | | _ | 2.1 | 1.1 | 30 | 261 | 385 | 26,600 | 39,500 | SF5606 | A | 118 | 14.8 | | | 389.5 | 46 | | 2.1 | 1.1 | 40 | 223 | 325 | 22,700 | 33,000 | | | 163.5 | 16 | | 280 | 389.5 | 46 | _ | 2.5 | 1.5 | 30 | 250 | 370 | 25,500 | 38,000 | SF5608 | | 119.5 | 16 | | | 420 | 65 | _ | 4 | 1.5 | 30 | 390 | 595 | 40,000 | 60,500 | 7056 | A | 133.5 | 30.7 | | | 420 | 65 | _ | 4 | 1.5 | 40 | 350 | 540 | 35,500 | 55,000 | 7056B | A | 179.5 | 30.9 | | | 500 | 80 | _ | 5 | 2 | 30 | 535 | 860 | 54,500 | 87,500 | 7256 | A | 152.5 | 69.7 | | | 580 | 108 | _ | 6 | 3 | 30 | 670 | 1,140 | 68,000 | 116,000 | 7356 | Α | 178 | 140 | | 285 | 380 | 46 | - | 2.5 | 2 | 40 | 206 | 305 | 21,000 | 31,000 | SF5702 | Α | 162.5 | 14.7 | | 290 | 419.5 | 60 | _ | 5 | 2.5 | 40 | 292 | 455 | 29,800 | 46,500 | SF5803 | В | 179 | 26.9 | | | 380 | 38 | _ | 2.1 | 1.1 | 30 | 193 | 290 | 19,700 | 29,500 | 7860 | Α | 117 | 10.1 | | | 420 | 56 | _ | 3 | 1.1 | 30 | 325 | 520 | 33,500 | 53,000 | 7960 | A | 132 | 23.7 | | 300 | 460 | 74 | _ | 4 | 1.5 | 30 | 440 | 715 | 45,000 | 73,000 | 7060 | A | 146.5 | 43.4 | | 300 | 460 | 74 | _ | 4 | 1.5 | 40 | 395 | 645 | 40,500 | 66,000 | 7060B | A | 196.5 | 43.7 | | | 540 | 85 | _ | 5 | 2 | 30 | 550 | 930 | 56,500 | 94,500 | 7260 | A | 164 | 87.2 | | 310 | 429.5 | 60 | _ | 4 | 2 | 40 | 297 | 470 | 30,500 | 48,000 | SF6203 | A | 185.5 | 26.7 | | 310 | 120.0 | 50 | | • | _ | 10 | 201 | 170 | | 10,000 | 0.0200 | , , | 100.0 | 20.7 | | | 400 | 38 | _ | 2.1 | 1.1 | 30 | 197 | 305 | 20,100 | 31,000 | 7864 | Α | 123 | 10.7 | | 320 | 440 | 56 | _ | 3 | 1.1 | 30 | 330 | 540 | 34,000 | 55,000 | 7964 | Α | 137.5 | 24.7 | | 320 | 480 | 74 | _ | 4 | 1.5 | 30 | 450 | 760 | 46,000 | 77,500 | 7064 | Α | 152.5 | 45.7 | | | 580 | 92 | _ | 5 | 2 | 30 | 635 | 1,120 | 64,500 | 114,000 | 7264 | Α | 176 | 109 | | 340 | 420 | 38 | | 2.1 | 1.1 | 30 | 204 | 325 | 20,800 | 33,500 | 7868 | Α | 128.5 | 11.3 | | 4 | Drowing d | -4-:1 | a abauu | in Dogo | D 15 | | | | | | | | | | ^{Drawing details are shown in Page B-15. Smallest allowable dimension for chamfer dimension r or r_i.} # Equivalent bearing load dynamic Pr=XFr+YFa | Con- | | | Sin | gle | | DB, DF | | | | | |-------|------|---------------|------------------------------|------|------|---------------|---------------|---------------|------|--| | tact | e | $F_{\rm a}/I$ | $F_{\rm a}/F_{\rm r} \leq e$ | | r>e | $F_{\rm a}/I$ | 7r ≦ e | $F_a/F_r > e$ | | | | angle | | X | Y | X | Y | X | Y | X | Y | | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | #### static $P_{\text{or}} = X_0 F_{\text{r}} + Y_0 F_{\text{a}}$ | Con-
tact | Sin | gle | DB, DF | | | | | |--------------|-------|-------|--------|------|--|--|--| | angle | X_0 | Y_0 | Xo | Yo | | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | dynamic | | | dynamic static | | ring
bers
olex) | Loa
cent
mn | ter | | Abutmer
fillet dime
mm | nsions | | |------------------|-------------|------------|------------------|----|-----------------------|-------------------|-------|------------|------------------------------|-------------|--------------| | | | | _ | DD | DE | | DE | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | C_{r} | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | DB | DF | DB | DF | min | max | max | max | | 000 | 005 | 04.000 | 00.000 | - | D.E. | 105.5 | 400 5 | 070 | 040 | • | | | 206 | 385 | 21,000 | 39,000 | DB | DF | 195.5 | 139.5 | 270 | 310 | 2 | 1 | | 420 | 750 | 42,500 | 76,500 | DB | DF | 270 | 178 | 272 | 348 | 2 | 1 | | 380 | 680 | 39,000 | 69,000 | _ | DF | 310.5 | 218.5 | 272 | 357.5 | 2 | 1.5 | | 380 | 680 | 39,000 | 69,000 | DB | _ | 310.5 | 218.5 | 272 | 357.5 | 2 | 1.5 | | 380 | 680 | 39,000 | 69,000 | DB | DF | 310.5 | 218.5 | 272 | 357.5 | 2 | 1.5 | | 395 | 695 | 40,000 | 71,000 | DB | DF | 228 | 136 | 272 | 357.5 | 2 | 1.5 | | 430 | 775 | 44,000 | 79,000 | DB | DF | 324.5 | 212.5 | 278 | 361.5 | 3 | 2 | | 510 | 905 | 52,000 | 92,500 | DB | DF | 255.5 | 125.5 | 278 | 382 | 3 | 1.5 | | 458 | 820 | 46,500 | 83,500 | DB | DF | 342 | 212 | 278 | 382 | 3 | 1.5 | | 775 | 1,500 | 79,000 | 153,000 | DB | DF | 294 | 134 | 282 | 458 | 4 | 2 | | 960 | 1,920 | 98,000 | 196,000 | DB | DF | 333 | 129 | 288 | 512 | 5 | 2.5 | | 267 | 495 | 27,200 | E0 E00 | DB | DF | 215 | 148 | 290 | 340 | 2 | 1 | | 425 | 775 | 43,000 | 50,500
79,000 | DB | DF | 282 | 190 | 292 | 368 | 2 | 1 | | 360 | 650 | 37,000 | 66,500 | DB | DF | 327 | 235 | 292 | 377.5 | 2 | 1 | | 405 | 745 | 41,500 | 76,000 | DB | DF | 239.5 | 147.5 | 292 | 377.5 | 2 | 1.5 | | 635 | 1,190 | 64,500 | 121,000 | DB | DF | 267 | 137 | 298 | 402 | 3 | 1.5 | | 570 | 1,190 | 58,000 | 110,000 | DB | DF | 359 | 229 | 298 | 402 | 3 | 1.5 | | 870 | 1,720 | 88,500 | 175,000 | DB | DF | 305 | 145 | 258 | 478 | 4 | 2 | | 1,080 | 2,270 | 111,000 | 232,000 | DB | DF | 356.5 | 140.5 | 308 | 552 | 5 | 2.5 | | 1,000 | 2,210 | 111,000 | 202,000 | | <i>D</i> 1 | 000.0 | 140.5 | 300 | 332 | 5 | 2.5 | | 335 | 605 | 34,000 | 62,000 | DB | DF | 325 | 233 | 297 | 368 | 2 | 2 | | 475 | 910 | 48,500 | 93,000 | DB | _ | 357.5 | 237.5 | 312 | 397.5 | 4 | 2 | | 315 | 580 | 32,000 | 59,000 | DB | DF | 234.5 | 158.5 | 312 | 368 | 2 | 1 | | 530 | 1,040 | 54,000 | 106,000 | DB | DF | 320 | 208 | 314 | 406 | 2.5 | 1 | | 715 | 1,430 | 73,000 | 146,000 | DB | DF | 293.5 | 145.5 | 318 | 442 | 3 | 1.5 | | 640 | 1,290 | 65,500 | 132,000 | DB | DF | 393 | 245 | 318 | 442 | 3 | 1.5 | | 895 | 1,860 | 91,500 | 189,000 | DB | DF | 327.5 | 157.5 | 322 | 518 | 4 | 2 | | 480 | 945 | 49,000 | 96,000 | DB | _ | 370.5 | 250.5 | 328 | 411.5 | 3 | 2 | | 320 | 610 | 32,500 | 62,000 | DB | DF | 246 | 170 | 332 | 388 | 2 | 1 | | 540 | 1,080 | 55,000 | 110,000 | DB | DF | 275.5 | 163.5 | 334 | 426 | 2.5 | 1 | | 735 | 1,520 | 75,000 | 155,000 | DB | DF | 305 | 152.5 | 338 | 462 | 3 | 1.5 | | 1,030 | 2,230 | 105,000 | 228,000 | DB | DF | 352 | 168 | 342 | 558 | 4 | 2 | | 330 |
650 | 34,000 | 66,500 | DB | DF | 257.5 | 181.5 | 352 | 408 | 2 | 1 | (DB) face-to-face arrangement (DF) *d* 340∼480mm | | Boundary dimensions | | | | contact angle | dynamic | Basic Id | oad ratings
dynamic | static | Bearing numbers | Drawing [©] | Load center | Mass | | |-----|-------------------------|----------|----|---------------|----------------|----------|------------|------------------------|------------------|-------------------|----------------------|-------------|----------------|--------------| | | | | mm | | | | · | sii | ngle | | single | | | single | | | | | | | | | | kN | | gf | | | mm | kg | | d | D | В | C | $r_{ m smin}$ | $r_{ m lsmin}$ | α | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | a | (approx.) | | | 460 | 56 | _ | 3 | 1.1 | 30 | 345 | 575 | 35,000 | 59,000 | 7968 | Α | 143.5 | 26.0 | | | 479.5 | 65 | _ | 4 | 2 | 30 | 395 | 680 | 40,500 | 69,500 | SF6807 | A | 151 | 36.7 | | 340 | 520 | 82 | _ | 5 | 2 | 30 | 520 | 905 | 53,000 | 92,500 | 7068 | A | 165 | 61.1 | | | 620 | 92 | _ | 5 | 2 | 30 | 650 | 1,200 | 66,500 | 122,000 | 7268 | A | 184.5 | 127 | | | 0_0 | | | | | | | ., | | , | | - ' ' | | | | | 440 | 38 | _ | 2.1 | 1.1 | 30 | 226 | 365 | 23,100 | 37,000 | 7872 | Α | 134.5 | 11.9 | | | 480 | 56 | _ | 3 | 1.1 | 30 | 350 | 595 | 35,500 | 60,500 | 7972 | Α | 149.5 | 27.3 | | 360 | 509.5 | 70 | _ | 5 | 2 | 40 | 390 | 685 | 40,000 | 69,500 | SF7203 | Α | 217.5 | 45 | | | 540 | 82 | _ | 5 | 2 | 30 | 530 | 960 | 54,500 | 98,000 | 7072 | Α | 171 | 63.4 | | | 650 | 95 | _ | 6 | 3 | 30 | 670 | 1,280 | 68,500 | 130,000 | 7272 | Α | 193.5 | 143 | | | 480 | 46 | _ | 0.1 | 4 4 | 20 | 001 | 175 | 20 700 | 40 500 | 7876 | ۸ | 147 | 10.5 | | | | | | 2.1 | 1.1 | 30 | 281 | 475 | 28,700 | 48,500 | | A | | 19.5 | | 000 | 519.5 | 65
65 | _ | 4
4 | 2
1.5 | 40 | 345
390 | 610
700 | 35,500 | 62,500 | SF7603
7976 | A | 221.5
162.5 | 41.3 | | 380 | 520
540 | 164 | | 4 | 1.5
2 | 30
40 | 390
440 | 700
810 | 40,000 | 71,000 | SF7601 | A
A | 234 | 39.6
61 | | | 5 4 0 | 82 | | 5 | 2 | 30 | 545 | 1,010 | 45,000
55,500 | 83,000
103,000 | 7076 | A | 234
176.5 | 66.3 | | | 360 | 02 | | 5 | | 30 | 343 | 1,010 | 55,500 | 103,000 | 7076 | А | 176.5 | 00.3 | | | 500 | 46 | _ | 2.1 | 1.1 | 30 | 287 | 500 | 29,300 | 51,000 | 7880 | Α | 153 | 20.4 | | 400 | 540 | 65 | _ | 4 | 1.5 | 30 | 395 | 720 | 40,000 | 73,500 | 7980 | Α | 168 | 41 | | | 600 | 90 | _ | 5 | 2 | 30 | 615 | 1,180 | 63,000 | 121,000 | 7080 | Α | 189.5 | 86.1 | | | 520 | 46 | _ | 2.1 | 4.4 | 30 | 310 | 555 | 21 500 | 56,500 | 7884 | ۸ | 158.5 | 21.1 | | 400 | 520
560 | 46
65 | | 2.1
4 | 1.1
1.5 | 30 | 410 | 765 | 31,500
41,500 | 78,000 | 7004
7984 | A
A | 174 | 42.8 | | 420 | 620 | 90 | | 5 | 2 | 30 | 630 | 1,250 | 64,500 | 127,000 | 7984 | A | 195 | 42.6
89.7 | | | 020 | 90 | | J | | 30 | 030 | 1,230 | 04,300 | 127,000 | 7004 | ^ | 195 | 09.7 | | | 540 | 46 | _ | 2.1 | 1.1 | 30 | 310 | 565 | 31,500 | 58,000 | 7888 | Α | 164.5 | 22 | | 440 | 600 | 74 | _ | 4 | 1.5 | 30 | 445 | 860 | 45,500 | 87,500 | 7988 | Α | 187 | 59.3 | | | 650 | 94 | _ | 6 | 3 | 30 | 645 | 1,310 | 65,500 | 134,000 | 7088 | Α | 204.5 | 103 | | | 540 | 40 | _ | 2.1 | 1.1 | 30 | 249 | 455 | 25,400 | 46,000 | SF9211 | Α | 164.5 | 15.8 | | | 5 4 0
580 | 56 | | 3 | 1.1 | 30 | 380 | 725 | 39,000 | 74,000 | 7892 | A | 178 | 33.5 | | 460 | 620 | 74 | _ | 4 | 1.5 | 30 | 450 | 885 | 46,000 | 90,000 | 7992 | A | 193 | 61.6 | | | 680 | 100 | _ | 6 | 3 | 30 | 720 | 1,510 | 73,500 | 154,000 | 7092 | A | 214.5 | 119 | | | | | | | | | . =0 | .,0.0 | . 5,555 | | | - ' | | | | 470 | 570 | 50 | _ | 2.1 | 1.1 | 30 | 320 | 605 | 32,500 | 62,000 | SF9404 | Α | 175 | 25.7 | | | 600 | 56 | _ | 3 | 1.1 | 30 | 390 | 760 | 40,000 | 77,500 | 7896 | Α | 184 | 34.9 | | 480 | 650 | 78 | _ | 5 | 2 | 30 | 530 | 1,090 | 54,000 | 111,000 | 7996 | Α | 202 | 71.8 | | | 700 | 100 | _ | 6 | 3 | 30 | 715 | 1,520 | 73,000 | 155,000 | 7096 | A | 220.5 | 123 | | | | | | in Dogo | | - • | | ., | ,000 | , | | | | | ^{Drawing details are shown in Page B-15. Smallest allowable dimension for chamfer dimension r or r_i.} # Equivalent bearing load dynamic Pr=XFr+YFa | Con- | | | Sing
Fa/Fr≦e | | | | DB, | DF | | |-------|------|---------------|-----------------|------|-----------|---------------|---------------|---------------|------| | tact | e | $F_{\rm a}/I$ | | | r>e | $F_{\rm a}/I$ | 7r ≦ e | $F_a/F_r > e$ | | | angle | | X | Y | X | Y | X | Y | X | Y | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | 1.14 | 1 | | | 0.35 0.57 | | 1 0.55 | | 0.93 | #### static $P_{\text{or}} = X_0 F_{\text{r}} + Y_0 F_{\text{a}}$ | Con- | Sin | gle | DB, | DF | |-------|-------|-------|-------|------| | angle | X_0 | Y_0 | X_0 | Yo | | 30° | 0.5 | 0.33 | 1 | 0.66 | | 40° | 0.5 | 0.26 | 1 | 0.52 | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | dynamic | (duplex) | | static | num | ring
lbers
olex) | Loa
cent
mr | ter | | Abutmer
fillet dime
mm | nsions | • | |------------|-------------|------------|-------------|------|------------------------|-------------------|--------------|------------|------------------------------|-------------|--------------| | | KN | | kgf | | | a | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | DB | DF | DB | DF | min | max | max | max | | | | | | | | | | | | | | | 560 | 1,150 | 57,000 | 118,000 | DB | DF | 287 | 175 | 354 | 446 | 2.5 | 1 | | 645 | 1,360 | 65,500 | 139,000 | _ | DF | 301.5 | 171.5 | 358 | 461.5 | 3 | 2 | | 845 | 1,810 | 86,000 | 185,000 | DB | DF | 330.5 | 166.5 | 362 | 498 | 4 | 2 | | 1,060 | 2,400 | 108,000 | 244,000 | DB | DF | 369 | 185 | 362 | 598 | 4 | 2 | | | | | | | | | | | | | | | 370 | 725 | 37,500 | 74,000 | DB | DF | 269 | 193 | 372 | 428 | 2 | 1 | | 565 | 1,190 | 57,500 | 121,000 | DB | DF | 298.5 | 186.5 | 374 | 466 | 2.5 | 1 | | 635 | 1,370 | 64,500 | 140,000 | DB | _ | 435 | 295 | 382 | 487.5 | 4 | 2 | | 865 | 1,920 | 88,000 | 196,000 | DB | DF | 342 | 178 | 382 | 518 | 4 | 2 | | 1,090 | 2,550 | 111,000 | 260,000 | DB | DF | 386.5 | 196.5 | 388 | 622 | 5 | 2.5 | | | 2,000 | ,000 | 200,000 | | | 000.0 | 100.0 | 000 | 022 | Ŭ | | | 455 | 955 | 46,500 | 97,500 | DB | DF | 294.5 | 202.5 | 392 | 468 | 2 | 1 | | 565 | 1,220 | 57,500 | 125,000 | DB | _ | 442.5 | 312.5 | 398 | 501.5 | 3 | 2 | | 635 | 1,400 | 64,500 | 142,000 | DB | DF | 325 | 195 | 398 | 502 | 3 | 1.5 | | 715 | 1,620 | 73,000 | 166,000 | _ | DF | 468 | 304 | 398 | 522 | 3 | 2 | | 865 | 1,920 | 88,000 | 196,000 | DB | DF | 342 | 178 | 402 | 538 | 4 | 2 | | | 1,320 | 00,000 | 190,000 | 00 | Di | 072 | 170 | 702 | 300 | 7 | | | 465 | 1,000 | 47,500 | 102,000 | DB | DF | 306 | 214 | 412 | 488 | 2 | 1 | | 640 | 1,440 | 65,500 | 147,000 | DB | DF | 336.5 | 206.5 | 418 | 522 | 3 | 1.5 | | 1,000 | 2,370 | 102,000 | 241,000 | DB | DF | 379 | 199 | 422 | 578 | 4 | 2 | | 1,000 | 2,070 | 102,000 | 241,000 | | Di | 073 | 100 | 722 | 370 | 7 | | | 505 | 1,110 | 51,500 | 113,000 | DB | DF | 317.5 | 225.5 | 432 | 508 | 2 | 1 | | 660 | 1,530 | 67,500 | 156,000 | DB | DF | 348 | 218 | 438 | 542 | 3 | 1.5 | | 1,030 | 2,500 | 105,000 | 255,000 | DB | DF | 390.5 | 210.5 | 442 | 598 | 4 | 2 | | 1,000 | 2,300 | 103,000 | 255,000 | | Di | 030.5 | 210.5 | 772 | 330 | 7 | | | 505 | 1,130 | 51,500 | 116,000 | DB | DF | 329 | 237 | 452 | 528 | 2 | 1 | | 720 | 1,720 | 73,500 | 175,000 | DB | DF | 374.5 | 226.5 | 458 | 582 | 3 | 1.5 | | 1,050 | 2,630 | 107,000 | 268,000 | DB | DF | 409 | 220.5 | 468 | 622 | 5 | 2.5 | | 1,030 | 2,000 | 107,000 | 200,000 | - 00 | Di | 403 | 221 | 400 | 022 | J | 2.5 | | 405 | 905 | 41,500 | 92,500 | DB | _ | 328.5 | 248.5 | 472 | 528 | 2 | 1 | | 620 | 1,450 | 63,000 | 148,000 | DB | DF | 356.5 | 244.5 | 474 | 566 | 2.5 | 1 | | 730 | 1,430 | 74,500 | 180,000 | DB | DF | 386 | 238 | 474 | 602 | 3 | 1.5 | | 117 | 300 | | | DB | DF | 429 | 236
229 | 488 | 652 | 5 | 2.5 | | 117 | 300 | 12,000 | 31,000 | DD | DF | 429 | 229 | 400 | 002 | 5 | 2.5 | | 520 | 1,210 | 53,000 | 124,000 | DB | _ | 350 | 250 | 482 | 558 | 2 | 1 | | 520 | 1,410 | 55,000 | 124,000 | 26 | | 330 | 200 | 402 | 556 | ۷ | ' | | 635 | 1,520 | 64,500 | 155,000 | DB | DF | 368 | 256 | 494 | 586 | 2.5 | 1 | | 860 | 2,180 | 88,000 | 223,000 | DB | DF | 404.5 | 248.5 | 502 | 628 | 4 | 2 | | 1,170 | 3,050 | 119,000 | 310,000 | DB | DF | 404.5
441 | 246.5
241 | 502 | 672 | 5 | 2.5 | | 1,170 | 3,030 | 113,000 | 310,000 | DD | DF | 441 | 4 1 | 500 | 012 | 5 | 2.3 | | | | | | | | | | | | | | face-to-face arrangement (DF) *d* 500∼1,060mm | | 1 | Boundar | y dime | ensions | | contact angle | dynamic | Basic
static | load ratings
dynamic | static | Bearing numbers | Drawing [©] No. | Load center | Mass | |-------|-------|---------|--------|---------------|------------------|---------------|------------|-----------------|-------------------------|-------------|-----------------|--------------------------|-------------|-----------| | | | | mm | | | , i | · | | single | | single | | | single | | | | | | | | | | kN | | kgf | | | mm | kg | | d | D | B | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | α | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | a | (approx.) | | | | | | | | | | | | | | | | | | | 620 | 56 | _ | 3 | 1.1 | 30 | 395 | 780 | 40,000 | 79,500 | 78/500 | Α | 189.5 | 36.5 | | 500 | 670 | 78 | _ | 5 | 2 | 30 | 540 | 1,120 | 55,000 | 115,000 | 79/500 | Α | 208 | 74.9 | | | 720 | 100 | _ | 6 | 3 | 30 | 735 | 1,590 | 75,000 | 163,000 | 70/500 | Α | 226 | 129 | | | | | | _ | | | | | | | | | | | | 560 | 700 | 100 | _ | 5 | 2.5 | 30 | 670 | 1,450 | 68,000 | 147,000 | SF10013 | | 223 | 87.3 | | | 750 | 85 | _ | 5 | 2 | 30 | 620 | 1,380 | 63,500 | 141,000 | 79/560 | Α | 231.5 | 105 | | 630 | 780 | 69 | _ | 4 | 1.5 | 30 | 500 | 1,140 | 51,000 | 116,000 | 78/630A | Α | 238 | 72.2 |
 | | | | | | | | | | | | | | | | 670 | 820 | 69 | _ | 4 | 1.5 | 30 | 475 | 1,080 | 48,000 | 110,000 | 78/670 | Α | 249.5 | 76.3 | | 070 | 820 | 69 | _ | 4 | 1.5 | 40 | 420 | 945 | 43,000 | 96,500 | 78/670B | Α | 347 | 76.3 | | 700 | 900 | 74 | _ | 4 | 1.5 | 30 | 530 | 1,290 | 54,000 | 131,000 | SF1400 | I A | 268 | 117 | | | | | | | | | | | | | | | | | | 1,000 | 1,420 | 130 | _ | 7.5 | 4 | 30 | 1,440 | 4,650 | 147,000 | 470,000 | SF2000 | I A | 414.5 | 654 | | 1,060 | 1,280 | 100 | _ | 6 | 3 | 30 | 880 | 2,680 | 895,000 | 273,000 | 78/1060 | Α | 387.5 | 255 | | , | , | | | | | | | , - | , - | , | ^{Drawing details are shown in Page B-15. Smallest allowable dimension for chamfer dimension r or r_i.} # **Equivalent bearing load** dynamic Pr=XFr+YFa | Con- | | | Sin | gle | | | DB, | DF | | |--------|------|------------------|-----|-------------------------|------|------------------|------|---------------|------| | tact e | | $F_a/F_r \leq e$ | | $F_{\rm a}/F_{\rm r}>e$ | | $F_a/F_r \leq e$ | | $F_a/F_r > e$ | | | angle | | X | Y | X | Y | X | Y | X | Y | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | #### static $P_{\text{or}} = X_0 F_r + Y_0 F_a$ | Con-
tact | Sin | gle | DB, DF | | | | |--------------|-------|-------|--------|---------|--|--| | angle | X_0 | Y_0 | Xo | Y_{0} | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | dynamic | static | ad ratings
dynamic
uplex) | static | num | ring
bers
olex) | Loa
cent
mn | er | 1 | Abutmer
fillet dime
mm | ensions | • | |------------|-------------|---------------------------------|-------------|-----|-----------------------|-------------------|-------|------------|------------------------------|--------------|--------------| | | KN kgf | | kgf | | | a | | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | $r_{ m las}$ | | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | DB | DF | DB | DF | min | max | max | max | | | | | | | | | | | | | | | 640 | 1,560 | 65,000 | 159,000 | DB | DF | 379.5 | 267.5 | 514 | 606 | 2.5 | 1 | | 875 | 2,250 | 89,000 | 229,000 | DB | DF | 416 | 260 | 522 | 648 | 4 | 2 | | 1,190 | 3,200 | 122,000 | 325,000 | DB | DF | 452.5 | 252.5 | 528 | 692 | 5 | 2.5 | | | | | | | | | | | | | | | 1,080 | 2,890 | 111,000 | 295,000 | DB | DF | 446.5 | 246.5 | 522 | 678 | 4 | 2 | | 1,010 | 2,760 | 103,000 | 281,000 | DB | DF | 463.5 | 293.5 | 582 | 728 | 4 | 2 | | 815 | 2,270 | 83,000 | 232,000 | DB | DF | 476 | 338 | 648 | 762 | 3 | 1.5 | | 770 | 2,150 | 78,500 | 219.000 | DB | DF | 499 | 361 | 688 | 802 | 3 | 1.5 | | 680 | 1,890 | 69,500 | 193,000 | DB | DF | 694 | 556 | 688 | 802 | 3 | 1.5 | | | , | , | · · · | | | | | | | | | | 860 | 2,580 | 88,000 | 263,000 | DB | DF | 536 | 388 | 718 | 882 | 3 | 1.5 | | 2,340 | 9,250 | 238,000 | 945,000 | DB | DF | 828.5 | 568.5 | 1,036 | 1,384 | 6 | 3 | | 1,430 | 5,350 | 146,000 | 545,000 | DB | DF | 775.5 | 575.5 | 1,088 | 1,252 | 5 | 2.5 | ## *d* 100∼190mm | | | Bounda | ry dimensi | ons | | Contact angle | t
dynamic | Basic static | load ratings
dynamic | static | Bearing I numbers | Orawing [®]
No. | |-----|---|--|--|---|--|--|---|---|--|--|--|---------------------------------| | | | | mm | | | | kN | | kg | | | | | d | D | B or B_1 | C or C_1 | $r_{ m smin}$ | $r_{ m lsmin}$ | α | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 100 | 170 | 60.3 | 60.3 | 2.5 | 2.5 | 40 | 160 | 179 | 16,300 | 18,200 | DE2010 | D | | 110 | 169.5 | 56 | 56 | 2.5 | _ | 30 | 149 | 186 | 15,200 | 18,900 | DE2208 | В | | 120 | 190
190 | 66
66 | 66
66 | 2.5
2.5 | 1
1 | 30
30 | 187
187 | 236
236 | 19,000
19,000 | 24,100
24,100 | DE2405
DE2409 | F
D | | 130 | 200 | 66 | 66 | 2.5 | _ | 30 | 191 | 251 | 19,400 | 25,600 | DE2601 | В | | 140 | 210
210
210 | 66
66
66 | 66
66
66 | 2
1
2.5 | -
-
- | 40
40
30 | 203
179
194 | 266
248
265 | 20,700
18,300
19,800 | 27,100
25,300
27,000 | DE2812
DE2806
DE2807 | A
B
B | | 150 | 225
225
225
230
230 | 70
70
73
70
70 | 70
70
73
70
70 | 2.5
2.5
2.5
2.5
2 | _
_
_
1.5
2 | 30
30
30
30
40 | 222
222
216
222
198 | 305
305
293
305
275 | 22,700
22,700
22,000
22,700
20,200 | 31,500
31,500
29,900
31,500
28,100 | DE3010
DE3011
DE3009
DE3007
DE3019 | A
B
A
F
D | | 160 | 215
240 | 56
76 | 50
76 | 2
2.5 | 1.1
— | 40
30 | 123
252 | 186
355 | 12,500
25,700 | 18,900
36,000 | DE3207
DE3201 | C
A | | 170 | 260 | 84 | 84 | 2.5 | _ | 30 | 300 | 430 | 31,000 | 43,500 | DE3402 | А | | 175 | 280
280 | 92
92 | 92
92 | 2.5
2.5 | _
_ | 40
40 | 320
320 | 480
480 | 32,500
32,500 | 49,000
49,000 | DE3502
DE3501 | A
A | | 180 | 250
250
259.5
259.5
259.5
259.5
259.5
259.5
280 | 66
70
66
66
66
66
66
66
92 | 66
70
66
66
66
66
66
66
92 | 2.5
2.5
2.5
2.5
2.5
2
2.5
2.5
2.5 | -
1
1
1
-
-
-
2.5 | 40
40
30
30
40
40
30
30
30 | 185
190
212
212
224
224
251
212
345 | 275
285
325
325
330
330
380
325
505 | 18,900
19,300
21,600
21,600
22,800
22,800
25,600
21,600
35,000 | 28,000
29,100
33,000
34,000
34,000
38,500
33,000
51,500 | DE3606
DE3609
DE3610
DE3601
DE3608
DE3615
DE3603
DE3612
DE3605 | A
F
D
F
B
A
D | | 190 | 269.5
269.5 | 66
66 | 66
66 | 2.5
2.5 | 1
1 | 30
30 | 215
215 | 335
335 | 21,900
21,900 | 34,500
34,500 | DE3807
DE3801 | D
F | ^{Drawing details are shown in Page B-16. Smallest allowable dimension for chamfer dimension r or r_i.} # Equivalent bearing load dynamic $P_r = XF_r + YF_a$ | (| Con- | | | Sin | gle | | | DB, DF | | | | |---|-------|------|---------------|------------------------------|------|---------------|---|---------------|---------------|------|--| | | act | e | $F_{\rm a}/I$ | $F_{\rm a}/F_{\rm r} \leq e$ | | $F_a/F_r > e$ | | 7r ≤ e | $F_a/F_r > e$ | | | | 1 | angle | | X | Y | X | Y | X | Y | X | Y | | | ı | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | Ī | 40° | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | static $P_{\text{or}} = X_0 F_r + Y_0 F_a$ | Con-
tact | Sin | gle | DB, DF | | | | |--------------|-------|------|--------|------|--|--| | angle | X_0 | Yo | X_0 | Yo | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | | Abutmen
let dime | nsions | . | Load
center
mm | Mass | |------------------|---------------------|--------------|--------------|----------------------|-----------| | d_{a} | $D_{\rm a}$ | $r_{\rm as}$ | $r_{ m las}$ | | kg | | min | max | max | max | a | (approx.) | | 158 | 112 | 2 | 2 | 143 | 5.64 | | 157.5 | 112 | 2 | _ | 54.5 | 4.61 | | 184.5 | 132 | 2 | 1 | 122 | 7.09 | | 184.5 | 132 | 2 | 1 | 122 | 7.09 | | | | | - | | | | 188 | 142 | 2 | - | 64 | 7.54 | | 198 | 150 | 2 | _ | 90 | 8 | | 204.5 | 152 | 2 | _ | 90 | 7.76 | | 198 | 152 | 2 | _ | 67 | 7.72 | | | | | | | | | 213 | 162 | 2 | _ | 71.5 | 9.74 | | 213 | 162 | 2 | _ | 71.5 | 9.74 | | 213 | 162 | 2 | _ | 72.5 | 9.69 | | 221.5 | 162 | 2 | 1.5 | 143 | 9.74 | | 221.5 | 158.5 | 2 | 2 | 194 | 9.74 | | 221.0 | 100.0 | | _ | 101 | 0.7 1 | | 208 | 170 | 2 | 1 | 182 | 5.71 | | 228 | 172 | 2 | _ | 76.5 | 12 | | | | | | 7 0.0 | | | 248 | 182 | 2 | _ | 111 | 16.1 | | 268 | 187 | 2 | _ | 119 | 21.7 | | 268 | 187 | 2 | _ | 88.5 | 21.7 | | 200 | 107 | | | 00.5 | 21.7 | | 238 | 192 | 2 | _ | 106 | 9.83 | | 244.5 | 192 | 2 | 1 | 215 | 10.4 | | 254 | 192 | 2 | 1 | 160 | 10.4 | | 254 | 192 | 2 | 1 | 160 | 10.4 | | 247.5 | 192 | 2 | _ | 109 | 10.7 | | 249.5 | 190 | 2 | _ | 109 | 10.7 | | 247.5 | 192 | 2 | _ | 80 | 10.7 | | 247.5 | 192 | 2 | 2 | 160 | 10.7 | | 268 | 192 | 2 | _ | 89.5 | 20.9 | | 200 | 132 | ۷ | | 09.0 | ۷٠.۵ | | 264 | 202 | 2 | 1 | 166 | 11.9 | | 264 | 202 | 2 | 1 | 166 | 11.9 | | 207 | 202 | ~ | | 100 | 11.0 | ### *d* 200∼360mm | | | Bounda | ary dimens | ions | | Contact angle | t
dynamic | Basic I | load ratings
dynamic | static | Bearing I | Orawing ^❶
No. | |-----|---|---|---|--|---|--|--|--|--
--|--|---------------------------------| | | | | mm | | | | k | N | kç | gf | | | | d | D | B or $B_{ m l}$ | C or C_1 | $r_{ m smin}$ | $r_{ m ls\;min}$ | α | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 200 | 279.5
279.5
289.5
289.5
289.5
289.5
289.5
289.5
310 | 76
76
76
76
76
76
76
102 | 76
76
76
76
76
76
76
102 | 2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | 1.5
-
1.5
2.1
1.5
1.5
1.5 | 30
30
40
30
30
30
30
30 | 253
253
260
269
269
269
269
410 | 405
405
385
420
420
420
420
650 | 25,800
25,800
26,500
27,500
27,500
27,500
27,500
41,500 | 41,500
41,500
39,500
42,500
42,500
42,500
42,500
66,000 | DE4004
DE4008
DE4010
DE4019
DE4009
DE4002
DE4012
DE4007 | F
B
G
D
F
D
A | | 220 | 309.5
309.5
309.5
319.5
319.5 | 76
76
76
92
92 | 76
76
76
92
92 | 2.5
2.5
2.1
2.5
2.5 | -
-
1.1
-
- | 30
30
30
30
40 | 325
325
325
375
335 | 520
520
520
625
550 | 33,000
33,000
33,000
38,500
34,500 | 53,000
53,000
53,000
63,500
56,000 | DE4403
DE4404
DE4408
DE4409
DE4406 | A
A
D
A | | 230 | 329.5
329.5
329.5 | 80
80
80 | 80
80
80 | 2.5
2.5
2.5 | 1.5
1.5
1.5 | 30
30
30 | 350
350
350 | 585
585
585 | 36,000
36,000
36,000 | 59,500
59,500
59,500 | DE4602
DE4603
DE4605 | F
D
E | | 240 | 359.5 | 112 | 112 | 3 | 1.5 | 40 | 440 | 770 | 45,000 | 78,500 | DE4803 | F | | 250 | 340 | 76 | 70 | 2 | 2 | 30 | 272 | 480 | 27,800 | 49,000 | DE5004 | С | | 260 | 369.5
369.5
369.5 | 92
92
92 | 92
92
92 | 2.5
2.5
2.5 | _
_
2.5 | 40
30
30 | 380
430
395 | 680
775
695 | 39,000
43,500
40,000 | 69,000
79,000
71,000 | DE5213
DE5211
DE5212 | A
A
F | | 280 | 389.5 | 92 | 92 | 2.1 | 1.1 | 30 | 405 | 745 | 41,500 | 76,000 | DE5605 | D | | 300 | 429.5 | 112 | 112 | 3 | _ | 30 | 530 | 1,040 | 54,000 | 106,000 | DE6001 | А | | 360 | 540 | 164 | 164 | 5 | _ | 30 | 725 | 1,630 | 74,000 | 166,000 | DE7201 | А | | | • Drowing do | | anne te B | D.40 | | | | | | | | | ^{Drawing details are shown in Page B-16. Smallest allowable dimension for chamfer dimension r or r_i.} # Equivalent bearing load dynamic $P_r = XF_r + YF_a$ | Con- | | | Sin | gle | | | DB, DF | | | | |-------|------|---------------|------------------------------|------|---------------|---|---------------|---------------|------|--| | tact | e | $F_{\rm a}/I$ | $F_{\rm a}/F_{\rm r} \leq e$ | | $F_a/F_r > e$ | | 7r ≤ e | $F_a/F_r > e$ | | | | angle | | X | Y | X | Y | X | Y | X | Y | | | 30° | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | static $P_{\text{or}} = X_0 F_r + Y_0 F_a$ | Con-
tact | Sin | gle | DB, DF | | | | | |--------------|-------|-------|--------|-------------|--|--|--| | angle | X_0 | Y_0 | X_0 | $Y_{\rm O}$ | | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$ | fil | let dime | ensions | | center | | |------------------|-------------|--------------|--------------|--------|-----------| | | mm | า | | mm | | | d_{a} | $D_{\rm a}$ | $r_{\rm as}$ | $r_{ m las}$ | | kg | | min | max | max | max | a | (approx.) | | | | | | | | | 271 | 212 | 2 | 1.5 | 177 | 14.3 | | 267.5 | 212 | 2 | _ | 88.5 | 14.3 | | 281 | 212 | 2 | 1.5 | 244 | 16.5 | | 277.5 | 212 | 2 | 2 | 179 | 16.4 | | 281 | 212 | 2 | 1.5 | 180 | 16.4 | | 281 | 212 | 2 | 1.5 | 179 | 16.4 | | 281 | 212 | 2 | 1.5 | 179 | 16.4 | | 298 | 212 | 2 | _ | 99 | 28.3 | | | | | | | | | 297.5 | 232 | 2 | _ | 95.5 | 17.8 | | 297.5 | 232 | 2 | _ | 95.5 | 17.8 | | 302.5 | 232 | 2 | 1 | 191 | 17.8 | | 307.5 | 232 | 2 | _ | 101 | 24.4 | | 307.5 | 232 | 2 | _ | 136 | 24.4 | | | | | | | | | 321 | 242 | 2 | 1.5 | 202 | 22 | | 321 | 242 | 2 | 1.5 | 202 | 22 | | 321 | 242 | 2 | 1.5 | 202 | 22 | | | | | | | | | 351 | 254 | 2.5 | 1.5 | 308 | 39.7 | | | | | | | | | 328 | 262 | 2 | 2 | 208 | 18.4 | | | | | | | | | 357.5 | 272 | 2 | _ | 155 | 31.3 | | 357.5 | 272 | 2 | _ | 114 | 31.3 | | 357.5 | 272 | 2 | 2 | 228 | 30.9 | | | | | | | | | 382.5 | 292 | 2 | 1 | 239 | 33.4 | | | | | | | | | 417.5 | 312 | 2.5 | _ | 132 | 52.4 | 171 131 518 382 # Cylindrical Roller Bearings #### 1. Structure and Characteristics Since the rollers of the cylindrical roller bearings make line contact with the raceways, these bearings can support heavy radial loads and are suitable for high speed operation. Assembly and disassembly are comparatively easy even if the inner or outer ring requires a shrink fit, as the bearing is a separation type. Cylindrical roller bearings are classified as single row, double row and four row type, according to how many rollers are used, and there are models as shown in **Table 1** to **3**. Although designed as a thin wall type, the SL Model double row cylindrical roller bearing can support enormous radial and impact loads. **Table 4** lists the configurations available. Table 1 Model and characteristics of the single row cylindrical roller bearings | Model code | Drawing | Characteristics | |----------------------------------|---------------------|--| | Model NU
Model N | Model NU Model N | Model NU has ribs on the outer ring and the inner ring can be separated from "the arranged set of outer ring, rollers and cage". Model N has ribs on the inner ring and the outer ring can be separated from "the arranged set of inner ring, rollers and cage". This bearing cannot support axial loads. The most suitable model widely used as the free end bearing. | | Model NJ
Model NF | Model NJ Model NF | Model NJ has ribs on the outer ring and a rib on the inner ring. Model NF has a rib on the outer ring and ribs on the inner ring. These bearings support axial loads in one direction only. There may be a case to use two bearings adjacent when they are used regardless of the fixed end or free end. | | Model NUP
Model NH
(NJ+HJ) | Model NUP Model NH | Model NUP has a rib ring added on the side of the inner ring where it did not have a rib. Model NJ with the added ring rib of Model L is Model NH. The inner ring should be fixed along the axial direction since each ring rib will be separated. These bearings support axial loads in either direction. There may be a case to use as the fixed end bearing. | Note: Model E provides higher load capacity designed with increased diameter, length and numbers of rollers but the boundary dimensions are same as the standard type bearings. Table 2 Model and characteristics of the double row cylindrical roller bearings | Model code | Drawing | Characteristics | |-----------------------|---|---| | Model NNU
Model NN | Model NNU Cylindrical hole Tapered hole Model NN Cylindrical hole Tapered hole | These bearings are used in the main shaft of machine tools, rolling mill rolls and printing machine plate cylinders where thin walled bearings are needed. To use the bearing in the main shaft of machine tools, adjust the radial internal clearance by inserting a tapered inner ring to the tapered shaft. | Table 3 Models and characters of four row cylindrical roller bearings | Drawing | Characteristics | |---|---| | Refer to the drawings. Drawing numbers are listed in the dimensions table. | The bearing is mainly used for the roll neck of a rolling mill, and is designed so as to handle the maximum rating load for the allowable space in the roll neck part. Carbonized steel may be used to provide better resistance to cracking or impact to the inner ring. Consult NTN Engineering about the fitting and bearing internal clearance when the bearing is used for the preparing roll of a rolling mill. NTN provides bearings with special configurations: with tapered shaft holes; for high speed use; designed to prevent creeping; and, with
dust and waterproof seals. | Drawings Table 4 Model and Characteristics of the Model SL cylindrical roller bearings | | Model | Characteristics | |---------------|------------------------|---| | Open type | Model SL01 Model SL02 | Fixed end is Model SL01, free end is Model SL02. Since the outer ring is split in the circumference direction using a special method and fixed as a unit after mounting rollers, the bearing side face should be securely fixed using the shaft or housing shoulder in the axial direction. Outer ring has an oil groove and port. Model SL01 can support axial loads from both directions via rollers. Shoulder dimensions of shaft and bearings generally applies Da and da dimensions in the dimensions table, but J and K dimensions are used when the moment or large axial loads are applied. | | Enclosed type | Model SL04 | Model SL04 only with the fixed side. Since the inner ring is split in the circumference direction using a special method and fixed as a unit after mounting rollers, the bearing side face should be securely fixed by using the shaft or housing shoulder in the axial direction. Inner ring has an oil groove and port. Model SL04 can support radial and axial loads in either directions. A sealed bearing prelubricated with grease, the outer ring is fitted with a locating snap ring, making it easy to handle and appropriate for sheaves and other applications. Surface coating is added for rust prevention. | ## 2. Dimensional Accuracy/Rotation Accuracy Refer to Table 3.3 (Page A-12,13) #### 3. Recommended Fitting Refer to Table 4.2 (Page A-24) #### 4. Bearing Internal Clearance Refer to Table 5.5 and 5.6 (Page A-31, 32, 33) ### 5. Permissible slant angle It varies according to the bearing type and internal specifications, the values in the table below are widely used to avoid edge loads under general load conditions. When the width series is 0 or 1 \cdots 0.001 rad (3.5') When the width series is 2 \cdots 0.0005 rad (1.5') Double row cylindrical roller bearing \bullet \cdots 0.0005 rad (1.5') **1** This is no applied to high accuracy bearings which are used as the main shaft of machine tools. Table 5 Tolerance of inscribed circle diameter $F_{\rm w}$ of rollers and circumscribed circle diameter $E_{\rm w}$ of rollers for compatible bearings. | d | mm | Δ | $F_{ m w}$ | $\Delta E_{ m w}$ | | | |-------|-------|------|------------|-------------------|------|--| | over | Incl | high | low | low | high | | | 50 | 120 | + 20 | 0 | 0 | - 20 | | | 120 | 200 | + 25 | 0 | 0 | - 25 | | | 200 | 250 | + 30 | 0 | 0 | - 30 | | | 250 | 315 | + 35 | 0 | 0 | - 35 | | | 315 | 400 | + 40 | 0 | 0 | - 40 | | | 400 | 500 | + 45 | 0 | 0 | - 45 | | | 500 | 630 | + 70 | 0 | 0 | - 70 | | | 630 | 800 | + 80 | 0 | 0 | - 80 | | | 800 | 1,000 | + 90 | 0 | 0 | - 90 | | | 1,000 | 1,250 | +105 | 0 | 0 | -105 | | | 1,250 | 1,400 | +125 | 0 | 0 | -125 | | $\Delta F_{ m w}$: Dimensional difference of inscribed circle diameter of rollers. \bullet $\Delta E_{ m w}$: Dimensional difference of circumscribed circle diameter of rollers. \bullet **2** Regulation range of JIS is $d \leq 500$ mm for $\Delta F_{\rm w}$, and $d \leq 400$ mm for $\Delta E_{\rm w}$. Table 6 Radial internal clearance of Model SL cylindrical roller bearing. | Nominal bore diameter $d \mod$ | | CN (Normal) | | С | 3 | C 4 | | |--------------------------------|------|-------------|-----|-----|-----|-----|-----| | over | Incl | min | max | min | max | min | max | | 30 | 50 | 20 | 75 | 40 | 95 | 55 | 110 | | 50 | 80 | 30 | 90 | 55 | 115 | 75 | 135 | | 80 | 120 | 35 | 105 | 80 | 150 | 105 | 175 | | 120 | 180 | 60 | 150 | 110 | 200 | 150 | 240 | | 180 | 250 | 90 | 190 | 155 | 255 | 205 | 305 | | 250 | 315 | 110 | 225 | 195 | 310 | 255 | 370 | | 315 | 400 | 140 | 265 | 245 | 370 | 320 | 445 | | 400 | 500 | 180 | 320 | 300 | 440 | 395 | 535 | # 6. Radial internal clearance of the Model SL cylindrical roller bearings. **Table 6** lists the radial internal clearance values of the Model SL cylindrical roller bearings. # 7. Recommended fit of the Model SL cylindrical roller bearings, and selection of the radial internal clearance. **Table 7** lists the recommended fit for outer ring rotation such as sheaves and wheels, **Table 8** lists the relation between the fitting and the radial internal clearance. For assembling and disassembling the bearing, it is necessary to evenly load around the circumference of the raceway end on the fitting side. ### 8. General Operating Cautions Slippage between the rollers and raceways may occur when bearings are operated under small loads (about $F_{\rm r} \le 0.04 C_{\rm or}$) and may cause smearing. This is most apparent when using large size cylindrical roller bearings due to the large cage mass. Please consult NTN Engineering for further details. Table 7 Recommended fit | | Conditions | Tolerance range class of shaft | Tolerance range class of housing | | | |--------------------------|---|--------------------------------|----------------------------------|--|--| | Outer ring rotating load | Heavy load with a
thin walled housing.
Normal load, heavy
load
Light load,
changing load | g6 or h6 | P7
N7 [●]
M7 | | | 3 Be sure to use N7 for sheaves Table 8 Relation between fit and radial internal clearance. | | | | Housing fit | | | | | | | | | | | | |-----------|-----|-----|-------------|-------|------|-----|-----|----|-------|-------|------------|------|-----|-----| | | | G 7 | H 6 | J 6 | J 7 | V.C | | | | 147 | NG | NI 7 | P 6 | D 7 | | | | G / | по | 36 | J/ | Νb | K 7 | уo | IVI O | IVI / | 14 0 | IN / | P 0 | P / | | | g 6 | | | | | | | | | | | | | | | | h 6 | | | | | | | | | | | | | | | | j 5 | | | | | | | | | | | | | | | | j 6 | | CN | (Nor | mal) | | | | | C | 3_ | | | | | ≓ | k 5 | | | (140) | l | | | | |) | Ĺ <u> </u> | | | | | Shaft fit | k 6 | | | | | | | | | | | | | | | S | m 5 | | | | | | | | | | | | | | | | m 6 | | | | | | | | | | | | | | | | n 5 | | | —с | ัว | | | | | | С | 4 | | | | | n 6 | | | | l I | | | | | | | | | | | | p 6 | | | | С | 4 | | | | | | | | | Note: When the shaft fit is g6, housing fit is N7(N6) and used at low speed (for sheaves), apply CN(normal) clearance. # *d* 100∼120mm | | | Boundary of | dimensions | | dynamic | Basic loa | d ratings
dynamic | static | Bearing
numbers | Dimensions | |-----|------------|-------------|---------------|------------------|-------------------------|-------------|----------------------|------------------|--------------------|------------| | | | mı | m | | kN | otatio | , | gf | Tiulingoro | mm | | | | | | | | | | | type | | | d | D | В | $r_{ m smin}$ | $r_{ m ls\ min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | NU | $F_{ m w}$ | | | 140 | 00 | 4.4 | 4 | 70.0 | 00.0 | 7.100 | 10.000 | NULLOOO | 110 | | | 140
150 | 20
24 | 1.1
1.5 | 1
1.1 | 70.0
93.0 | 98.0
126 | 7,100
9,500 | 10,000
12,800 | NU1920 | 110
113 | | | 180 | 24
34 | 2.1 | 2.1 | 183 | 217 | 18,600 | 22,200 | NU1020
NU220 | 120 | | | 180 | 34
34 | 2.1 | 2.1 | 249 | 305 | 25,400 | 31,000 | NU220E | 119 | | | 180 | 46 | 2.1 | 2.1 | 2 4 9
258 | 340 | 26,300 | 34,500 | NU220E
NU2220 | 120 | | 100 | 180 | 46 | 2.1 | 2.1 | 335 | 445 | 34,000 | 45,500 | NU2220E | 119 | | | 215 | 47 | 3 | 3 | 299 | 335 | 30,500 | 34,500 | NU320 | 129.5 | | | 215 | 47 | 3 | 3 | 380 | 425 | 38,500 | 43,500 | NU320E | 127.5 | | | 215 | 73 | 3 | 3 | 410 | 505 | 42,000 | 51,500 | NU2320 | 129.5 | | | 215 | 73 | 3 | 3 | 570 | 715 | 58,000 | 73,000 | NU2320E | 127.5 | | | 210 | 70 | | | 370 | 7 10 | | 70,000 | 11020202 | 127.0 | | | 160 | 26 | 2 | 1.1 | 105 | 142 | 10,700 | 14,500 | NU1021 | 119.5 | | 105 | 190 | 36 | 2.1 | 2.1 | 201 | 241 | 20,500 | 24,600 | NU221 | 126.8 | | 105 | 190 | 65.1 | 2.1 | 2.1 | 360 | 505 | 36,500 | 51,500 | NU3221 | 126.8 | | | 225 | 49 | 3 | 3 | 320 | 360 | 32,500 | 36,500 | NU321 | 135 | | | 150 | 20 | 1.1 | 1 | 72.5 | 106 | 7,400 | 10,800 | NU1922 | 120 | | | 170 | 28 | 2 | 1.1 | 131 | 174 | 13,400 | 17,700 | NU1022 | 125 | | | 200 | 38 | 2.1 | 2.1 | 240 | 290 | 24,500 | 29,500 | NU222 | 132.5 | | | 200 | 38 | 2.1 | 2.1 | 293 | 365 | 29,800 | 37,000 | NU222E | 132.5 | | | 200 | 53 | 2.1 | 2.1 | 320 | 415 | 32,500 | 42,000 | NU2222 | 132.5 | | | 200 | 53 | 2.1 | 2.1 | 385 | 515 | 39,000 | 52,500 | NU2222E | 132.5 | | 110 | 200 | 69.8 | 2.1 | 2.1 | 425 | 605 | 43,500 | 62,000 | NU3222 | 132.5 | | | 240 | 50 | 3 | 3 | 360 | 400 | 36,500 | 41,000 | NU322 | 143 | | | 240 | 50 | 3 | 3 | 450 | 525 | 46,000 | 53,500 | NU322E | 143 | | | 240 | 80 | 3 | 3 | 605 | 790 | 61,500 | 80,500 | NU2322 | 143 | | | 240 | 80 | 3 | 3 | 675 | 880 | 69,000 | 89,500 | NU2322E | 143 | | | 240 | 92.1 | 3 | 3 | 715 | 985 | 73,000 | 100,000 | NU3322A | 143 | | | 165 | 22 | 1.1 | 1 | 89.5 | 134 | 9,150 | 13,700 | NU1924 | 132 | | | 165 | 27 | 1.1 | 1 | 116 | 188 | 11,900 | 19,100 | NU2924 | 132 | | | 180 | 28 | 2 | 1.1 | 139 | 191 | 14,100 | 19,500 | NU1024 | 135 | | | 215 | 40 | 2.1 | 2.1 | 260 | 320 | 26,500 | 32,500 | NU224 | 143.5 | | 120 | 215 | 40
| 2.1 | 2.1 | 335 | 420 | 34,000 | 43,000 | NU224E | 143.5 | | 120 | 215 | 58 | 2.1 | 2.1 | 350 | 460 | 35,500 | 47,000 | NU2224 | 143.5 | | | 215 | 58 | 2.1 | 2.1 | 450 | 620 | 46,000 | 63,000 | NU2224E | 143.5 | | | 215 | 76 | 2.1 | 2.1 | 540 | 815 | 55,000 | 83,000 | NU3224 | 143.5 | | | 260 | 55 | 3 | 3 | 450 | 510 | 46,000 | 52,000 | NU324 | 154 | | | 260 | 55 | 3 | 3 | 530 | 610 | 54,000 | 62,000 | NU324E | 154 | lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 . Type NU Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N | Abuti | ment and fill | et dimensi | ons | Mass | |------------|---------------|-------------|--------------|----------------| | | mm | | | kg | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | type NU | | min | max | max | max | (approx.) | | | | | | | | 105 | 133.5 | 1 | 1 | 1.01 | | 106.5 | 142 | 1.5 | 1 | 1.45 | | 111 | 169 | 2 | 2 | 3.33 | | 111 | 169 | 2 | 2 | 3.66 | | 111 | 169 | 2 | 2 | 4.57 | | 111 | 169 | 2 | 2 | 5.01 | | 113 | 202 | 2.5 | 2.5 | 7.49 | | 113 | 202 | 2.5 | 2.5 | 8.57 | | 113 | 202 | 2.5 | 2.5 | 11.7 | | 113 | 202 | 2.5 | 2.5 | 12.8 | | 111.5 | 151 | 2 | 1 | 1.84 | | 116 | 179 | 2 | 2 | 3.95 | | 116 | 179 | 2 | 2 | 8.25 | | 118 | 212 | 2.5 | 2.5 | 8.53 | | 115 | 143.5 | 1 | 1 | 1.09 | | 116.5 | 161 | 2 | 1 | 2.33 | | 121 | 189 | 2 | 2 | 4.63 | | 121 | 189 | 2 | 2 | 4.27 | | 121 | 189 | 2 | 2 | 6.56 | | 121 | 189 | 2 | 2 | 7.4 | | 121 | 189 | 2 | 2 | 9.85 | | 123 | 227 | 2.5 | 2.5 | 10 | | 123 | 227 | 2.5 | 2.5 | 11.1 | | 123 | 227 | 2.5 | 2.5 | 17.1 | | 123 | 227 | 2.5 | 2.5 | 19.4 | | 123 | 227 | 2.5 | 2.5 | 20.2 | | 125 | 158.5 | 1 | 1 | 1.48 | | 125 | 158.5 | 1 | 1 | 1.81 | | 126.5 | 171 | 2 | 1 | 2.44 | | 131 | 204 | 2 | 2 | 5.57 | | 131 | 204 | 2 | 2 | 5.97 | | 131 | 204 | 2 | 2 | 8.19 | | 131 | 204 | 2 | 2 | 9.18 | | 131 | 204 | 2 | 2 | 12.2 | | 133 | 247 | 2.5 | 2.5 | 12.8 | | 133 | 247 | 2.5 | 2.5 | 13.9 | ### **d** 120∼150mm | | | Boundary | dimensions | | dynamic | Basic lo
static | ad ratings
dynamic | static | Bearing
numbers | Dimensions | |-----|-----|----------|---------------|------------------|------------|--------------------|-----------------------|-------------|--------------------|------------| | | | m | nm | | dynamic k | | • | gf | Humbers | mm | | | | | | | | | | | type | | | d | D | В | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | NU | $F_{ m w}$ | | | 000 | | | | = | | | 00.500 | NII 1000 1 | | | | 260 | 86 | 3 | 3 | 710 | 920 | 72,500 | 93,500 | NU2324 | 154 | | 120 | 260 | 86 | 3 | 3 | 795 | 1,030 | 81,000 | 105,000 | NU2324E | 154 | | | 260 | 106 | 3 | 3 | 845 | 1,150 | 86,000 | 117,000 | NU3324 | 154 | | | 180 | 24 | 1.5 | 1.1 | 106 | 161 | 10,800 | 16,400 | NU1926 | 143 | | | 180 | 30 | 1.5 | 1.1 | 149 | 248 | 15,200 | 25,300 | NU2926 | 143 | | | 200 | 33 | 2 | 1.1 | 172 | 238 | 17,500 | 24,200 | NU1026 | 148 | | | 230 | 40 | 3 | 3 | 270 | 340 | 27,600 | 35,000 | NU226 | 156 | | | 230 | 40 | 3 | 3 | 365 | 455 | 37,000 | 46,000 | NU226E | 153.5 | | | 230 | 64 | 3 | 3 | 380 | 530 | 38,500 | 54,000 | NU2226 | 156 | | 130 | 230 | 64 | 3 | 3 | 530 | 735 | 54,000 | 75,000 | NU2226E | 153.5 | | | 230 | 80 | 3 | 3 | 600 | 955 | 61,000 | 97,500 | NU3226 | 156 | | | 280 | 58 | 4 | 4 | 560 | 665 | 57,000 | 68,000 | NU326 | 167 | | | 280 | 58 | 4 | 4 | 615 | 735 | 63,000 | 75,000 | NU326E | 167 | | | 280 | 93 | 4 | 4 | 840 | 1,130 | 85,500 | 115,000 | NU2326 | 167 | | | 280 | 93 | 4 | 4 | 920 | 1,230 | 94,000 | 126,000 | NU2326E | 167 | | | 280 | 112 | 4 | 4 | 975 | 1,360 | 99,500 | 139,000 | NU3326 | 167 | | | 190 | 30 | 1.5 | 1.1 | 151 | 258 | 15,400 | 26,300 | NU2928 | 153 | | | 210 | 33 | 2 | 1.1 | 176 | 250 | 17,900 | 25,500 | NU1028 | 158 | | | 210 | 53 | 2 | 2 | 350 | 585 | 36,000 | 60,000 | NU3028 | 158 | | | 250 | 42 | 3 | 3 | 310 | 400 | 31,500 | 40,500 | NU228 | 169 | | | 250 | 42 | 3 | 3 | 395 | 515 | 40,000 | 52,500 | NU228E | 169 | | | 250 | 68 | 3 | 3 | 445 | 635 | 45,500 | 64,500 | NU2228 | 169 | | 140 | 250 | 68 | 3 | 3 | 575 | 835 | 58,500 | 85,000 | NU2228E | 169 | | | 250 | 88 | 3 | 3 | 695 | 1,120 | 70,500 | 114,000 | NU3228 | 169 | | | 300 | 62 | 4 | 4 | 615 | 745 | 63,000 | 76,000 | NU328 | 180 | | | 300 | 62 | 4 | 4 | 665 | 795 | 67,500 | 81,500 | NU328E | 180 | | | 300 | 102 | 4 | 4 | 920 | 1,250 | 94,000 | 127,000 | NU2328 | 180 | | | 300 | 102 | 4 | 4 | 1,020 | 1,380 | 104,000 | 141,000 | NU2328E | 180 | | | 210 | 28 | 2 | 1.1 | 147 | 219 | 15,000 | 22,300 | NU1930 | 165 | | | 210 | 36 | 2 | 1.1 | 204 | 335 | 20,800 | 34,000 | NU2930 | 165 | | | 225 | 35 | 2.1 | 1.5 | 202 | 294 | 20,600 | 29,900 | NU1030 | 169.5 | | 150 | 070 | 45 | 3 | 3 | 345 | 435 | 35,000 | 44,500 | NU230 | 182 | | 150 | 270 | 45 | 3 | 3 | 450 | 595 | 45,500 | 60,500 | NU230E | 182 | | | 270 | 73 | 3 | 3 | 500 | 710 | 51,000 | 72,500 | NU2230 | 182 | | | 270 | 73 | 3 | 3 | 660 | 980 | 67,500 | 100,000 | NU2230E | 182 | | | 270 | 96 | 3 | 3 | 800 | 1,300 | 81,500 | 132,000 | NU3230 | 182 | | | | | n for abomfor | | | .,500 | , | , | | | lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 . Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N Type NU | Abut | ment and fi | llet dimensi | ons | Mass | |------------|-------------|--------------|--------------|----------------| | | mr | n | | kg | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | type NU | | min | max | max | max | (approx.) | | | | | | | | 133 | 247 | 2.5 | 2.5 | 21.5 | | 133 | 247 | 2.5 | 2.5 | 26.1 | | 133 | 247 | 2.5 | 2.5 | 27.1 | | 136.5 | 172 | 1.5 | 1 | 1.95 | | 136.5 | 172 | 1.5 | 1 | 2.44 | | 136.5 | 191 | 2 | 1 | 3.69 | | 143 | 217 | 2.5 | 2.5 | 6.3 | | 143 | 217 | 2.5 | 2.5 | 6.9 | | 143 | 217 | 2.5 | 2.5 | 10.2 | | 143 | 217 | 2.5 | 2.5 | 11.8 | | 143 | 217 | 2.5 | 2.5 | 14.6 | | 146 | 264 | 3 | 3 | 17.4 | | 146 | 264 | 3 | 3 | 19.4 | | 146 | 264 | 3 | 3 | 26.9 | | 146 | 264 | 3 | 3 | 30.9 | | 146 | 264 | 3 | 3 | 33.1 | | | | | | | | 146.5 | 182 | 1.5 | 1 | 2.59 | | 146.5 | 201 | 2 | 1 | 4.05 | | 149 | 201 | 2 | 2 | 6.8 | | 153 | 237 | 2.5 | 2.5 | 7.88 | | 153 | 237 | 2.5 | 2.5 | 8.73 | | 153 | 237 | 2.5 | 2.5 | 12.9 | | 153 | 237 | 2.5 | 2.5 | 15.8 | | 153 | 237 | 2.5 | 2.5 | 19.1 | | 156 | 284 | 3 | 3 | 21.2 | | 156 | 284 | 3 | 3 | 23.2 | | 156 | 284 | 3 | 3 | 33.8 | | 156 | 284 | 3 | 3 | 38.7 | | 156.5 | 201 | 2 | 1 | 3.17 | | 156.5 | 201 | 2 | 1 | 4.08 | | 158 | 214 | 2 | 1.5 | 4.77 | | 163 | 257 | 2.5 | 2.5 | 9.92 | | 163 | 257 | 2.5 | 2.5 | 11 | | 163 | 257 | 2.5 | 2.5 | 16.3 | | 163 | 257 | 2.5 | 2.5 | 19.7 | | 163 | 257 | 2.5 | 2.5 | 24.5 | # *d* 150∼180mm | | | Boundary | dimensions | | | | ad ratings | | Bearing | Dimensions | |-----|-----|----------|---------------|----------------|------------|-------------|------------|-------------|---------|------------| | | | | | | dynamic | static
N | dynamic | static | numbers | | | | | 11 | nm | | K | IN | K | gf | type | mm | | d | D | В | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | NU | $F_{ m w}$ | | | | | | | | | | | | | | | 320 | 65 | 4 | 4 | 665 | 805 | 67,500 | 82,500 | NU330 | 193 | | 450 | 320 | 65 | 4 | 4 | 760 | 920 | 77,500 | 94,000 | NU330E | 193 | | 150 | 320 | 108 | 4 | 4 | 1,020 | 1,400 | 104,000 | 143,000 | NU2330 | 193 | | | 320 | 108 | 4 | 4 | 1,160 | 1,600 | 118,000 | 163,000 | NU2330E | 193 | | | 220 | 28 | 2 | 1.1 | 154 | 236 | 15,700 | 24,100 | NU1932 | 175 | | | 220 | 36 | 2 | 1.1 | 213 | 360 | 21,700 | 36,500 | NU2932 | 175 | | | 240 | 38 | 2.1 | 1.5 | 238 | 340 | 24,200 | 35,000 | NU1032 | 180 | | | 270 | 86 | 2.1 | 2.1 | 400 | 565 | 40,500 | 57,500 | NU3132 | 189 | | | 290 | 48 | 3 | 3 | 430 | 570 | 43,500 | 58,000 | NU232 | 195 | | 400 | 290 | 48 | 3 | 3 | 500 | 665 | 51,000 | 68,000 | NU232E | 195 | | 160 | 290 | 80 | 3 | 3 | 630 | 940 | 64,500 | 96,000 | NU2232 | 195 | | | 290 | 80 | 3 | 3 | 810 | 1,190 | 82,500 | 121,000 | NU2232E | 193 | | | 340 | 68 | 4 | 4 | 700 | 875 | 71,000 | 89,500 | NU332 | 208 | | | 340 | 68 | 4 | 4 | 860 | 1,050 | 87,500 | 107,000 | NU332E | 204 | | | 340 | 114 | 4 | 4 | 1,070 | 1,520 | 109,000 | 155,000 | NU2332 | 208 | | | 340 | 114 | 4 | 4 | 1,310 | 1,820 | 134,000 | 186,000 | NU2332E | 204 | | | 230 | 28 | 2 | 1.1 | 160 | 254 | 16,300 | 25,900 | NU1934 | 185 | | | 230 | 36 | 2 | 1.1 | 222 | 385 | 22,600 | 39,500 | NU2934 | 185 | | | 260 | 42 | 2.1 | 2.1 | 278 | 400 | 28,300 | 41,000 | NU1034 | 193 | | | 310 | 52 | 4 | 4 | 475 | 635 | 48,500 | 65,000 | NU234 | 208 | | 470 | 310 | 52 | 4 | 4 | 605 | 800 | 61,500 | 81,500 | NU234E | 207 | | 170 | 310 | 86 | 4 | 4 | 715 | 1,080 | 73,000 | 110,000 | NU2234 | 208 | | | 310 | 86 | 4 | 4 | 965 | 1,410 | 98,500 | 144,000 | NU2234E | 205 | | | 310 | 110 | 4 | 4 | 1,020 | 1,690 | 104,000 | 172,000 | NU3234 | 208 | | | 360 | 72 | 4 | 4 | 795 | 1,010 | 81,500 | 103,000 | NU334 | 220 | | | 360 | 120 | 4 | 4 | 1,220 | 1,750 | 125,000 | 179,000 | NU2334 | 220 | | | 250 | 33 | 2 | 1.1 | 215 | 335 | 21,900 | 34,000 | NU1936 | 197 | | | 250 | 42 | 2 | 1.1 | 293 | 495 | 29,900 | 50,500 | NU2936 | 197 | | | 280 | 46 | 2.1 | 2.1 | 340 | 485 | 35,000 | 49,500 | NU1036 | 205 | | | 280 | 74 | 2.1 | 2.1 | 610 | 1,030 | 62,000 | 105,000 | NU3036 | 205 | | 180 | 320 | 52 | 4 | 4 | 495 | 675 | 50,500 | 69,000 | NU236 | 218 | | 100 | 320 | 52 | 4 | 4 | 625 | 850 | 64,000 | 87,000 | NU236E | 217 | | | 320 | 86 | 4 | 4 | 745 | 1,140 | 76,000 | 117,000 | NU2236 | 218 | | | 320 | 86 | 4 | 4 | 1,010 | 1,510 | 103,000 | 154,000 | NU2236E | 215 | | | 320 | 112 | 4 | 4 | 1,010 | 1,700 | 103,000 | 174,000 | NU3236 | 218 | | | 380 | 75 | 4 | 4 | 905 | 1,150 | 92,000 | 118,000 | NU336 | 232 | lacktriangledown Minimal allowable dimension for chamfer dimension r or r_1 . Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N Type NU | Abuti | ment and fi | llet dimensi | ons | Mass | |------------------|-------------
--------------|--------------|----------------| | | mr | n | | kg | | d_{a} | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | type NU | | min | max | max | max | (approx.) | | | | | | | | 166 | 304 | 3 | 3 | 25.3 | | 166 | 304 | 3 | 3 | 28.4 | | 166 | 304 | 3 | 3 | 40.6 | | 166 | 304 | 3 | 3 | 47.2 | | 166.5 | 211 | 2 | 1 | 3.35 | | 166.5 | 211 | 2 | 1 | 4.3 | | 168 | 229 | 2 | 1.5 | 5.9 | | 171 | 259 | 2 | 2 | 20.6 | | 173 | 277 | 2.5 | 2.5 | 13.7 | | 173 | 277 | 2.5 | 2.5 | 15.7 | | | | | | | | 173
173 | 277 | 2.5 | 2.5 | 22 | | | 277 | 2.5 | 2.5 | 25.1 | | 176 | 324 | 3 | 3 | 31.3 | | 176 | 324 | 3 | 3 | 34 | | 176 | 324 | 3 | 3 | 50.5 | | 176 | 324 | 3 | 3 | 56 | | 176.5 | 221 | 2 | 1 | 3.52 | | 176.5 | 221 | 2 | 1 | 4.53 | | 181 | 249 | 2 | 2 | 7.88 | | 186 | 294 | 3 | 3 | 17 | | 186 | 294 | 3 | 3 | 19.6 | | 186 | 294 | 3 | 3 | 27.2 | | 186 | 294 | 3 | 3 | 31 | | 186 | 294 | 3 | 3 | 37.4 | | 186 | 344 | 3 | 3 | 37 | | 186 | 344 | 3 | 3 | 59.5 | | 186.5 | 241 | 2 | 1 | 5.21 | | 186.5 | 241 | 2 | 1 | 6.63 | | 191 | 269 | 2 | 2 | 10.3 | | 191 | 269 | 2 | 2 | 17.8 | | 196 | 304 | 3 | 3 | 17.7 | | 196 | 304 | 3 | 3 | 20.4 | | 196 | 304 | 3 | 3 | 28.4 | | 196 | 304 | 3 | 3 | 31.9 | | 196 | 304 | 3 | 3 | 39.6 | | 196 | 364 | 3 | 3 | 44.2 | | 130 | 004 | J | J | 77.4 | ## **d** 180∼240mm | | | Boundary of | dimensions | | dynamic | Basic lo
static | ad ratings
dynamic | static | Bearing numbers | Dimensions | |-----|-----|-------------|---------------|------------------|------------|--------------------|-----------------------|-------------|-----------------|------------| | | | m | nm | | | N | • | gf | Humbers | mm | | | | | | | | | | | type | | | d | D | В | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | NU | $F_{ m w}$ | | | 380 | 126 | 4 | 4 | 1,380 | 1,990 | 141,000 | 203,000 | NU2336 | 232 | | 180 | 380 | 150 | 4 | 4 | 1,600 | 2,410 | 163,000 | 246,000 | NU3336 | 232 | | | 260 | 42 | 2 | 1.1 | 299 | 515 | 30,500 | 52,500 | NU2938 | 207 | | | 290 | 46 | 2.1 | 2.1 | 350 | 510 | 36,000 | 52,000 | NU1038 | 215 | | | 340 | 55 | 4 | 4 | 555 | 770 | 56,500 | 78,500 | NU238 | 231 | | | 340 | 55 | 4 | 4 | 695 | 955 | 71,000 | 97,500 | NU238E | 230 | | 100 | 340 | 92 | 4 | 4 | 830 | 1,290 | 84,500 | 131,000 | NU2238 | 231 | | 190 | 340 | 92 | 4 | 4 | 1,100 | 1,670 | 113,000 | 170,000 | NU2238E | 228 | | | 340 | 120 | 4 | 4 | 1,240 | 2,160 | 126,000 | 220,000 | NU3238 | 231 | | | 400 | 78 | 5 | 5 | 975 | 1,260 | 99,500 | 129,000 | NU338 | 245 | | | 400 | 132 | 5 | 5 | 1,520 | 2,220 | 155,000 | 226,000 | NU2338 | 245 | | | 400 | 155 | 5 | 5 | 1,550 | 2,280 | 158,000 | 233,000 | NU3338 | 245 | | | 280 | 38 | 2.1 | 2.1 | 259 | 405 | 26,400 | 41,500 | NU1940 | 220 | | | 280 | 48 | 2.1 | 1.5 | 365 | 630 | 37,000 | 64,500 | NU2940 | 220 | | | 310 | 51 | 2.1 | 2.1 | 390 | 580 | 40,000 | 59,500 | NU1040 | 229 | | | 310 | 82 | 2.1 | 2.1 | 735 | 1,240 | 75,000 | 127,000 | NU3040 | 227 | | | 340 | 112 | 3 | 3 | 1,130 | 1,820 | 115,000 | 186,000 | NU3140A | 235 | | | 360 | 58 | 4 | 4 | 620 | 865 | 63,500 | 88,500 | NU240 | 244 | | 200 | 360 | 58 | 4 | 4 | 765 | 1,060 | 78,000 | 108,000 | NU240E | 243 | | | 360 | 98 | 4 | 4 | 925 | 1,440 | 94,000 | 147,000 | NU2240 | 244 | | | 360 | 98 | 4 | 4 | 1,220 | 1,870 | 125,000 | 191,000 | NU2240E | 241 | | | 360 | 128 | 4 | 4 | 1,260 | 2,150 | 128,000 | 219,000 | NU3240 | 244 | | | 420 | 80 | 5 | 5 | 975 | 1,270 | 99,500 | 130,000 | NU340 | 260 | | | 420 | 138 | 5 | 5 | 1,510 | 2,240 | 154,000 | 229,000 | NU2340 | 260 | | | 420 | 165 | 5 | 5 | 1,870 | 2,930 | 190,000 | 299,000 | NU3340 | 260 | | | 300 | 48 | 2.1 | 1.5 | 390 | 705 | 39,500 | 72,000 | NU2944 | 240 | | | 340 | 56 | 3 | 3 | 500 | 750 | 51,000 | 76,500 | NU1044 | 250 | | | 340 | 90 | 3 | 3 | 860 | 1,490 | 87,500 | 152,000 | NU3044 | 250 | | | 370 | 120 | 4 | 4 | 1,180 | 2,090 | 120,000 | 213,000 | NU3144 | 262 | | 220 | 400 | 65 | 4 | 4 | 760 | 1,080 | 77,500 | 110,000 | NU244 | 270 | | | 400 | 108 | 4 | 4 | 1,140 | 1,810 | 116,000 | 184,000 | NU2244 | 270 | | | 400 | 144 | 4 | 4 | 1,540 | 2,680 | 157,000 | 273,000 | NU3244 | 270 | | | 460 | 88 | 5 | 5 | 1,190 | 1,570 | 122,000 | 161,000 | NU344 | 284 | | | 460 | 145 | 5 | 5 | 1,780 | 2,620 | 181,000 | 268,000 | NU2344 | 284 | | 240 | 320 | 48 | 2.1 | 1.5 | 400 | 755 | 41,000 | 77,000 | NU2948 | 260 | lacktriangled Minimal allowable dimension for chamfer dimension r or r_1 . Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N Type NU | Abut | ment and fi | llet dimensi | ons | Mass | |------------|-------------|--------------|--------------|----------------| | | mr | n | | kg | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | type NU | | min | max | max | max | (approx.) | | | | | | | | 196 | 364 | 3 | 3 | 69.5 | | 196 | 364 | 3 | 3 | 88 | | 100 = | 0=4 | | | | | 196.5 | 251 | 2 | 1 | 6.93 | | 201 | 279 | 2 | 2 | 10.7 | | 206 | 324 | 3 | 3 | 21.3 | | 206 | 324 | 3 | 3 | 24.2 | | 206 | 324 | 3 | 3 | 34.4 | | 206 | 324 | 3 | 3 | 39.5 | | 206 | 324 | 3 | 3 | 48.2 | | 210 | 380 | 4 | 4 | 49.4 | | 210 | 380 | 4 | 4 | 80.5 | | 210 | 380 | 4 | 4 | 101 | | 211 | 269 | 2 | 2 | 7.65 | | 208 | 269 | 2 | 1.5 | 9.66 | | 211 | 299 | 2 | 2 | 13.9 | | 211 | 299 | 2 | 2 | 24.1 | | 213 | 327 | 2.5 | 2.5 | 42.8 | | 216 | 344 | 3 | 3 | 25.3 | | 216 | 344 | 3 | 3 | 28.1 | | 216 | 344 | 3 | 3 | 41.3 | | 216 | 344 | 3 | 3 | 47.8 | | 216 | 344 | 3 | 3 | 58 | | 220 | 400 | 4 | 4 | 55.8 | | 220 | 400 | 4 | 4 | 92.6 | | 220 | 400 | 4 | 4 | 118 | | 231 | 289 | 2 | 1.5 | 10.5 | | 233 | 327 | 2.5 | 2.5 | 18.2 | | 233 | 327 | 2.5 | 2.5 | 31.7 | | 236 | 354 | 3 | 3 | 55.7 | | 236 | 384 | 3 | 3 | 37.7 | | 236 | 384 | 3 | 3 | 59 | | 236 | 384 | 3 | 3 | 84.2 | | 240 | 440 | 4 | 4 | 73.4 | | 240 | 440 | 4 | 4 | 116 | | 248 | 309 | 2 | 1.5 | 11.3 | # **d** 240~320mm | | Boundary dimensions | | | | | | ad ratings | -1-11- | Bearing | Dimensions | |-----|---------------------|-----------|-------------------|-------------------|----------------|----------------|--------------------|--------------------|------------------|------------| | | | m | ım | | dynamic
k | static | dynamic | static
gf | numbers | mm | | | | 111 | 1111 | | , , | IN | K | gı | type | 111111 | | d | D | В | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | NU | $F_{ m w}$ | | | | | | | | | | | | _ | | | 360 | 56 | 3 | 3 | 530 | 820 | 54,000 | 83,500 | NU1048 | 270 | | | 360 | 92 | 3 | 3 | 940 | 1,710 | 95,500 | 174,000 | NU3048 | 270 | | 240 | 440 | 72 | 4 | 4 | 935 | 1,340 | 95,500 | 136,000 | NU248 | 295 | | 240 | 440 | 120 | 4 | 4 | 1,440 | 2,320 | 146,000 | 236,000 | NU2248 | 295 | | | 500 | 95 | 5 | 5 | 1,430 | 1,950 | 146,000 | 198,000 | NU348 | 310 | | | 500 | 155 | 5 | 5 | 2,100 | 3,200 | 214,000 | 325,000 | NU2348 | 310 | | | 360 | 46 | 2.1 | 2.1 | 400 | 665 | 41,000 | 67,500 | NU1952 | 285 | | | 360 | 60 | 2.1 | 2.1 | 545 | 985 | 55,500 | 100,000 | NU2952 | 285 | | | 400 | 65 | 4 | 4 | 645 | 1,000 | 65,500 | 102,000 | NU1052 | 296 | | | 400 | 104 | 4 | 4 | 1,150 | 2,020 | 117,000 | 206,000 | NU3052 | 294 | | 000 | 440 | 144 | 4 | 4 | 1,810 | 3,150 | 185,000 | 320,000 | NU3152 | 305 | | 260 | 480 | 80 | 5 | 5 | 1,150 | 1,660 | 117,000 | 170,000 | NU252 | 320 | | | 480 | 130 | 5 | 5 | 1,780 | 2,930 | 182,000 | 299,000 | NU2252 | 320 | | | 540 | 102 | 6 | 6 | 1,620 | 2,230 | 165,000 | 228,000 | NU352 | 336 | | | 540 | 165 | 6 | 6 | 2,340 | 3,600 | 239,000 | 365,000 | NU2352 | 336 | | | 540 | 206 | 6 | 6 | 2,930 | 4,800 | 299,000 | 490,000 | NU3352 | 336 | | | 380 | 46 | 2.1 | 2.1 | 415 | 710 | 42,500 | 72,500 | NU1956 | 305 | | | 380 | 60 | 2.1 | 2.1 | 565 | 1,060 | 58,000 | 108,000 | NU2956 | 305 | | | 420 | 65 | 4 | 4 | 660 | 1,050 | 67,000 | 107,000 | NU1056 | 316 | | | 420 | 106 | 4 | 4 | 1,240 | 2,260 | 126,000 | 230,000 | NU3056 | 314 | | 280 | 500 | 80 | 5 | 5 | 1,190 | 1,760 | 121,000 | 180,000 | NU256 | 340 | | | 500 | 130 | 5 | 5 | 1,840 | 3,100 | 188,000 | 315,000 | NU2256 | 340 | | | 580 | 108 | 6 | 6 | 1,820 | 2,540 | 185,000 | 259,000 | NU356 | 362 | | | 580 | 175 | 6 | 6 | 2,700 | 4,250 | 275,000 | 430,000 | NU2356 | 362 | | | 200 | 60 | 0.1 | 2.1 | EOF | 1 000 | E1 E00 | 105.000 | MHOOGO | 204 | | | 380 | 60
56 | 2.1 | | 505 | 1,230
935 | 51,500 | 125,000 | NU3860 | 324 | | | 420 | 56
72 | 3 | 3 | 560 | 935
1,440 | 57,000 | 95,500 | NU1960 | 330 | | | 420 | 72
74 | 3
4 | 3 | 780 | , | 79,500 | 147,000 | NU2960 | 330 | | 300 | 460
460 | 74
118 | 4 | 4
4 | 855
1,610 | 1,340
3,000 | 87,000
164,000 | 137,000
305,000 | NU1060
NU3060 | 340
340 | | | 540 | 85 | 4
5 | 4
5 | | | | | NU260 | 364 | | | 540
540 | 85
140 | 5
5 | 5
5 | 1,400
2,180 | 2,070
3,650 | 143,000
223,000 | 211,000
370,000 | NU260
NU2260 | 364 | | | 620 | 185 | 7.5 | 5
7.5 | 3,250 | 5,150 | 330,000 | 525,000 | NU2360 | 385 | | | 020 | 100 | 7.5 | 7.5 | 3,230 | 5,150 | 330,000 | J25,000 | 1102300 | 365 | | 000 | 400 | 60 | 2.1 | 2.1 | 525 | 1,310 | 53,500 | 134,000 | NU3864 | 344 | | 320 | 440 | 56 | 3 | 3 | 580 | 1,010 | 59,500 | 103,000 | NU1964 | 350 | | | 480 | 74 | 4 | 4 | 875 | 1,410 | 89,500 | 143,000 | NU1064 | 360 | lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 . Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N Type NU | Abu | tment and fi | llet dimensi | ons | Mass | |--|---|---|---|--| | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | $r_{ m las}$ max | kg
type NU
(approx.) | | 253
253
256
256
260
260 | 347
347
424
424
480
480 |
2.5
2.5
3
4
4 | 2.5
2.5
3
4
4 | 19.6
34.7
50.2
80
93.4
147 | | 271
271
276
276
276
280
280
284
284
284 | 349
349
384
384
424
460
460
516
516 | 2
2
3
3
4
4
5
5
5 | 2
2
3
3
4
4
5
5
5 | 14.9
19.5
29.1
50.4
95.1
66.9
104
117
182
242 | | 291
291
296
296
300
300
304
304 | 369
369
404
404
480
480
556
556 | 2
2
3
3
4
4
5
5 | 2
2
3
4
4
5
5 | 15.9
20.8
30.9
54.4
70.8
109
142
222 | | 311
313
313
316
316
320
320
332 | 369
407
407
444
444
520
520
588 | 2
2.5
2.5
3
3
4
4
6 | 2
2.5
2.5
3
4
4
6 | 17.1
25.4
32.6
43.6
75.2
88.2
138
316 | | 331
333
336 | 389
427
464 | 2
2.5
3 | 2
2.5
3 | 18.1
26.8
46 | # **d** 320~420mm | | | Boundary | dimensions | | dynamic | Basic lo | ad ratings
dynamic | static | Bearing
numbers | Dimensions | |-----|-----|----------|-----------------------|------------------|------------|-------------|-----------------------|-------------|--------------------|------------| | | | m | nm | | kN | | | gf | | mm | | d | D | В | $r_{ m smin}^{ullet}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | type
NU | $F_{ m w}$ | | | 480 | 121 | 4 | 4 | 1,580 | 2,890 | 161,000 | 295,000 | NU3064 | 358 | | | 540 | 176 | 5 | 5 | 2,530 | 4,550 | 258,000 | 465,000 | NU3164 | 376 | | 000 | 580 | 92 | 5 | 5 | 1,600 | 2,390 | 164,000 | 244,000 | NU264 | 390 | | 320 | 580 | 150 | 5 | 5 | 2,550 | 4,350 | 260,000 | 445,000 | NU2264 | 390 | | | 670 | 200 | 7.5 | 7.5 | 3,750 | 5,800 | 385,000 | 595,000 | NU2364 | 410 | | | 460 | 56 | 3 | 3 | 590 | 1,040 | 60,500 | 107,000 | NU1968 | 370 | | | 460 | 72 | 3 | 3 | 830 | 1,610 | 84,500 | 164,000 | NU2968 | 370 | | | 520 | 82 | 5 | 5 | 1,050 | 1,670 | 107,000 | 170,000 | NU1068 | 385 | | | 520 | 133 | 5 | 5 | 2,030 | 3,900 | 207,000 | 400,000 | NU3068 | 385 | | 340 | 580 | 190 | 5 | 5 | 3,050 | 5,450 | 310,000 | 555,000 | NU3168 | 400 | | | 620 | 165 | 6 | 6 | 2,880 | 4,650 | 294,000 | 475,000 | NU2268 | 410 | | | 620 | 224 | 6 | 6 | 4,000 | 7,100 | 410,000 | 725,000 | NU3268 | 410 | | | 710 | 118 | 7.5 | 7.5 | 2,250 | 3,300 | 230,000 | 340,000 | NU368 | 450 | | | 710 | 212 | 7.5 | 7.5 | 4,250 | 6,600 | 430,000 | 675,000 | NU2368 | 435 | | | 440 | 60 | 2.1 | 2.1 | 460 | 1,090 | 47,000 | 111,000 | NU3872 | 382 | | | 480 | 56 | 3 | 3 | 615 | 1,120 | 62,500 | 114,000 | NU1972 | 390 | | | 480 | 72 | 3 | 3 | 860 | 1,720 | 87,500 | 176,000 | NU2972 | 390 | | 360 | 540 | 82 | 5 | 5 | 1,080 | 1,750 | 110,000 | 179,000 | NU1072 | 405 | | 300 | 540 | 134 | 5 | 5 | 1,990 | 4,200 | 202,000 | 430,000 | NU3072 | 413 | | | 600 | 192 | 5 | 5 | 3,150 | 5,500 | 320,000 | 560,000 | NU3172A | 416 | | | 650 | 232 | 6 | 6 | 4,150 | 7,600 | 425,000 | 775,000 | NU3272 | 435 | | | 750 | 224 | 7.5 | 7.5 | 4,500 | 7,000 | 460,000 | 710,000 | NU2372 | 460 | | | 520 | 65 | 4 | 4 | 740 | 1,330 | 75,500 | 136,000 | NU1976 | 416 | | | 520 | 82 | 4 | 4 | 1,110 | 2,230 | 113,000 | 227,000 | NU2976 | 416 | | 380 | 560 | 82 | 5 | 5 | 1,100 | 1,840 | 112,000 | 187,000 | NU1076 | 425 | | 300 | 560 | 135 | 5 | 5 | 2,200 | 4,450 | 224,000 | 455,000 | NU3076 | 426 | | | 680 | 175 | 6 | 6 | 3,350 | 5,800 | 340,000 | 590,000 | NU2276 | 460 | | | 680 | 240 | 6 | 6 | 4,300 | 7,650 | 440,000 | 780,000 | NU3276 | 460 | | | 500 | 75 | 2.1 | 2.1 | 870 | 2,250 | 88,500 | 229,000 | NU3880 | 430 | | 400 | 600 | 90 | 5 | 5 | 1,320 | 2,190 | 134,000 | 223,000 | NU1080 | 450 | | | 600 | 148 | 5 | 5 | 2,520 | 5,050 | 257,000 | 515,000 | NU3080 | 450 | | 400 | 560 | 65 | 4 | 4 | 800 | 1,510 | 81,500 | 154,000 | NU1984 | 456 | | 420 | 560 | 82 | 4 | 4 | 1,190 | 2,530 | 122,000 | 258,000 | NU2984 | 456 | | | 620 | 90 | 5 | 5 | 1,350 | 2,290 | 138,000 | 233,000 | NU1084 | 470 | lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 . Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N Type NU | Abut | Abutment and fillet dimensions | | | | | | | | | | | |---|---|-------------------------------------|-------------------------------------|--|--|--|--|--|--|--|--| | $d_{ m a}$ | $D_{ m a}$ | $r_{ m as}$ | $r_{ m las}$ | kg
type NU | | | | | | | | | min | max | max | max | (approx.) | | | | | | | | | 336
340
340
340
352 | 464
520
560
560
638 | 3
4
4
4
6 | 3
4
4
4
6 | 81.2
175
111
172
402 | | | | | | | | | 353
353
360
360
360
364
364
372
372 | 447
447
500
500
560
596
596
678
678 | 2.5
2.5
4
4
5
6
6 | 2.5
2.5
4
4
5
6 | 28.2
36.2
61.8
108
220
260
316
246
477 | | | | | | | | | 371
373
373
380
380
380
384
392 | 429
467
467
520
520
580
626
718 | 2
2.5
2.5
4
4
4
5 | 2
2.5
2.5
4
4
4
5 | 20.1
29.6
38
64.7
114
232
356
562 | | | | | | | | | 396
396
400
400
404
404 | 504
504
540
540
656
656 | 3
3
4
4
5
5 | 3
3
4
4
5
5 | 42.9
54.1
67.5
120
326
400 | | | | | | | | | 411
420
420 | 489
580
580 | 2
4
4 | 2
4
4 | 35.4
87.6
155 | | | | | | | | | 436
436
440 | 544
544
600 | 3
3
4 | 3
3
4 | 46.7
59
91 | | | | | | | | # d 440∼670mm | | Boundary dimensions | | | | dynamic | Basic lo
static | ad ratings
dynamic | static | Bearing numbers | Dimensions | |------|---------------------|------------|----------------|-------------------------------|----------------|--------------------|-----------------------|--------------------|----------------------|------------| | | | m | ım | | * | N | | gf | Humbers | mm | | a | D | D | 0 | 0 | C | C | a | C | type | TO. | | d | D | В | $r_{ m s min}$ | $r_{ m lsmin}^{oldsymbol{0}}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | NU | $F_{ m w}$ | | | 600 | 95 | 4 | 4 | 1,520 | 3,100 | 155,000 | 320,000 | NU2988 | 480 | | 440 | 650 | 94 | 6 | 6 | 1,430 | 2,430 | 146,000 | 248,000 | NU1088 | 493 | | - 10 | 650 | 157 | 6 | 6 | 2,770 | 5,700 | 283,000 | 580,000 | NU3088 | 493 | | 400 | 580 | 72 | 3 | 3 | 990 | 2,230 | 101,000 | 227,000 | NU2892 | 490 | | 460 | 680 | 100 | 6 | 6 | 1,540 | 2,630 | 157,000 | 269,000 | NU1092 | 516 | | | 650 | 78 | 5 | 5 | 1,140 | 2,150 | 116,000 | 219,000 | NU1996 | 523 | | 480 | 650 | 100 | 5 | 5 | 1,640 | 3,450 | 168,000 | 350,000 | NU2996 | 523 | | | 700 | 100 | 6 | 6 | 1,580 | 2,750 | 161,000 | 280,000 | NU1096 | 536 | | | 620 | 72 | 3 | 3 | 1,030 | 2,390 | 105,000 | 244,000 | NU28/500 | 530 | | 500 | 670 | 78 | 5 | 5 | 1,160 | 2,220 | 118,000 | 226,000 | NU19/500 | 543 | | | 720 | 100 | 6 | 6 | 1,610 | 2,870 | 164,000 | 292,000 | NU10/500 | 556 | | | 710 | 82 | 5 | 5 | 1,290 | 2,480 | 132,000 | 253,000 | NU19/530 | 576 | | 530 | 710 | 106 | 5 | 5 | 1,870 | 4,000 | 191,000 | 410,000 | NU29/530 | 576 | | 330 | 780 | 112 | 6 | 6 | 1,930 | 3,450 | 197,000 | 350,000 | NU10/530 | 595 | | | 780 | 185 | 6 | 6 | 3,650 | 7,400 | 375,000 | 755,000 | NU30/530 | 590 | | | 680 | 72 | 3 | 3 | 1,090 | 2,680 | 111,000 | 273,000 | NU28/560 | 590 | | | 680 | 90 | 3 | 3 | 1,250 | 3,200 | 127,000 | 325,000 | NU38/560 | 590 | | 560 | 750 | 85 | 5 | 5 | 1,470 | 2,840 | 150,000 | 290,000 | NU19/560 | 607 | | | 750 | 112 | 5 | 5 | 2,010 | 4,250 | 205,000 | 435,000 | NU29/560 | 607 | | | 820 | 115 | 6 | 6 | 2,190 | 3,900 | 223,000 | 400,000 | NU10/560 | 626 | | | 730 | 78 | 3 | 3 | 1,210 | 3,000 | 124,000 | 310,000 | NU28/600 | 633 | | 600 | 800 | 90 | 5 | 5 | 1,620 | 3,200 | 165,000 | 325,000 | NU19/600 | 650 | | | 800
870 | 118
200 | 5
6 | 5
6 | 2,270
4,450 | 4,950
9,350 | 231,000
455,000 | 505,000
955,000 | NU29/600
NU30/600 | 650
670 | | | 670 | 200 | 0 | 0 | 4,450 | 9,550 | 455,000 | 955,000 | 14030/000 | 070 | | | 780 | 88 | 4 | 4 | 1,520 | 3,650 | 155,000 | 370,000 | NU28/630 | 667 | | 630 | 850 | 100 | 6 | 6 | 1,910 | 3,700 | 195,000 | 380,000 | NU19/630 | 684 | | | 850
920 | 128
128 | 6
7.5 | 6
7.5 | 2,710 | 5,850
4,650 | 277,000 | 595,000 | NU29/630
NU10/630 | 684
705 | | | 920 | 140 | 7.5 | 7.5 | 2,560 | 4,000 | 261,000 | 475,000 | 140 10/030 | 705 | | | 820 | 88 | 4 | 4 | 1,580 | 3,900 | 161,000 | 395,000 | NU28/670 | 707 | | 670 | 820 | 112 | 4 | 4 | 2,010 | 5,500 | 205,000 | 560,000 | NU38/670 | 709 | | | 900 | 103 | 6 | 6 . | 1,980 | 3,950 | 202,000 | 405,000 | NU19/670 | 729 | lacktriangled Minimal allowable dimension for chamfer dimension r or r_1 . Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N Type NU | Abut | Abutment and fillet dimensions | | | | | | | | | | |------------|--------------------------------|---------------|--------------|----------------------|--|--|--|--|--|--| | $d_{ m a}$ | $D_{ m a}$ | n $r_{ m as}$ | $r_{ m las}$ | kg
type NU | | | | | | | | min | max | max | max | (approx.) | 456 | 584 | 3 | 3 | 82.8 | | | | | | | | 464 | 626 | 5 | 5 | 105 | | | | | | | | 464 | 626 | 5 | 5 | 188 | | | | | | | | 473 | 567 | 2.5 | 2.5 | 47.1 | | | | | | | | 484 | 656 | 5 | 5 | 122 | | | | | | | | 500 | 630 | 4 | 4 | 78.5 | | | | | | | | 560 | 630 | 4 | 4 | 101 | | | | | | | | 504 | 676 | 5 | 5 | 126 | | | | | | | | | 070 | - | <u> </u> | 120 | | | | | | | | 513 | 607 | 2.5 | 2.5 | 50.7 | | | | | | | | 520 | 650 | 4 | 4 | 81.3 | | | | | | | | 524 | 696 | 5 | 5 | 130 | | | | | | | | 550 | 690 | 4 | 4 | 95.9 | | | | | | | | 550 | 690
 4 | 4 | 124 | | | | | | | | 554 | 756 | 5 | 5 | 192 | | | | | | | | 554 | 756 | 5 | 5 | 318 | | | | | | | | 573 | 667 | 2.5 | 2.5 | 56.1 | | | | | | | | 573 | 667 | 2.5 | 2.5 | 72.7 | | | | | | | | 580 | 730 | 4 | 4 | 111 | | | | | | | | 580 | 730 | 4 | 4 | 146 | | | | | | | | 584 | 796 | 5 | 5 | 216 | | | | | | | | 613 | 717 | 2.5 | 2.5 | 70.7 | | | | | | | | 620 | 780 | 4 | 4 | 132 | | | | | | | | 620 | 780 | 4 | 4 | 173 | | | | | | | | 624 | 846 | 5 | 5 | 416 | | | | | | | | 646 | 764 | 3 | 3 | 97.5 | | | | | | | | 654 | 826 | 5 | 5 | 171 | | | | | | | | 654 | 826 | 5 | 5 | 218 | | | | | | | | 662 | 888 | 6 | 6 | 302 | | | | | | | | 686 | 804 | 3 | 3 | 103 | | | | | | | | 686 | 804 | 3 | 3 | 136 | | | | | | | | 694 | 876 | 5 | 5 | 195 | | | | | | | | 20. | | - | - | | | | | | | | # *d* 670∼1,250mm | | | Boundary of | limensions | | dynamic | Basic Io | ad ratings
dynamic | static | Bearing
numbers | Dimensions | |-------|-------------------------|-------------------|----------------------|----------------|-------------------------|-------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------| | | | m | m | | | N | | kgf | type | mm | | d | D | В | $r_{ m smin}^{lack}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | NU | $F_{ m w}$ | | 670 | 900 | 136 | 6 | 6 | 2,940 | 6,600 | 300,000 | 675,000 | NU29/670 | 729 | | 710 | 950
950 | 106
140 | 6
6 | 6
6 | 2,260
3,300 | 4,600
7,500 | 231,000
340,000 | 465,000
765,000 | NU19/710
NU29/710 | 770
770 | | 750 | 1,000
1,000 | 112
145 | 6
6 | 6
6 | 2,340
3,600 | 4,850
8,400 | 239,000
365,000 | 495,000
860,000 | NU19/750
NU29/750 | 815
815 | | 800 | 980
1,060
1,150 | 106
150
155 | 5
6
7.5 | 5
6
7.5 | 2,310
3,850
4,100 | 5,950
8,850
7,800 | 236,000
390,000
415,000 | 605,000
900,000
795,000 | NU28/800
NU29/800
NU10/800 | 845
865
887 | | 850 | 1,030
1,120
1,120 | 106
118
155 | 5
6
6 | 5
6
6 | 2,390
2,920
4,000 | 6,350
6,150
9,250 | 244,000
297,000
410,000 | 645,000
625,000
945,000 | NU28/850
NU19/850
NU29/850 | 895
917
917 | | 1,060 | 1,400 | 195 | 7.5 | 7.5 | 6,100 | 14,500 | 620,000 | 1,480,000 | NU29/1060 | 1,145 | | 1,180 | 1,540 | 206 | 7.5 | 7.5 | 6,900 | 17,000 | 705,000 | 1,730,000 | NU29/1180 | 1,270 | | 1,250 | 1,630 | 170 | 7.5 | 7.5 | 5,550 | 12,500 | 565,000 | 1,280,000 | NU19/1250 | 1,345 | Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$ Type N Type NU | Abu | Abutment and fillet dimensions | | | | | | | | | | | | |------------|--------------------------------|-------------|--------------|----------------|--|--|--|--|--|--|--|--| | | mn | า | | kg | | | | | | | | | | $d_{ m a}$ | D_{a} | $r_{ m as}$ | $r_{ m las}$ | type NU | | | | | | | | | | min | max | max | max | (approx.) | | | | | | | | | | 694 | 876 | 5 | 5 | 257 | | | | | | | | | | 734 | 926 | 5 | 5 | 221 | | | | | | | | | | 734 | 926 | 5 | 5 | 292 | 774 | 976 | 5 | 5 | 257 | | | | | | | | | | 774 | 976 | 5 | 5 | 332 | 820 | 960 | 4 | 4 | 178 | | | | | | | | | | 824 | 1,036 | 5 | 5 | 380 | | | | | | | | | | 832 | 1,118 | 6 | 6 | 554 | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | 870 | 1,010 | 4 | 4 | 188 | | | | | | | | | | 874 | 1,096 | 5 | 5 | 329 | | | | | | | | | | 874 | 1,096 | 5 | 5 | 432 | | | | | | | | | | | - | | | | | | | | | | | | | 1,092 | 1,368 | 6 | 6 | 855 | | | | | | | | | | 1,212 | 1,508 | 6 | 6 | 1,060 | | | | | | | | | | 1,282 | 1,598 | 6 | 6 | 975 | | | | | | | | | Cylindrical bore Tapered bore taper 1:12 Cylindrical bore Tapered bore taper 1:12 *d* 100∼180mm | Boundary dimensions | | | | Basic load ratings dynamic static dynamic static | | | | Bearing numbers | | | | |---------------------|------------|----------|------------------|--|--------------|------------------|------------------|--------------------|----------------------|------------------|--------------------| | mm | | | kN | | | gf | type NNU | | type NN | | | | , | | D. | a | ~ | ~ | ~ | ~ | Cylindrical | tapered | Cylindrical | tapered | | d | D | В | $r_{\rm s min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore [●] | bore | bore [●] | | | 140 | 40 | 1.1 | 131 | 260 | 13,300 | 26,500 | NNU4920 | NNU4920K | NN4920 | NN4920K | | 100 | 150 | 37 | 1.5 | 153 | 256 | 15,600 | 26,100 | _ | _ | NN3020 | NN3020K | | | | 40 | | 400 | 222 | 10.500 | 07.400 | | | | | | 105 | 145
160 | 40
41 | 1.1
2 | 133
198 | 268
320 | 13,500
20,200 | 27,400
33,000 | NNU4921
_ | NNU4921K | NN4921
NN3021 | NN4921K
NN3021K | | | 100 | 41 | | 190 | 320 | 20,200 | 33,000 | | | 14145021 | MNOUZIK | | | 150 | 30 | 1.1 | 107 | 206 | 10,900 | 21,000 | _ | _ | NN3922 | _ | | 110 | 150 | 40 | 1.1 | 137 | 284 | 14,000 | 28,900 | NNU4922 | NNU4922K | NN4922 | NN4922K | | | 170 | 45 | 2 | 229 | 375 | 23,300 | 38,000 | NNU3022 | NNU3022K | NN3022 | NN3022K | | | 165 | 45 | 1.1 | 183 | 360 | 18,700 | 37,000 | NNU4924 | NNU4924K | NN4924 | NN4924K | | 120 | 180 | 46 | 2 | 233 | 390 | 23,700 | 40,000 | NNU3024 | _ | NN3024 | NN3024K | | | | | | | | | | | | | | | | 180 | 37 | 1.5
1.5 | 169 | 315 | 17,300 | 32,000 | - | | NN3926 | NN3926K | | 130 | 180
200 | 50
52 | 1.5
2 | 220
284 | 440
475 | 22,400
29,000 | 45,000
48,500 | NNU4926
NNU3026 | NNU4926K | NN4926
NN3026 | NN4926K
NN3026K | | | 210 | 64 | 2 | 340 | 560 | 35,000 | 57,000 | - ININU3020 | _ | NN3126 | ININGUZOK
— | | | 210 | 04 | ۷ | 340 | 300 | | 37,000 | | | 14145120 | | | | 190 | 37 | 1.5 | 175 | 335 | 17,800 | 34,000 | _ | _ | NN3928 | _ | | 140 | 190 | 50 | 1.5 | 227 | 470 | 23,100 | 48,000 | NNU4928 | NNU4928K | NN4928 | NN4928K | | | 210 | 53 | 2 | 298 | 515 | 30,500 | 52,500 | NNU3028 | _ | NN3028 | NN3028K | | | 210 | 45 | 2 | 256 | 475 | 26,100 | 48,500 | _ | _ | NN3930 | _ | | | 210 | 60 | 2 | 345 | 690 | 35,000 | 70,500 | NNU4930 | NNU4930K | NN4930 | NN4930K | | 150 | 225 | 56 | 2.1 | 335 | 585 | 34,000 | 60,000 | NNU3030 | _ | NN3030 | NN3030K | | | 225 | 75 | 2.1 | 435 | 825 | 44,500 | 84,000 | _ | _ | NN4030 | _ | | | 250 | 80 | 2.1 | 555 | 900 | 56,500 | 92,000 | NNU3130 | _ | _ | _ | | | 220 | 45 | 2 | 265 | 505 | 27,000 | 51,500 | _ | _ | NN3932 | NN3932K | | 160 | 220 | 60 | 2 | 355 | 740 | 36,500 | 75,500 | NNU4932 | NNU4932K | NN4932 | NN4932K | | 100 | 240 | 60 | 2.1 | 375 | 660 | 38,000 | 67,500 | _ | _ | NN3032 | NN3032K | | | 000 | 4.5 | 0 | 000 | 500 | 07.400 | 50.000 | | | NNIOOO | NINIO O ALC | | | 230
230 | 45
60 | 2 | 268 | 520 | 27,400 | 53,000 | NNU4934 | NINII IAOO AK | NN3934 | NN3934K | | 170 | 260 | 60
67 | 2
2.1 | 360
440 | 765
775 | 37,000
45,000 | 78,000
79,000 | NNU3034 | NNU4934K
NNU3034K | NN4934
NN3034 | NN4934K
NN3034K | | | 280 | 67
88 | 2.1 | 635 | 775
1,050 | 45,000
65,000 | 107,000 | NNU3034
NNU3134 | - NNU3U34K | NN3134 | ININOUS4K | | | 200 | 00 | ۷.۱ | | 1,000 | | 107,000 | 111100107 | | 11110104 | | | 180 | 250 | 52 | 2 | 340 | 665 | 35,000 | 67,500 | _ | _ | NN3936 | NN3936K | | 100 | 250 | 69 | 2 | 460 | 965 | 46,500 | 98,500 | NNU4936 | NNU4936K | NN4936 | NN4936K | Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$ static Por = Fr Type NN Type NNU | Dimens | | Abutment a | | · · · · · / | | | |------------|------------|-----------------|--|-------------|------------------|------------------| | mr | n | $d_{ m a}$ | $egin{array}{c} m{mm} \ D_{f a} \end{array}$ | $r_{ m as}$ | kį | 7 | | | | $\alpha_{ m a}$ | $D_{\rm a}$ | / as | type NNU | type NN | | $F_{ m w}$ | $E_{ m w}$ | min | max | max | Cylindrical bore | Cylindrical bore | | | | | | | | | | 113 | 129 | 106.5 | 133.5 | 1 | 1.83 | 1.75 | | - TIO | 137 | 108.3 | - | 1.5 | _ | 2.26 | | | 107 | 100 | | 1.0 | | 2.20 | | 118 | 134 | 111.5 | 138.5 | 1 | 1.91 | 1.82 | | _ | 146 | 114 | _ | 2 | _ | 2.89 | | | | | | | | | | _ | 139 | 116.5 | _ | 1 | _ | 1.54 | | 123 | 139 | 116.5 | 143.5 | 1 | 1.99 | 1.9 | | 127 | 155 | 119 | 161 | 2 | 3.87 | 3.69 | | | | | | | | | | 134.5 | 154.5 | 126.5 | 158.5 | 1 | 2.75 | 2.63 | | 137 | 165 | 129 | 171 | 2 | 4.24 | 3.98 | | _ | 168 | 138 | _ | 1.5 | _ | _ | | 146 | 168 | 138 | 172 | 1.5 | 3.69 | 3.52 | | 150 | 182 | 139 | 191 | 2 | 6.15 | 5.92 | | _ | 189 | 139 | _ | 2 | _ | 8.59 | | | | | | | | | | _ | 178 | 148 | _ | 1.5 | _ | 3.01 | | 156 | 178 | 148 | 182 | 1.5 | 3.94 | 3.76 | | 160 | 192 | 149 | 201 | 2 | 6.64 | 6.44 | | | 196.5 | 159 | _ | 2 | _ | 4.79 | | 168.5 | 196.5 | 159 | 201 | 2 | 6.18 | 5.9 | | 172 | 206 | 161 | 214 | 2 | 8.06 | 7.81 | | _ | 206 | 161 | _ | 2 | - | 10.4 | | 177 | _ | 161 | 239 | 2 | 16.4 | — | | 177 | | 101 | 200 | | 10.4 | | | _ | 206.5 | 169 | _ | 2 | _ | 5.06 | | 178.5 | 206.5 | 169 | 211 | 2 | 6.53 | 6.24 | | _ | 219 | 171 | _ | 2 | _ | 8.92 | | | | | | | | | | _ | 216.5 | 179 | _ | 2 | _ | 5.33 | | 188.5 | 216.5 | 179 | 221 | 2 | 6.87 | 6.56 | | 196 | 236 | 181 | 249 | 2 | 13.3 | 12.6 | | 201 | 253 | 181 | 269 | 2 | 22.3 | 21.5 | | _ | 234 | 189 | _ | 2 | _ | 7.72 | | 202 | 234
234 | 189 | 241 | 2 | 9.9 | 7.72
9.45 | | 202 | ۷۵4 | 103 | ∠ + I | ۷ | ਹ.ਹ | 3.40 | Tapered bore taper 1:12 Cylindrical bore Tapered bore taper 1:12 Cylindrical bore *d* 180∼320mm | Boundary dimensions | | | | Basic load ratings dynamic static dynamic | | | static | Bearing numbers | | | | | |---------------------|-----|-----|---------------|---|-------------|------------|-------------|-----------------|---------------------------|----------------|-------------------|--| | mm | | | kN | | kgf | | type NNU | | type NN | | | | | | | | |
 | | | Cylindrical | tapered | Cylindrical | tapered | | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore [●] | bore | bore [●] | | | 180 | 280 | 74 | 2.1 | 565 | 995 | 57,500 | 102,000 | NNU3036 | - | NN3036 | NN3036K | | | | 260 | 52 | 2 | 355 | 705 | 36,000 | 72,000 | _ | _ | NN3938 | _ | | | 190 | 260 | 69 | 2 | 475 | 1,030 | 48,500 | 105,000 | NNU4938 | NNU4938K | NN4938 | NN4938K | | | | 290 | 75 | 2.1 | 580 | 1,040 | 59,000 | 106,000 | NNU3038 | _ | NN3038 | NN3038K | | | | 280 | 60 | 2.1 | 445 | 890 | 45,500 | 91,000 | _ | _ | NN3940 | _ | | | | 280 | 80 | 2.1 | 555 | 1,180 | 56,500 | 120,000 | NNU4940 | NNU4940K | NN4940 | NN4940K | | | 200 | 310 | 82 | 2.1 | 655 | 1,170 | 66,500 | 119,000 | NNU3040 | _ | NN3040 | NN3040K | | | | 310 | 109 | 2.1 | 890 | 1,730 | 90,500 | 177,000 | _ | _ | NN4040 | _ | | | | 340 | 112 | 3 | 970 | 1,660 | 99,000 | 169,000 | _ | _ | NN3140 | _ | | | | 300 | 60 | 2.1 | 470 | 975 | 48,000 | 99,500 | _ | _ | NN3944 | NN3944K | | | 000 | 300 | 80 | 2.1 | 585 | 1,300 | 59,500 | 132,000 | NNU4944 | NNU4944K | NN4944 | NN4944K | | | 220 | 340 | 90 | 3 | 815 | 1,480 | 83,000 | 151,000 | NNU3044 | _ | NN3044 | NN3044K | | | | 370 | 120 | 4 | 1,080 | 1,890 | 111,000 | 193,000 | NNU3144 | _ | NN3144 | _ | | | | 320 | 60 | 2.1 | 490 | 1,060 | 50,000 | 109,000 | NNU3948 | _ | NN3948 | NN3948K | | | 240 | 320 | 80 | 2.1 | 610 | 1,410 | 62,500 | 144,000 | NNU4948 | NNU4948K | NN4948 | NN4948K | | | 240 | 360 | 92 | 3 | 855 | 1,600 | 87,000 | 163,000 | NNU3048 | _ | NN3048 | NN3048K | | | | 400 | 128 | 4 | 1,250 | 2,230 | 127,000 | 228,000 | _ | _ | NN3148 | _ | | | | 360 | 75 | 2.1 | 660 | 1,390 | 67,000 | 141,000 | _ | _ | NN3952 | NN3952K | | | 000 | 360 | 100 | 2.1 | 900 | 2,070 | 92,000 | 211,000 | NNU4952 | NNU4952K | NN4952 | NN4952K | | | 260 | 400 | 104 | 4 | 1,060 | 1,990 | 108,000 | 203,000 | _ | _ | NN3052 | NN3052K | | | | 400 | 140 | 4 | 1,500 | 3,100 | 153,000 | 315,000 | NNU4052 | _ | NN4052 | _ | | | | 350 | 52 | 2 | 320 | 765 | 32,500 | 78,000 | NNU3856 | _ | _ | _ | | | | 350 | 69 | 2 | 505 | 1,300 | 51,000 | 132,000 | NNU4856 | NNU4856K | _ | _ | | | 280 | 380 | 75 | 2.1 | 690 | 1,510 | 70,500 | 154,000 | _ | _ | NN3956 | NN3956K | | | | 380 | 100 | 2.1 | 925 | 2,200 | 94,500 | 224,000 | NNU4956 | NNU4956K | NN4956 | NN4956K | | | | 420 | 106 | 4 | 1,080 | 2,080 | 110,000 | 212,000 | _ | _ | NN3056 | NN3056K | | | | 420 | 90 | 3 | 945 | 2,050 | 96,000 | 209,000 | _ | _ | NN3960 | NN3960K | | | 200 | 420 | 118 | 3 | 1,200 | 2,800 | 122,000 | 285,000 | NNU4960 | NNU4960K | NN4960 | NN4960K | | | 300 | 460 | 118 | 4 | 1,330 | 2,560 | 135,000 | 261,000 | NNU3060 | _ | NN3060 | NN3060K | | | | 460 | 160 | 4 | 1,890 | 4,050 | 193,000 | 410,000 | _ | - | NN4060 | _ | | | 320 | 400 | 80 | 2.1 | 610 | 1,600 | 62,500 | 163,000 | NNU4864 | _ | _ | _ | | | 32U
0 | | | | | , | , | * | | —
e dimension for char | mfer dimension | r. | | Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$ static $P_{\rm or}{=}F_{\rm r}$ Type NN Type NNU | Dimens | sions | Abutment a | ınd fillet di | s Mass | Mass (approx.) | | | | |------------|------------|------------|---------------|-------------|----------------|-------------|--|--| | mm | | | mm | | k | kg | | | | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | type NNU | type NN | | | | | | | | | Cylindrical | Cylindrical | | | | $F_{ m w}$ | $E_{ m w}$ | min | max | max | bore | bore | | | | | | | | | | | | | | 209 | 255 | 191 | 269 | 2 | 17.4 | 16.6 | | | | | 044 | 100 | | | | 0.00 | | | | _ | 244 | 199 | _ | 2 | _ | 8.08 | | | | 212 | 244 | 199 | 251 | 2 | 10.4 | 9.93 | | | | 219 | 265 | 201 | 279 | 2 | 18.4 | 18 | | | | _ | 261 | 211 | _ | 2 | _ | 11.4 | | | | 00F | | | 060 | | 117 | 14 | | | | 225 | 261 | 211 | 269 | 2 | 14.7 | | | | | 232 | 282 | 211 | 299 | 2 | 23.5 | 21.6 | | | | _ | 282 | 211 | _ | 2 | _ | 30.2 | | | | _ | 304 | 213 | _ | 2.5 | _ | 41.8 | | | | _ | 281 | 231 | _ | 2 | _ | 12.3 | | | | 245 | 281 | | 200 | 2 | 15.0 | | | | | | _ | 231 | 289 | | 15.9 | 15.2 | | | | 254 | 310 | 233 | 327 | 2.5 | 31.0 | 29.3 | | | | 263.5 | 331.5 | 236 | 354 | 3 | 54.4 | 52.4 | | | | 265 | 301 | 251 | 309 | 2 | 13.8 | 13.3 | | | | 265 | 301 | 251 | 309 | 2 | 17.2 | 16.4 | | | | | | | | | | _ | | | | 274 | 330 | 253 | 347 | 2.5 | 33.9 | 32.8 | | | | _ | 361 | 256 | _ | 3 | _ | 64.7 | | | | _ | 336 | 271 | _ | 2 | _ | 22.9 | | | | 292 | 336 | 271 | 349 | 2 | 29.6 | 28.3 | | | | | 364 | 276 | _ | 3 | | 47.4 | | | | 200 | | | 204 | | 66.0 | | | | | 298 | 362 | 276 | 384 | 3 | 66.2 | 63.8 | | | | 301 | _ | 289 | 341 | 2 | 11.7 | _ | | | | 301 | _ | 289 | 341 | 2 | 15.6 | _ | | | | _ | 356 | 291 | _ | 2 | _ | 24.4 | | | | 312 | 356 | 291 | 369 | 2 | 31.6 | 30.2 | | | | 012 | | | 503 | | 51.0 | | | | | | 384 | 296 | | 3 | | 51.1 | | | | _ | 391 | 313 | _ | 2.5 | _ | 38.4 | | | | 339 | 391 | 313 | 407 | 2.5 | 48.6 | 46.4 | | | | 346 | 418 | 316 | 444 | 3 | 73.4 | 70.8 | | | | - 418 | | 316 | _ | 3 | _ | 96 | | | | | | | | | | | | | Type NNU Tapered bore taper 1:12 Cylindrical bore Tapered bore taper 1:12 Cylindrical bore *d* 320∼500mm | Bou | ındary c | dimensi | ions | dynamic | | ad ratings
dynamic | static | Bearing numbers | | | | |-----|----------|---------|----------------|------------|-------------|-----------------------|-------------|-----------------|----------------------|-------------|-------------------| | | mn | า | | • | :N | ko | | type | NNU | type | NN | | | | | | | | | , | Cylindrical | tapered | Cylindrical | tapered | | d | D | B | $r_{\rm smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore ⁰ | bore | bore ⁰ | | | | | | | | | | | | | | | | 440 | 90 | 3 | 975 | 2,180 | 99,000 | 222,000 | _ | _ | NN3964 | NN3964K | | 220 | 440 | 118 | 3 | 1,240 | 2,970 | 126,000 | 305,000 | NNU4964 | NNU4964K | NN4964 | NN4964K | | 320 | 480 | 121 | 4 | 1,350 | 2,670 | 138,000 | 272,000 | NNU3064 | _ | NN3064 | NN3064K | | | 540 | 176 | 5 | 2,160 | 3,950 | 220,000 | 400,000 | NNU3164 | _ | _ | _ | | | 460 | 118 | 3 | 1,280 | 3,150 | 131,000 | 320,000 | NNU4968 | NNU4968K | NN4968 | NN4968K | | 340 | 520 | 133 | 5 | 1,620 | 3,200 | 165,000 | 325,000 | NNU3068 | _ | NN3068 | NN3068K | | | 400 | 00 | 0 | 1 000 | 0.400 | 105.000 | 040,000 | | | NN10070 | | | | 480 | 90 | 3 | 1,030 | 2,430 | 105,000 | 248,000 | | - NINILIAOZOK | NN3972 | _ | | 360 | 480 | 118 | 3
5 | 1,290 | 3,250 | 131,000 | 330,000 | NNU4972 | NNU4972K | - NINIOOZO | - NINIOOTOM | | | 540 | 134 | | 1,650 | 3,300 | 169,000 | 340,000 | NNU3072 | _ | NN3072 | NN3072K | | | 540 | 180 | 5 | 2,470 | 5,550 | 252,000 | 570,000 | NNU4072 | | | | | 000 | 520 | 140 | 4 | 1,630 | 4,050 | 167,000 | 415,000 | NNU4976 | NNU4976K | _ | _ | | 380 | 560 | 135 | 5 | 1,690 | 3,450 | 172,000 | 355,000 | NNU3076 | _ | NN3076 | NN3076K | | | 500 | 100 | 2.1 | 1,070 | 2,950 | 109,000 | 300,000 | NNU4880 | _ | _ | _ | | 400 | 540 | 140 | 4 | 1,690 | 4,300 | 172,000 | 435,000 | NNU4980 | NNU4980K | _ | _ | | 400 | 600 | 148 | 5 | 2,040 | 4,150 | 208,000 | 420,000 | _ | — | NN3080 | NN3080K | | | 000 | | | 2,010 | ., | | 120,000 | | | | | | | 560 | 106 | 4 | 1,370 | 3,350 | 140,000 | 340,000 | _ | _ | NN3984 | _ | | 420 | 560 | 140 | 4 | 1,740 | 4,500 | 177,000 | 460,000 | NNU4984 | NNU4984K | _ | _ | | 420 | 620 | 150 | 5 | 2,080 | 4,300 | 212,000 | 440,000 | _ | _ | NN3084 | NN3084K | | | 700 | 224 | 6 | 3,400 | 6,400 | 345,000 | 650,000 | NNU3184 | _ | _ | _ | | | 600 | 160 | 4 | 2,150 | 5,550 | 219,000 | 565,000 | NNU4988 | NNU4988K | _ | _ | | 440 | 650 | 157 | 6 | 2,420 | 5,100 | 247,000 | 520,000 | NNU3088 | _ | NN3088 | NN3088K | | 110 | 650 | 212 | 6 | 3,250 | 7,750 | 330,000 | 790,000 | NNU4088 | _ | - | _ | | | 000 | 100 | 4 | 0.000 | F 050 | 000 000 | F0F 000 | NAULIAGOS | NINII 400017 | | | | 460 | 620 | 160 | 4 | 2,220 | 5,850 | 226,000 | 595,000 | NNU4992 | NNU4992K | - | - | | | 680 | 163 | 6 | 2,550 | 5,350 | 260,000 | 545,000 | _ | | NN3092 | NN3092K | | | 600 | 90 | 3 | 1,010 | 2,570 | 103,000 | 262,000 | - | _ | NN3896 | _ | | 480 | 650 | 170 | 5 | 2,280 | 5,900 | 233,000 | 600,000 | NNU4996 | NNU4996K | _ | _ | | | 790 | 248 | 7.5 | 4,100 | 8,100 | 420,000 | 825,000 | _ | _ | NN3196 | _ | | | 620 | 90 | 3 | 1,140 | 2,880 | 116,000 | 293,000 | NNU38/500 | _ | _ | _ | | 500 | 670 | 170 | 5 | 2,360 | 6,200 | 240,000 | 635,000 | NNU49/500 | NNU49/500K | _ | _ | | | 720 | 167 | 6 | 2,650 | 5,750 | 270,000 | 590,000 | —
— | | NN30/500 | _ | | Α | | | | | | | | | e dimension for char | | | Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$ static Por=Fr | Type | ΝN | |------|----| |------|----| Type NNU | Dimen | sions | Abutment a | nd fillet di | ns Mass | Mass (approx.) | | | |------------|------------|------------|--------------|-------------|-----------------------|----------------------|--| | mr | | Abatilloit | mm | | is iviass (| | | | 1111 | 11 | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | type NNU Cylindrical | type NN Cylindrical | | | $F_{ m w}$ | $E_{ m w}$ | min | max | max | bore | bore | | | | | | | | | | | | _ | 411 | 333 | _ | 2.5 | _ | 40.5 | | | 359 | 411 | 333 | 427 | 2.5 | 51.4 | 49 | | | 366 | 438 | 336 | 464 | 3 | 79.3 | 76.2 | | | 383 | _ | 340 | 520 | 4 | 170 | _ | | | 379 | 431 | 353 | 447 | 2.5 | 54.2 | 52.2 | | | 393 | 473 | 360 | 500 | 4 | 105 | 102 | | | | | | | | | | | | _ | 451 | 373 | _ | 2.5 | _ | 44.8 | | | 398 | _ | 373 | 467 | 2.5 | 57 | _ | | | 413 | 493 | 380 | 520 | 4 | 111 | 107 | | | 415 | _ | 380 | 520 | 4 | 136 | _ | | | 425 | _ | 396 | 504 | 3 | 84.5 | _ | | | 432 | 512 | 400 | 540 | 4 | 117 | 113 | | | 430.5 | _ | 411 | 489 | 2 | 46.1 | | | | 445 | _ | 416 | 524 | 3 | 88.2 | _ | | | _ | 547 | 420 | _ | 4 | - | 146 | | | | | | | _ | | | | | _ | 522 | 436 | _ | 3 | _ | 71.7 | | | 465 | _ | 436 | 544 | 3 | 92 | _ | | | _ | 567 | 440 | _ | 4 | _ | 154 | | | 500 | _ | 444 | 676 | 5 | 359 | _ | | | 492 | _ | 456 | 584 | 3 | 127 | _ | | | 500 | 596 | 464 |
626 | 5 | 184 | 178 | | | 505 | _ | 464 | 626 | 5 | 248 | _ | | | 512 | _ | 476 | 604 | 3 | 132 | _ | | | _ | 622 | 484 | — | 5 | _ | 202 | | | | 022 | +0+ | | J | | 202 | | | _ | 566 | 493 | _ | 2.5 | _ | 57.5 | | | 534 | _ | 500 | 630 | 4 | 156 | _ | | | _ | 710 | 512 | _ | 6 | _ | 482 | | | 532 | _ | 513 | 607 | 2.5 | 61.9 | _ | | | | _ | 520 | 650 | 4 | 162 | _ | | | 556 | | 320 | 000 | | 102 | | | *d* 530∼950mm | Bou | ındary di | imensi | ons | dynamic | | ad ratings
dynamic | static | | Bearing n | umbers | | |-----|--------------|------------|--------------------|----------------|-----------------|-----------------------|----------------------|------------------------|------------------------------|---------------------|------------------------------| | | mm | | | | kN | | gf | type | | type | | | d | D | В | $\gamma_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | Cylindrical
bore | tapered
bore [●] | Cylindrical
bore | tapered
bore [●] | | | | | | | | | | | | | | | 530 | 650
710 | 90
180 | 3
5 | 1,060
2,740 | 2,840
7,150 | 108,000
279,000 | 289,000
730,000 | NNU49/530 |
NNU49/530K | NN38/530
— | _ | | | | | | • | | | . 55,555 | | | | | | ECO | 680
750 | 90
190 | 3
5 | 1,060 | 2,960
8,450 | 108,000
325,000 | 300,000
860,000 | —
NNI 140/560 | - NNII IAO/EGOV | NN38/560 | _ | | 560 | 750
820 | 195 | 5
6 | 3,150
3,550 | 7,700 | 365,000 | 785,000 | NNU49/560
NNU30/560 | NNU49/560K | NN49/560
— | _ | | | | | | | | | | | | | | | 600 | 730 | 128 | 3 | 1,840 | 5,400 | 188,000 | 550,000 | NNU48/600 | _ | - | _ | | | 870 | 200 | 6 | 3,700 | 8,250 | 375,000 | 845,000 | | | NN30/600 | _ | | 620 | 780 | 150 | 4 | 2,200 | 6,200 | 224,000 | 630,000 | NNU48/630 | _ | _ | _ | | 630 | 850 | 165 | 6 | 5,750 | 5,300 | 585,000 | 1,560,000 | NNU39/630 | _ | _ | _ | | | 920 | 128 | 5 | 2,340 | 6,450 | 238,000 | 660,000 | NNU38/750 | _ | _ | _ | | 750 | 1,000 | 250 | 6 | 4,850 | 3,200 | 495,000 | 1,340,000 | NNU49/750 | _ | _ | _ | | | 000 | 400 | | 0.400 | 0.700 | 0.40.000 | 000 000 | NNU 100/000 | | | | | 800 | 980
1,060 | 136
195 | 5
6 | 2,430
3,900 | 6,700
10,200 | 248,000
400,000 | 680,000
1,040,000 | NNU38/800
NNU39/800 | _
_ | | | | | | .00 | | | | • | | 11110007000 | | | | | 950 | 1,250 | 300 | 7.5 | 7,150 | 1,200 | 730,000 | 2,160,000 | _ | _ | NN49/950 | _ | Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$ static $P_{\rm or}{=}F_{\rm r}$ Type NN Type NNU | | nsions
nm | Abutment | Abutment and fillet dimensions Mass k | | | | | | | |------------|--------------|------------|---------------------------------------|--------------|------------------|------------------|--|--|--| | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | type NNU | type NN | | | | | $F_{ m w}$ | $E_{ m w}$ | min | max | max | Cylindrical bore | Cylindrical bore | | | | | | | | | | | | | | | | _ | 616 | 543 | _ | 2.5 | _ | 62.9 | | | | | 588 | _ | 550 | 690 | 4 | 206 | _ | | | | | _ | 647 | 573 | _ | 2.5 | _ | 66.1 | | | | | 618 | 702 | 580 | 730 | 4 | 242 | 233 | | | | | 634 | _ | 584 | 796 | 5 | 358 | _ | | | | | 635 | _ | 613 | 717 | 2.5 | 113 | _ | | | | | _ | 800 | 624 | _ | 5 | _ | 392 | | | | | 673 | _ | 646 | 764 | 3 | 162 | _ | | | | | 684 | _ | 654 | 826 | 5 | 275 | _ | | | | | 798 | _ | 770 | 900 | 4 | 186 | _ | | | | | 824 | _ | 774 | 976 | 5 | 560 | _ | | | | | 852 | _ | 820 | 960 | 4 | 223 | _ | | | | | 878 | _ | 824 | 1,036 | 5 | 483 | _ | | | | | _ | - 1,176 | | _ | 6 | _ | 977 | | | | ### **d** 100∼170mm | | | Bounda | ry dimens | sions | | dynamic | Basic
static | load ratings
dynamic | static | Bearing [®]
numbers | Drawing [®]
No. | |-------|--|--|--|--|---|--|--|--|--|--|---| | | | | mm | | | kN | | dynamic | kgf | numbers | NO. | | d | D | B_1 | C_1 | $r_{ m smin}$ | r _{ls min} ● | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 100 | 150 | 74 | 74 | 2 | 2 | 262 | 510 | 26,700 | 52,500 | 4R2035 | А | | 120 | 180
180 | 92
105 | 92
105 | 2.5
2.5 | 2.5
2.5 | 400
445 | 785
855 | 40,500 | 80,000 | 4R2437
4R2438 | A
A | | | | | | 2.5 | 2.5 | 445 | 000 | 45,500 | 87,000 | 402430 | | | 130 | 200 | 104 | 104 | 2.5 | 2.5 | 490 | 955 | 49,500 | 97,000 | 4R2628 | А | | 140 | 190
210 | 119
116 | 119
116 | 1.5
2.5 | 1.5
2.5 | 495
510 | 1,190
1,030 | 50,500
52,000 | 121,000
105,000 | 4R2832
4R2823 | B ²⁾
A | | 145 | 210
225 | 155
156 | 155
156 | 2.5
2.5 | 2.5
2.5 | 705
810 | 1,640
1,750 | 71,500
82,500 | 168,000
178,000 | 4R2906
4R2904 | A
A | | 150 | 220
220
220
230
230
230
250 | 127
150
150
130
156
168
150 | 120
150
150
130
156
168
150 | 2.5
2.5
2.5
2.5
2.5
2.5
2 | 2.5
2.5
2.5
2.5
2.5
2.5
2 | 615
750
750
725
930
845
885 | 1,280
1,640
1,640
1,520
2,040
1,950
1,640 | 63,000
76,500
76,500
73,500
95,000
86,000
90,500 | 130,000
168,000
168,000
155,000
208,000
199,000
167,000 | 4R3036
4R3031
4R3056
4R3029
4R3040
4R3042
4R3039 | A
A
A
A
A | | 151.5 | 230 | 168 | 168 | 1.5 | 2.5 | 850 | 2,060 | 87,000 | 210,000 | 4R3033K | А | | 160 | 220
230
230
230
230
230
240 | 180
130
168
168
168
180
170 | 180
130
168
168
168
180
170 | 2.5
2.5
2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | 920
665
915
895
895
920
980 | 2,490
1,340
2,170
2,200
2,210
2,490
2,290 | 93,500
68,000
93,500
91,500
91,000
93,500
100,000 | 254,000
136,000
222,000
225,000
225,000
254,000
234,000 | 4R3224
4R3226
4R3232
4R3229
4R3231
4R3228
4R3225 | D ³⁾ A A A A D ³⁾ | | 170 | 230
230
240
240
250
250
255
260 | 120
120
156
160
168
168
180
150 | 120
120
156
160
168
168
180
150 | 2.5
2
2.5
2.5
2.5
2.5
2.5
2.5 | 2.5
2
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | 620
620
905
905
970
1,030
1,100
835 | 1,520
1,520
2,170
2,180
2,220
2,390
2,430
1,750 | 63,000
63,000
92,500
92,000
99,000
105,000
112,000
85,000 | 155,000
155,000
222,000
222,000
226,000
243,000
247,000
179,000 | 4R3426
4R3443
4R3429
4R3423
4R3432
4R3428
4R3425
4R3433 | A
C
A
A
A
A | [&]quot;K" indicates bearings have tapered bore with a taper ratio of 1: 12. Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or n. | A | Abutment a | nd fillet din | nensions | | Mass | |------------|------------|---------------|-------------|--------------|--------------| | | | mm | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | | $F_{ m w}$ | min | max | max | max | (approx.) | | | | | | | | | 115 | 109 | 141 | 2.0 | 2.0 | 4.68 | | 107 | 131 | 160 | 2 | 2 | 0.0 | | 137
135 | 131 | 169
169 | 2
2 | 2
2 | 8.2
9.3 | | 100 | 101 | 109 | ۷ | | 9.0 | | 150 | 141 | 189 | 2 | 2 | 12.1 | | 154 | 148 | 182 | 1.5 | 1.5 | 9.93 | | 160 | 151 | 199 | 2 | 2 | 13.9 | | | | | | | | | 166 | 156 | 199 | 2 | 2 | 18 | | 169 | 156 | 214 | 2 | 2 | 23.3 | | 168 | 161 | 209 | 2 | 2 | 15.7 | | 168 | 161 | 209 | 2 | 2 | 19.4 | | 168 | 161 | 209 | 2 | 2 | 19.6 | | 174 | 161 | 219 | 2 | 2 | 20 | | 174 | 161 | 219 | 2 | 2 | 24.5 | | 178 | 159 | 221 | 2 | 2 | 25.8 | | 177 | 161 | 239 | 2 | 2 | 29.6 | | 179 | 159.5 | 219 | 1.5 | 2 | 25.4 | | | | | | | | | 177 | 171 | 209 | 2 | 2 | 20.2 | | 180 | 171 | 219 | 2 | 2 | 16.6 | | 179 | 171 | 219 | 2 | 2 | 23.4 | | 180 | 171 | 219 | 2 | 2 | 23.2 | | 182 | 171 | 219 | 2 | 2 | 23.2 | | 177
183 | 171
169 | 219 | 2
2 | 2
2 | 24.8
27.8 | | 103 | 109 | 229 | 2 | | 27.0 | | 187 | 181 | 219 | 2 | 2 | 14.2 | | 187 | 179 | 221 | 2 | 2 | 14.6 | | 189 | 181 | 229 | 2 | 2 | 22.2 | | 190 | 181 | 229 | 2 | 2 | 22.8 | | 193 | 181 | 239 | 2 | 2 | 28.2 | | 193 | 181 | 239 | 2 | 2 | 28.5 | | 193 | 181 | 244 | 2 | 2 | 19.3 | | 192 | 181 | 249 | 2 | 2 | 29.5 | | | | | | | | #### *d* 170∼230mm | | | Bounda | ry dimens | sions | | dynamic | Basic lo
static | ad ratings
dynamic | static | Bearing [®] numbers | Drawing [©]
No. | |-----|---|---|---|--|--
--|--|---|--|--|---| | | | | mm | | | kľ | | kį | | | | | d | D | B_1 | C_1 | $r_{ m smin}$ | $r_{ m ls\ min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 170 | 260 | 225 | 225 | 2.5 | 2.5 | 1,310 | 3,150 | 134,000 | 320,000 | 4R3431 | А | | 180 | 250
250
260
265 | 156
168
168
180 | 156
168
168
180 | 2.5
2
2.5
2.5 | 2.5
2
2.5
2.5 | 895
885
1,020
1,090 | 2,180
2,470
2,400
2,510 | 91,500
90,000
104,000
111,000 | 223,000
252,000
244,000
256,000 | 4R3625
4R3639
4R3628
4R3618 | A
A
A | | 190 | 260
270
270
270
270
280
280 | 168
170
200
200
200
200 | 168
170
200
200
200
200 | 2.5
2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5
2.5 | 980
1,090
1,260
1,230
1,240
1,240 | 2,600
2,660
3,100
3,200
2,910
2,910 | 100,000
111,000
128,000
125,000
126,000
126,000 | 265,000
272,000
315,000
330,000
297,000
297,000 | 4R3820
4R3818
4R3821
4R3817
4R3823
4R3830 | A
A
A
B
C | | 200 | 270
280
280
280
280
280
280
290 | 170
152
170
190
200
200
192 | 170
152
170
190
200
200
192 | 2.5
2.1
2.5
2.5
2.5
2.5
2.5 | 2.5
2.1
2.5
2.5
2.5
2.5
2.5 | 970
1,000
1,040
1,190
1,310
1,250
1,290 | 2,610
2,320
2,430
3,150
3,300
3,350
3,150 | 99,000
102,000
106,000
121,000
134,000
127,000
132,000 | 266,000
237,000
248,000
320,000
335,000
340,000
320,000 | 4R4039
4R4054
4R4048
4R4026
4R4037
4R4027
4R4041 | A
B ²⁾
A
A
A
A | | 210 | 290 | 192 | 192 | 2.5 | 2.5 | 1,230 | 3,350 | 126,000 | 340,000 | 4R4206 | А | | 220 | 290
300
300
310
310
310
310
310
320
320
320 | 192
160
160
192
192
204
215
225
225
160
210 | 192
160
160
192
192
204
215
225
225
160
210 | 2.5
2.5
2.1
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.1
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | 1,190
1,000
1,000
1,350
1,390
1,420
1,530
1,480
1,590
1,190
1,550
1,560 | 3,350
2,590
2,590
3,550
3,400
3,750
3,750
3,950
3,950
2,550
3,650
3,600 | 122,000
102,000
102,000
138,000
141,000
156,000
151,000
162,000
121,000
158,000
159,000 | 340,000
264,000
360,000
350,000
385,000
380,000
405,000
400,000
260,000
370,000 | 4R4413
4R4419
4R4445
4R4410
4R4426
4R4425
4R4420
4R4416
4R4449
4R4428
4R4429
4R4444 | A
A
C
A
A
A
A
A
A | | 230 | 330
330 | 206
206 | 206
206 | 2.5
2.5 | 2.5
2.5 | 1,510
1,520 | 3,900
3,800 | 154,000
155,000 | 395,000
385,000 | 4R4610
4R4614 | A
A | ^{Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or r.} | ^ | hutment a | nd fillet din | nansions | | Mass | |------------|------------------|---------------|-------------|--------------|-----------| | _ | ibulinent a | na met am | ilensions | | IVIASS | | | | mm | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | | $F_{ m w}$ | min | max | max | max | (approx.) | | 400 | 404 | 0.40 | 0 | 0 | 4.4 | | 196 | 181 | 249 | 2 | 2 | 44 | | 200 | 191 | 239 | 2 | 2 | 23.2 | | 202 | 189 | 241 | 2 | 2 | 25.6 | | 202 | 191 | 249 | 2 | 2 | 29.4 | | 204 | 191 | 254 | 2 | 2 | 34.2 | | 212 | 201 | 249 | 2 | 2 | 26.9 | | 213 | 201 | 259 | 2 | 2 | 31.7 | | 212 | 201 | 259 | 2 | 2 | 37.5 | | 212 | 201 | 259 | 2 | 2 | 37.2 | | 214 | 201 | 269 | 2 | 2 | 41.5 | | 214 | 201 | 269 | 2 | 2 | 42.8 | | | | | | | 1-1- | | 222 | 211 | 259 | 2 | 2 | 28.5 | | 222 | 211 | 269 | 2 | 2 | 29.5 | | 222 | 211 | 269 | 2 | 2 | 33 | | 223 | 211 | 269 | 2 | 2 | 36.7 | | 222 | 211 | 269 | 2 | 2 | 40.5 | | 224 | 211 | 269 | 2 | 2 | 38.8 | | 226 | 211 | 279 | 2 | 2 | 42.5 | | 236 | 221 | 279 | 2 | 2 | 39.5 | | | | | | | | | 239 | 231 | 279 | 2 | 2 | 33.8 | | 245 | 231 | 289 | 2 | 2 | 32.8 | | 245 | 231 | 289 | 2 | 2 | 33.7 | | 247 | 231 | 299 | 2 | 2 | 46.3 | | 246 | 231 | 299 | 2 | 2 | 46.9 | | 247 | 231 | 299 | 2 | 2 | 49.8 | | 242 | 231 | 299 | 2 | 2 | 51.5 | | 245 | 231 | 299 | 2 | 2 | 54.9 | | 244 | 231 | 299 | 2 | 2 | 54.3 | | 245 | 233 | 307 | 2.5 | 2.5 | 46.5 | | 248 | 231 | 309 | 2 | 2 | 60.5 | | 246 | 231 | 309 | 2 | 2 | 57.3 | | 260 | 241 | 319 | 2 | 2 | 58.3 | | 258 | 241 | 319 | 2 | 2 | 58.6 | | 230 | ∠ † I | 019 | _ | _ | 50.0 | ### *d* 230∼300mm | | | Bounda | ry dimens | sions | | dynamic | Basic Id | oad ratings
dynamic | static | Bearing
numbers | Drawing [®]
No. | |-----|-----|--------|-----------|---------------|------------------|------------|-------------|------------------------|-------------|--------------------|-----------------------------| | | | | mm | | | kN | | • | gf | | | | d | D | B_1 | C_1 | $r_{ m smin}$ | $r_{ m ls\ min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 230 | 340 | 260 | 260 | 3 | 3 | 2,050 | 5,100 | 209,000 | 520,000 | 4R4611 | А | | | 330 | 220 | 220 | 3 | 3 | 1,490 | 4,150 | 152,000 | 420,000 | 4R4811 | С | | | 330 | 220 | 220 | 3 | 3 | 1,610 | 4,250 | 164,000 | 435,000 | 4R4819 | Α | | | 330 | 220 | 220 | 3 | 3 | 1,490 | 4,150 | 152,000 | 420,000 | 4R4821 | С | | 240 | 330 | 220 | 220 | 3 | 3 | 1,520 | 4,250 | 155,000 | 435,000 | 4R4804 | Α | | | 340 | 220 | 220 | 3 | 3 | 1,670 | 4,200 | 170,000 | 425,000 | 4R4806 | Α | | | 360 | 220 | 220 | 2.5 | 2.5 | 1,760 | 4,050 | 179,000 | 415,000 | 4R4807 | Α | | | 360 | 220 | 220 | 2.5 | 2.5 | 1,760 | 4,050 | 179,000 | 415,000 | 4R4813 | Α | | 250 | 350 | 220 | 220 | 3 | 3 | 1,730 | 4,300 | 176,000 | 440,000 | 4R5008 | А | | | 360 | 220 | 200 | 2.5 | 2.5 | 1,540 | 4,150 | 157,000 | 426,000 | 4R5221 | D | | | 360 | 260 | 260 | 2.5 | 2.1 | 1,830 | 4,850 | 187,000 | 495,000 | 4R5231 | C ¹⁾ | | 000 | 370 | 220 | 220 | 3 | 3 | 1,760 | 4,450 | 179,000 | 455,000 | 4R5208 | Α | | 260 | 370 | 220 | 220 | 3 | 3 | 1,760 | 4,450 | 179,000 | 455,000 | 4R5217 | A ¹⁾ | | | 380 | 280 | 280 | 3 | 3 | 2,420 | 6,250 | 247,000 | 635,000 | 4R5213 | Α | | | 400 | 290 | 290 | 4 | 2 | 3,050 | 7,150 | 315,000 | 730,000 | 4R5218 | E ⁴⁾ | | 265 | 370 | 234 | 234 | 1.5 | 1.5 | 2,020 | 5,000 | 206,000 | 510,000 | 4R5306 | A ¹⁾ | | 070 | 380 | 280 | 280 | 2.5 | 2.5 | 2,260 | 5,750 | 231,000 | 585,000 | 4R5407 | А | | 270 | 380 | 280 | 280 | 2.5 | 2.5 | 2,580 | 6,850 | 263,000 | 700,000 | 4R5405 | F ⁴⁾ | | | 350 | 208 | 208 | 2.5 | 2.5 | 1,290 | 3,950 | 132,000 | 405,000 | 4R5614 | А | | | 390 | 220 | 220 | 3 | 3 | 1,780 | 4,650 | 181,000 | 475,000 | 4R5611 | Α | | 280 | 390 | 220 | 220 | 3 | 3 | 1,820 | 4,800 | 186,000 | 490,000 | 4R5604 | Α | | | 390 | 275 | 275 | 2.5 | 2.5 | 2,290 | 6,250 | 233,000 | 635,000 | 4R5612 | D ₃₎ | | | 420 | 280 | 280 | 4 | 4 | 2,430 | 6,150 | 248,000 | 630,000 | 4R5605 | Α | | 200 | 410 | 240 | 240 | 3 | 3 | 2,240 | 5,550 | 228,000 | 565,000 | 4R5806 | А | | 290 | 420 | 300 | 300 | 3 | 3 | 2,830 | 7,500 | 288,000 | 765,000 | 4R5805 | Α | | | 400 | 300 | 300 | 3 | 3 | 2,480 | 7,500 | 253,000 | 765,000 | 4R6014 | А | | | 420 | 240 | 240 | 3 | 3 | 2,020 | 5,450 | 206,000 | 555,000 | 4R6017 | $A^{1)}$ | | 300 | 420 | 240 | 240 | 3 | 3 | 2,020 | 5,450 | 206,000 | 555,000 | 4R6012 | Α | | 300 | 420 | 240 | 240 | 3 | 3 | 2,010 | 5,450 | 205,000 | 555,000 | 4R6023 | A ¹⁾ | | | 420 | 240 | 240 | 3 | 3 | 2,280 | 5,750 | 233,000 | 585,000 | 4R6027 | Α | | | 420 | 300 | 300 | 3 | 3 | 2,990 | 8,150 | 305,000 | 835,000 | 4R6030 | F ¹⁾ | ^{Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or r.} | Al | butment a | nd fillet din | nensions | | Mass | |------------|------------|------------------|-------------|--------------|-----------| | | | mm | | | kg | | | $d_{ m a}$ | D_{a} | $r_{ m as}$ | $r_{ m las}$ | | | $F_{ m w}$ | min | max | max | max | (approx.) | | | | | | | | | 261 | 243 | 327 | 2.5 | 2.5 | 82.6 | | | | | | | | | 270 | 253 | 317 | 2.5 | 2.5 | 56.8 | | 264 | 253 | 317 | 2.5 | 2.5 | 57.1 | | 268 | 253 | 317 | 2.5 | 2.5 | 57.1 | | 270 | 253 | 317 | 2.5 | 2.5 | 57.1 | | 268 | 253 | 327 | 2.5 | 2.5 | 63.6 | | 274 | 251 | 349 | 2 | 2 | 79.6 | | 274 | 251 | 349 | 2 | 2 | 80.1 | | 278 | 263 | 337 | 2.5 | 2.5 | 66 | | 292 | 271 | 349 | 2 | 2 | 62.7 | | 287 | 271 | 349 | 2 | 2 | 81.5 | | 292 | 273 | 357 | 2.5 | 2.5 | 77.1 | | 292 | 273 | 357 | 2.5 | 2.5 | 76.5 | | 294 | 273 | 367 | 2.5 | 2.5 | 109 | | 296 | 276 | 391 | 3 | 2 | 135 | | 200 | 210 | 001 | <u> </u> | _ | 100 | | 300 | 273 | 362 | 1.5 | 1.5 | 78.9 | | 297 | 281 | 369 | 2 | 2 | 101 | | 299.7 | 281 | 369 | 2 | 2 | 105 | | | | | | | | | 298 | 291 | 339 | 2 | 2 | 46.4 | | 312 | 293 | 377 | 2.5 | 2.5 | 81.3 | | 312 | 293 | 377 | 2.5 | 2.5 | 82 | | 312 | 291 | 379 | 2 | 2 | 105 | | 323 | 296 | 404 | 3 | 3 | 139 | | 320 | 303 | 397 | 2.5 | 2.5 | 103 | | 327 | 303 | 407 | 2.5 | 2.5 | 141 | | <u></u> | | | | | | | 328 | 313 | 387 | 2.5 | 2.5 | 104 | | 334 | 313 | 407 | 2.5 | 2.5 | 106 | | 334 | 313 | 407 | 2.5 | 2.5 | 105 | | 336 | 313 | 407 | 2.5 | 2.5 | 105 | | 332 | 313 | 407 | 2.5 | 2.5 | 105 | |
331 | 313 | 407 | 2.5 | 2.5 | 136 | | | | | | | | ## **d** 300∼380mm | | | Bounda | ry dimens | sions | | | | ad ratings | | Bearing [●] | Drawing [®] | |--------|------------|--------|-----------|---------------|------------------|------------|-------------|--------------|---------------|----------------------|----------------------| | | | | mm | | | dynamic k | static
N | dynamic
เ | static
cgf | numbers | No. | | | | | | | | , | | ' | ·9i | | | | d | D | B_1 | C_1 | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | | | | | | | | | | | | _ | | | 420 | 300 | 300 | 3 | 3 | 2,720 | 7,600 | 278,000 | 775,000 | 4R6015 | A1) | | | 420 | 300 | 300 | 3 | 3 | 2,900 | 7,850 | 295,000 | 800,000 | 4R6020 | F ¹⁾ | | 300 | 420 | 320 | 300 | 3 | 3 | 2,900 | 7,850 | 295,000 | 800,000 | 4R6018 | F ²⁾ | | | 430 | 240 | 240 | 3 | 3 | 2,160 | 5,150 | 220,000 | 525,000 | 4R6021 | A | | | 460 | 270 | 270 | 3 | 3 | 2,510 | 5,350 | 256,000 | 545,000 | 4R6019 | Α | | 310 | 430 | 240 | 240 | 3 | 3 | 2,240 | 5,950 | 228,000 | 605,000 | 4R6202 | А | | | 440 | 240 | 230 | 3 | 3 | 2,290 | 6,050 | 234,000 | 615,000 | 4R6414 | Α | | | 450 | 240 | 240 | 3 | 3 | 2,370 | 6,150 | 242,000 | 630,000 | 4R6411 | Α | | 320 | 460 | 340 | 340 | 3 | 3 | 3,400 | 9,450 | 345,000 | 960,000 | 4R6412 | Α | | | 470 | 350 | 350 | 3 | 3 | 4,150 | 10,900 | 425,000 | 1,110,000 | 4R6406 | F ⁴⁾ | | | 440 | 200 | 000 | - | 0 | 1 000 | 4.050 | 100.000 | 405.000 | 4D0000 | - | | | 440 | 200 | 200 | 3 | 3 | 1,820 | 4,850 | 186,000 | 495,000 | 4R6603 | B
B ¹⁾ | | 330 | 440 | 200 | 200 | 5 | 3 | 1,720 | 4,550 | 176,000 | 465,000 | 4R6608 | _ | | | 460 | 340 | 340 | 4 | 4 | 3,250 | 8,850 | 330,000 | 905,000 | 4R6605 | A | | | 460 | 340 | 340 | 4 | 4 | 3,300 | 9,550 | 335,000 | 975,000 | 4R6602 | А | | | 480 | 350 | 350 | 4 | 4 | 3,950 | 10,900 | 400,000 | 1,110,000 | 4R6819 | FM ¹⁾ | | 340 | 480 | 370 | 350 | 5 | 5 | 3,450 | 9,650 | 350,000 | 985,000 | 4R6811 | Α | | 340 | 490 | 300 | 300 | 4 | 4 | 3,350 | 8,300 | 340,000 | 845,000 | 4R6804 | Α | | | 490 | 300 | 300 | 5 | 5 | 3,100 | 7,950 | 315,000 | 810,000 | 4R6805 | Α | | 356.76 | 550 | 400 | 400 | 4 | 4 | 5,100 | 13,800 | 520,000 | 1,410,000 | 4R7105K | E | | | 480 | 290 | 290 | 3 | 3 | 2,990 | 8,150 | 305,000 | 830,000 | 4R7207 | А | | 000 | 510 | 370 | 370 | 4 | 4 | 3,550 | 9,700 | 365,000 | 990,000 | 4R7212 | C | | 360 | 510 | 400 | 380 | 4 | 2 | 4,350 | 11,900 | 445,000 | 1,210,000 | 4R7205 | E ¹⁾ | | | 510 | 400 | 400 | 5 | 5 | 4,250 | 11,500 | 435,000 | 1,170,000 | 4R7203 | В | | | 480 | 230 | 230 | 5 | 5 | 2,100 | 6,250 | 214,000 | 635,000 | 4R7405 | А | | | 480 | 250 | 250 | 3 | 3 | 2,200 | 6,450 | 225,000 | 660,000 | 4R7408 | A | | 370 | 520 | 380 | 380 | 5 | 5 | 3,900 | 10,800 | 400,000 | 1,100,000 | 4R7411 | A | | | 520 | 400 | 400 | 5 | 5 | 4,650 | 13,500 | 475,000 | 1,370,000 | 4R7404 | A | | | 520 | 280 | 280 | 4 | 4 | 3,400 | 9,150 | 350,000 | 935,000 | 4R7605 | Α | | 000 | 520 | 290 | 290 | 4 | 4 | 3,400 | 9,150 | 350,000 | 935,000 | 4R7617 | A | | 380 | 520 | 300 | 300 | 4 | 4 | 3,550 | 9,600 | 360,000 | * | 4R7607 | G ¹⁾ | | | 520
540 | 400 | 400 | 4 | 4 | | | | 980,000 | 4R7607
4R7604 | $G^{2)}$ | | | 540 | | | - | 4 | 5,200 | 15,200 | 530,000 | 1,550,000 | 411/004 | G | [&]quot;K" indicates bearings have tapered bore with a taper ratio of 1: 12. Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or n. | Al | outment and | fillet di | mensions | | Mass | |------------|-------------|-------------|-------------|---------------|-----------| | | | mm | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{\rm las}$ | | | $F_{ m w}$ | min | max | max | max | (approx.) | | 334 | 313 | 407 | 2.5 | 2.5 | 125 | | 332 | 313 | 407 | 2.5 | 2.5 | 130 | | 332 | 313 | 407 | 2.5 | 2.5 | 136 | | 338 | 313 | 417 | 2.5 | 2.5 | 115 | | 344 | 313 | 447 | 2.5 | 2.5 | 162 | | 344.5 | 323 | 417 | 2.5 | 2.5 | 108 | | | | | | | | | 351 | 333 | 427 | 2.5 | 2.5 | 106 | | 358 | 333 | 437 | 2.5 | 2.5 | 125 | | 360 | 333 | 447 | 2.5 | 2.5 | 178 | | 361.7 | 333 | 457 | 2.5 | 2.5 | 212 | | 360 | 343 | 427 | 2.5 | 2.5 | 83.6 | | 360 | 350 | 427 | 4 | 2.5 | 85.6 | | 365 | 346 | 444 | 3 | 3 | 181 | | 368 | 346 | 444 | 3 | 3 | 177 | | 378 | 356 | 464 | 3 | 3 | 211 | | 378 | 360 | 460 | 4 | 4 | 198 | | 377 | 356 | 474 | 3 | 3 | 187 | | 380 | 360 | 470 | 4 | 4 | 189 | | 426 | 372.757 | 534 | 3 | 3 | 354 | | 388 | 373 | 467 | 2.5 | 2.5 | 148 | | 400 | 376 | 494 | 3 | 3 | 244 | | 399 | 376 | 509 | 3 | 2 | 251 | | 397 | 380 | 490 | 4 | 4 | 262 | | 400 | 390 | 460 | 4 | 4 | 106 | | 401 | 383 | 467 | 2.5 | 2.5 | 118 | | 409 | 390 | 500 | 4 | 4 | 256 | | 409 | 390 | 500 | 4 | 4 | 273 | | 417 | 396 | 504 | 3 | 3 | 174 | | 417 | 396 | 504 | 3 | 3 | 185 | | 416 | 396 | 504 | 3 | 3 | 210 | | 422 | 396 | 524 | 3 | 3 | 325 | | 122 | 000 | 027 | J | J | 020 | #### *d* 380∼500mm | | | Bounda | ry dimens | sions | | Basic load ratings dynamic static dynamic static | | | static | Bearing
numbers | Drawing [®]
No. | |-----|--|--|--|----------------------|---------------------------------|--|--|--|--|--|---| | | | | mm | | | • | N | kį | | | | | d | D | B_1 | C_1 | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 380 | 540
540 | 400
400 | 400
400 | 4
5 | 4
5 | 4,950
4,550 | 14,400
12,700 | 505,000
465,000 | 1,470,000
1,300,000 | 4R7618
4R7613 | FM ¹⁾
B ^{1) 3)} | | 400 | 560
560
590 | 400
410
420 | 400
410
420 | 5
4
4 | 5
4
4 | 4,250
5,750
5,150 | 11,800
17,000
13,000 | 430,000
585,000
525,000 | 1,210,000
1,730,000
1,330,000 | 4R8007
4R8010
4R8011 | B
F
A | | 420 | 560
580
600
620 | 280
230
440
400 | 280
230
440
400 | 4
4
6
5 | 4
4
2.5
5 | 3,150
2,430
6,350
5,000 | 8,750
6,250
18,100
13,400 | 320,000
248,000
650,000
510,000 | 895,000
635,000
1,850,000
1,360,000 | 4R8403
4R8404
4R8407
4R8401 | A
A
F ¹⁾
D ³⁾ | | 430 | 591 | 420 | 420 | 5 | 5 | 5,500 | 17,400 | 560,000 | 1,770,000 | 4R8605 | FM ^{1) 4)} | | 440 | 600
600
620
620 | 450
450
450
450 | 450
450
450
450 | 1.5
1.5
5
5 | 5
5
5
5 | 6,000
6,350
6,450
6,450 | 17,900
19,100
18,700
18,700 | 615,000
645,000
660,000
660,000 | 1,820,000
1,950,000
1,910,000
1,910,000 | 4R8806
4R8805
4R8803
4R8801 | FR ²⁾
FR ¹⁾
F ¹⁾ | | 460 | 620
620
620
650 | 400
400
460
470 | 400
400
460
470 | 4
4
4
5 | 4
4
4
5 | 5,350
4,950
5,950
7,150 | 16,700
15,000
19,100
20,600 | 545,000
505,000
605,000
730,000 | 1,700,000
1,530,000
1,950,000
2,100,000 | 4R9211
4R9209
4R9223
4R9216 | GS
A
FM ¹⁾
F ¹⁾ | | 470 | 660 | 470 | 470 | 5 | 5 | 7,300 | 21,300 | 745,000 | 2,170,000 | 4R9403 | FM ¹⁾ | | 480 | 600
650
650
680 | 236
420
420
500 | 236
420
420
500 | 3
5
5
6 | 3
5
5
6 | 2,620
5,700
5,950
7,950 | 7,850
17,200
18,100
24,000 | 267,000
585,000
605,000
810,000 | 805,000
1,750,000
1,840,000
2,450,000 | 4R9610
4R9613
4R9607
4R9604 | A
G ¹⁾
G
F | | 500 | 680
680
690
690
700
710
720
720 | 420
420
470
510
515
480
530
530 | 405
405
470
510
515
480
530
530 | 5 5 5 5 6 5 5 8 B | 5
5
5
5
6
5
5 | 7,100
6,300
7,650
7,750
7,900
8,650
8,250
8,250 | 22,900
18,800
22,500
24,600
24,100
24,700
25,000 | 725,000
640,000
780,000
790,000
805,000
880,000
840,000
840,000 | 2,340,000
1,920,000
2,290,000
2,500,000
2,450,000
2,520,000
2,550,000
2,550,000 | 4R10010
4R10020
4R10016
4R10006
4R10011
4R10008
4R10015
4R10024 | F ²⁾ F ²⁾ F ¹⁾ F F F ¹⁾ F ¹⁾ F ¹⁾ | ^{Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or r.} | A | butment a | nd fillet din | nensions | | Mass | |------------|------------|---------------|-------------|--------------|-----------| | | | mm | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | | $F_{ m w}$ | min | max | max | max | (approx.) | | | | | | | | | 422 | 396 | 524 | 3 | 3 | 309 | | 424 | 400 | 520 | 4 | 4 | 298 | | | | | | | | | 446 | 420 | 540 | 4 | 4 | 303 | | 445 | 416 | 544 | 3 | 3 | 349 | | 450 | 416 | 574 | 3 | 3 | 399 | | | | | | | | | 457 | 436 | 544 | 3 | 3 | 189 | | 466 | 436 | 564 | 3 | 3 | 181 | | 469.6 | 444 | 589 | 5 | 2 | 423 | | 478 | 440 | 600 | 4 | 4 | 410 | | | | | | | | | 476 | 450 | 571 | 4 | 4 | 362 | | 480 | 448 | 580 | 1.5 | 4 | 392 | | 480 | 448 | 580 | 1.5 | 4 | 392 | | 487 | 460 | 600 | 4 | 4 | 450 | | 487 | 460 | 600 | 4 | 4 | 437 | | | | | • | • | | | 502 | 476 | 604 | 3 | 3 | 383 | | 502 | 476 | 604 | 3 | 3 | 341 | | 502 | 476 | 604 | 3 | 3 | 417 | | 509 | 480 | 630 | 4 | 4 | 540 | | | | | | | | | 517 | 490 | 640 | 4 | 4 | 529 | | | 400 | F07 | 0.5 | 0.5 | 155 | | 510 | 493 | 587 | 2.5 | 2.5 | 155 | | 523 | 500 | 630 | 4 | 4 | 423 | | 523 | 500 | 630 | 4 | 4 | 369 | | 532
 504 | 656 | 5 | 5 | 640 | | 550 | 520 | 660 | 4 | 4 | 495 | | 550 | 520 | 660 | 4 | 4 | 451 | | 547 | 520 | 670 | 4 | 4 | 590 | | 552 | 520 | 670 | 4 | 4 | 640 | | 554 | 520 | 680 | 4 | 4 | 680 | | 556 | 524 | 686 | 5 | 5 | 675 | | 568 | 520 | 700 | 4 | 4 | 780 | | 568 | 520 | 700 | 4 | 4 | 745 | | | | | - | - | | ## d 510 \sim 680mm | | | Boundar | y dimensi
mm | ons | | dynamic
kN | Basic lo
static | oad ratings
dynamic
kg | static | Bearing
numbers | Drawing [®]
No. | |--------|--------|---------|-----------------|---------------|------------------|---------------|--------------------|------------------------------|-------------|--------------------|-----------------------------| | | | | 111111 | | | KIN | | ky | ı | | | | d | D | B_1 | C_1 | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 510 | 670 | 320 | 320 | 5 | 5 | 4,550 | 13,500 | 465,000 | 1,380,000 | 4R10201 | G ₁) | | 510 | 700 | 540 | 540 | 6 | 6 | 8,300 | 25,000 | 845,000 | 2,550,000 | 4R10202 | F ¹⁾ | | | 700 | 540 | 540 | 6 | 6 | 8,200 | 25,500 | 835,000 | 2,600,000 | 4R10403 | F ¹⁾ | | 520 | 720 | 550 | 550 | 5 | 5 | 9,400 | 27,700 | 960,000 | 2,820,000 | 4R10406 | FR ¹⁾ | | | 735 | 535 | 535 | 5 | 5 | 9,000 | 26,600 | 915,000 | 2,710,000 | 4R10402 | F ²⁾ | | | 700 | 540 | 540 | 6 | 6 | 7,850 | 25,400 | 800,000 | 2,590,000 | 4R10603 | F ¹⁾ | | 530 | 760 | 520 | 520 | 6 | 6 | 9,150 | 26,700 | 935,000 | 2,730,000 | 4R10601 | F ¹⁾ | | 550 | 780 | 570 | 570 | 6 | 6 | 10,300 | 29,100 | 1,050,000 | 2,970,000 | 4R10602 | F ¹⁾ | | | 780 | 570 | 570 | 7.5 | 6 | 10,300 | 29,100 | 1,050,000 | 2,970,000 | 4R10606 | FM ¹⁾ | | 536.18 | 762.03 | 558.8 | 558.8 | 5 | 6 | 10,100 | 29,200 | 1,030,000 | 2,980,000 | 4R10704 | F ²⁾ | | 550 | 800 | 520 | 520 | 6 | 6 | 9,450 | 27,000 | 965,000 | 2,750,000 | 4R11001 | F ¹⁾ | | 560 | 680 | 360 | 360 | 3 | 3 | 4,650 | 16,500 | 475,000 | 1,680,000 | 4R11202 | А | | | 800 | 514 | 514 | 2.5 | 6 | 10,200 | 29,200 | 1,040,000 | 2,970,000 | 4R11404 | FR ¹⁾ | | 570 | 815 | 594 | 594 | 6 | 6 | 11,800 | 34,500 | 1,200,000 | 3,500,000 | 4R11402 | F | | | 820 | 575 | 575 | 7.5 | 7.5 | 10,000 | 31,500 | 1,020,000 | 3,200,000 | 4R12006 | FM ¹⁾ | | 600 | 870 | 540 | 540 | 7.5 | 7.5 | 10,600 | 29,600 | 1,090,000 | 3,000,000 | 4R12002 | F ¹⁾ | | | 870 | 640 | 640 | 7.5 | 7.5 | 13,600 | 40,500 | 1,390,000 | 4,150,000 | 4R12001 | F | | 610 | 870 | 660 | 660 | 9.5 | 7.5 | 12,600 | 40,000 | 1,280,000 | 4,100,000 | 4R12202 | F ^{1) 4)} | | 628 | 922 | 600 | 600 | 3 | 6 | 13,600 | 38,500 | 1,390,000 | 3,900,000 | 4R12602 | F ¹⁾ | | 640 | 880 | 600 | 600 | 6 | 6 | 11,500 | 36,000 | 1,170,000 | 3,650,000 | 4R12802 | F ²⁾ | | | 920 | 670 | 670 | 7.5 | 4 | 14,600 | 46,000 | 1,490,000 | 4,700,000 | 4R13005 | F ¹⁾ | | 650 | 920 | 680 | 680 | 7.5 | 7.5 | 14,800 | 47,000 | 1,520,000 | 4,800,000 | 4R13010 | FR ¹⁾ | | | 920 | 690 | 690 | 7.5 | 7.5 | 14,300 | 46,500 | 1,460,000 | 4,750,000 | 4R13003 | F | | 660 | 820 | 440 | 440 | 5 | 4 | 7,300 | 27,800 | 745,000 | 2,840,000 | 4R13201 | F | | 600 | 1,020 | 650 | 650 | 6 | 6 | 15,700 | 48,000 | 1,600,000 | 4,900,000 | 4R13603 | FM ²⁾ | | 680 | 1,020 | 680 | 680 | 3 | 5 | 17,300 | 49,500 | 1,760,000 | 5,050,000 | 4R13604 | F ²⁾ | ^{Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or r.} | Ak | outment and | d fillet dime | ensions | | Mass | |------------|-------------|---------------|--------------|--------------|-----------| | | | mm | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | $r_{ m las}$ | | | $F_{ m w}$ | min | max | max | max | (approx.) | | | =00 | 0.50 | | | | | 554 | 530 | 650 | 4 | 4 | 335 | | 558 | 534 | 676 | 5 | 5 | 689 | | 564 | 544 | 676 | 5 | 5 | 658 | | 566 | 540 | 700 | 4 | 4 | 715 | | 574.5 | 540 | 715 | 4 | 4 | 740 | | | | | | | | | 574 | 554 | 676 | 5 | 5 | 626 | | 590 | 554 | 736 | 5 | 5 | 800 | | 601 | 554 | 756 | 5 | 5 | 1,010 | | 595 | 562 | 756 | 6 | 5 | 978 | | 600 | 556.176 | 738.03 | 4 | 5 | 859 | | 622 | 574 | 776 | 5 | 5 | 965 | | 590 | 573 | 667 | 2.5 | 2.5 | 265 | | 626 | 581 | 776 | 2 | 5 | 849 | | 628 | 594 | 791 | 5 | 5 | 1,040 | | 660 | 632 | 788 | 6 | 6 | 941 | | 672 | 632 | 838 | 6 | 6 | 1,150 | | 672 | 632 | 838 | 6 | 6 | 1,330 | | | | | | | | | 680 | 650 | 838 | 8 | 6 | 1,400 | | 702 | 641 | 898 | 2.5 | 5 | 1,430 | | 700 | 664 | 856 | 5 | 5 | 1,150 | | 723 | 682 | 904 | 6 | 3 | 1,500 | | 723 | 682 | 888 | 6 | 6 | 1,510 | | 723 | 682 | 888 | 6 | 6 | 1,550 | | 702 | 680 | 804 | 4 | 3 | 580 | | 803 | 704 | 996 | 5 | 5 | 1,970 | | 775 | | 1,000 | 2.5 | 4 | 2,060 | | | | ., | | • | _,550 | #### *d* 690∼860mm | | | Boundar | y dimens | ions | | Basic load ratings dynamic static dynamic static | | | static | Bearing
numbers | Drawing [●]
No. | |--------|--|---------------------------------|---------------------------------|------------------------------------|------------------------------------|--|--|--|--|--|---| | | | | mm | | | kľ | | kg | | | | | d | D | B_1 | C_1 | $r_{ m s min}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 690 | 980
980 | 715
750 | 715
750 | 7.5
7.5 | 7.5
7.5 | 16,800
16,500 | 54,500
53,000 | 1,720,000
1,680,000 | 5,550,000
5,400,000 | 4R13802
4R13803 | F ²⁾
FM ²⁾ | | 710 | 1,000 | 715 | 715 | 9.5 | 6 | 16,800 | 54,500 | 1,710,000 | 5,550,000 | 4R14205 | FS ⁴⁾ | | 725 | 1,000 | 700 | 700 | 6 | 6 | 15,900 | 53,500 | 1,620,000 | 5,450,000 | 4R14501 | F ¹⁾ | | 750 | 1,050
1,090 | 745
745 | 720
720 | 7.5
7.5 | 7.5
7.5 | 17,600
19,100 | 58,000
60,500 | 1,790,000
1,950,000 | 5,900,000
6,150,000 | 4R15001
4R15002 | FM ²⁾
FM ²⁾ | | 755 | 1,070 | 750 | 750 | 7.5 | 7.5 | 18,700 | 58,500 | 1,910,000 | 5,950,000 | 4R15101 | F ¹⁾ | | 760 | 1,030
1,080
1,100 | 750
805
745 | 750
790
720 | 7.5
6
7.5 | 7.5
6
7.5 | 17,300
18,700
19,100 | 59,500
61,000
60,500 | 1,760,000
1,900,000
1,950,000 | 6,050,000
6,250,000
6,150,000 | 4R15204
4R15207
4R15203 | FM ¹⁾
FM ²⁾
FM ²⁾ | | 761.43 | 1,079.6 | 787.4 | 787.4 | 9.5 | 7.5 | 19,800 | 63,000 | 2,020,000 | 6,400,000 | 4R15201 | F ¹⁾ | | 800 | 1,080
1,080 | 700
750 | 700
750 | 7.5
6 | 7.5
6 | 16,500
17,300 | 55,000
59,000 | 1,680,000
1,760,000 | 5,600,000
6,000,000 | 4R16004
4R16005 | F ¹⁾ | | 820 | 1,130
1,130
1,130
1,130
1,160 | 800
800
800
825
840 | 800
800
800
800
840 | 7.5
7.5
7.5
7.5
7.5 | 7.5
7.5
7.5
7.5
7.5 | 19,600
21,500
19,600
19,600
21,600 | 66,500
72,000
66,500
66,500
71,000 | 2,000,000
2,200,000
2,000,000
2,000,000
2,200,000 | 6,800,000
7,300,000
6,800,000
6,800,000
7,250,000 | 4R16406
4R16413
4R16415
4R16405
4R16403 | FM ¹⁾ FMS ²⁾ F ²⁾ FM ¹⁾ F ²⁾ | | 830 | 1,080 | 710 | 710 | 6 | 6 | 16,200 | 59,500 | 1,660,000 | 6,100,000 | 4R16601 | F ²⁾ | | 840 | 1,160 | 840 | 840 | 5 | 7.5 | 21,600 | 71,000 | 2,200,000 | 7,250,000 | 4R16801 | F ¹⁾ | | 850 | 1,150
1,150
1,150
1,180
1,180
1,180 | 650
800
840
650
850 | 650
800
840
650
850 | 9.5
6
6
7.5
9.5
7.5 | 9.5
6
6
7.5
9.5
7.5 | 15,700
19,700
22,000
16,400
24,100
21,700 | 51,000
71,000
77,500
51,500
78,500
72,000 | 1,610,000
2,010,000
2,240,000
1,670,000
2,460,000
2,210,000 | 5,200,000
7,250,000
7,900,000
5,250,000
8,000,000
7,350,000 | 4R17001
4R17003
4R17009
4R17004
4R17002
4R17014 | F ¹⁾ F ¹⁾ F ¹⁾ F ¹⁾ F F ²⁾ | | 860 | 1,140 | 750 | 750 | 7.5 | 7.5 | 17,200 | 61,000 | 1,750,000 | 6,200,000 | 4R17202 | F ²⁾ | ^{Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or r.} | Al | butment and | d fillet dime | ensions | i | Mass | |----------------|-------------|---------------|-------------|--------------|-----------| | | | | | | | | | J | mm | | | kg | | \overline{U} | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | () | | $F_{ m w}$ | min | max | max | max | (approx.) | | 767.5 | 722 | 948 | 6 | 6 | 1,850 | | 766 | 722 | 948 | 6 | 6 | 1,900 | | 700 | 122 | 3-10 | - | O | 1,000 | | 787.5 | 750 | 976 | 8 | 5 | 1,900 | | 796 | 749 | 976 | 5 | 5 | 1,730 | | 830 | 782 | 1,018 | 6 | 6 | 2,180 | | 845 | 782 | 1,058 | 6 | 6 | 2,530 | | 0.10 | 702 | 1,000 | | | 2,000 | | 837 | 787 | 1,038 | 6 | 6 | 2,260 | | 828 | 792 | 998 | 6 | 6 | 2,000 | | 845 | 784 | 1,056 | 5 | 5 | 2,550 | | 855 | 792 | 1,068 | 6 | 6 | 2,560 | | 846 | 801.425 | 1,047.6 | 8 | 6 | 2,420 | | 870 | 832 | 1,048 | 6 | 6 | 1,950 | | 880 | 824 | 1,056 | 5 | 5 | 2,090 | | 903 | 852 | 1,098 | 6 | 6 | 2,450 | | 903 | 852 | 1,098 | 6 | 6 | 2,530 | | 903 | 852 | 1,098 | 6 | 6 | 2,530 | | 903 | 852 | 1,098 | 6 | 6 | 2,520 | | 910 | 852 | 1,128 | 6 | 6 | 2,930 | | 896 | 854 | 1,056 | 5 | 5 | 1,780 | | 920 | 860 | 1,128 | 4 | 6 | 2,840 | | 941 | 890 | 1,110 | 8 | 8 | 1,980 | | 930 | 874 | 1,126 | 5 | 5 | 2,430 | | 928 | 874 | 1,126 | 5 | 5 | 2,640 | | 945 | 882 | 1,148 | 6 | 6 | 2,270 | | 928 | 890 | 1,140 | 8 | 8 | 2,970 | | 940 | 882 | 1,148 | 6 | 6 | 2,980 | | 938 | 892 | 1,108 | 6 | 6 | 2,200 | ### *d* 860∼1,200mm | | | Bounda | ary dimens | sions | | Basic load ratings dynamic static dynamic static kN kgf | | | | Bearing
numbers | Drawing [●]
No. | |-------|----------------|------------|------------|-----------------
------------------|---|------------------|------------------------|------------------------|--------------------|-----------------------------| | d | D | B_1 | C_1 | $r_{ m s min}$ | $r_{ m ls\ min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 860 | 1,160 | 735 | 710 | 6 | 6 | 17,800 | 62,500 | 1,810,000 | 6,400,000 | 4R17201 | F ¹⁾ | | 900 | 1,230 | 895 | 870 | 7.5 | 7.5 | 24,700 | 88,000 | 2,520,000 | 9,000,000 | 4R18001 | FM ²⁾ | | 920 | 1,280 | 865 | 850 | 7.5 | 7.5 | 26,200 | 88,500 | 2,670,000 | 9,000,000 | 4R18401 | F | | 1,000 | 1,310
1,360 | 880
800 | 880
800 | 9.5
7.5 | 9.5
7.5 | 23,400
25,000 | 88,500
85,000 | 2,380,000
2,550,000 | 9,000,000
8,650,000 | 4R20001
4R20002 | F ¹⁾ | | 1,030 | 1,380 | 850 | 850 | 7.5 | 7.5 | 24,400 | 89,000 | 2,490,000 | 9,100,000 | 4R20601 | F ¹⁾ | | 1,200 | 1,590 | 1,050 | 1,050 | 7.5 | 7.5 | 36,000 | 133,000 | 3,650,000 | 13,600,000 | 4R24002 | FS | ^{Drawing details are shown in Page B-38. Minimal allowable dimension for chamfer dimension r or r.} | Ab | utment an | d fillet dim | ensions | | Mass | |------------|------------|--------------|--------------|--------------|-----------| | | | mm | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | $r_{ m las}$ | | | $F_{ m w}$ | min | max | max | max | (approx.) | | | | | | | | | 940 | 884 | 1,136 | 5 | 5 | 2,310 | | | | , | | | , | | 985 | 932 | 1,198 | 6 | 6 | 3,250 | | 300 | 302 | 1,100 | | 0 | 0,200 | | 1,015 | 952 | 1,248 | 6 | 6 | 3,560 | | 1,013 | 932 | 1,240 | U | U | 3,300 | | 1,080 | 1,040 | 1,270 | 8 | 8 | 3,260 | | , | , | | - | _ | • | | 1,090 | 1,032 | 1,328 | 6 | 6 | 3,530 | | | | | | | | | 1,124 | 1,062 | 1,348 | 6 | 6 | 3,800 | | | | | | | | | 1,295 | 1,232 | 1,558 | 6 | 6 | 6,220 | SL01-48 type SL01-49 type (Fixed side) SL02-48 type SL02-49 type (Free side) #### *d* 100∼280mm | | Bounda | ry dime | ensions | dvnamic | | ad ratings
dynamic | static | Bearing | numbers | | Dimensi | ons | | |-----|--------|---------|---------------|------------------|-------------|-----------------------|-------------|------------|-----------|-------|---------|-------|---------| | | | mm | | . , | :N | • | gf | | | | mm | | | | d | D | В | $r_{ m smin}$ | C_{r} | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | Fixed side | Free side | J | K | M | e^{0} | | 100 | 140 | 40 | 1.1 | 194 | 400 | 19,800 | 41,000 | SL01-4920 | SL02-4920 | 116 | 125 | 126.5 | 2 | | 110 | 150 | 40 | 1.1 | 202 | 430 | 20,600 | 44,000 | SL01-4922 | SL02-4922 | 125 | 134 | 135.5 | 2 | | 120 | 165 | 45 | 1.1 | 226 | 480 | 23,100 | 49,000 | SL01-4924 | SL02-4924 | 138.5 | 148.5 | 150.5 | 3 | | 130 | 180 | 50 | 1.5 | 262 | 555 | 26,700 | 56,500 | SL01-4926 | SL02-4926 | 149 | 160 | 162 | 4 | | 140 | 190 | 50 | 1.5 | 272 | 595 | 27,700 | 60,500 | SL01-4928 | SL02-4928 | 159.5 | 170 | 172.5 | 4 | | 150 | 190 | 40 | 1.1 | 235 | 575 | 23,900 | 58,500 | SL01-4830 | SL02-4830 | 165.5 | 173.5 | 175.5 | 2 | | | 210 | 60 | 2 | 410 | 865 | 41,500 | 88,000 | SL01-4930 | SL02-4930 | 171.5 | 186 | 189.5 | 4 | | 160 | 200 | 40 | 1.1 | 241 | 605 | 24,600 | 62,000 | SL01-4832 | SL02-4832 | 173.5 | 182.5 | 184 | 2 | | | 220 | 60 | 2 | 425 | 935 | 43,500 | 95,000 | SL01-4932 | SL02-4932 | 185 | 199 | 203 | 4 | | 170 | 215 | 45 | 1.1 | 265 | 650 | 27,000 | 66,500 | SL01-4834 | SL02-4834 | 186.5 | 196.5 | 198 | 3 | | | 230 | 60 | 2 | 435 | 980 | 44,500 | 100,000 | SL01-4934 | SL02-4934 | 194 | 208 | 211.5 | 4 | | 180 | 225 | 45 | 1.1 | 275 | 695 | 28,000 | 71,000 | SL01-4836 | SL02-4836 | 199 | 209 | 211 | 3 | | | 250 | 69 | 2 | 550 | 1,230 | 56,000 | 125,000 | SL01-4936 | SL02-4936 | 206 | 222 | 225.5 | 4 | | 190 | 240 | 50 | 1.5 | 315 | 785 | 32,000 | 80,000 | SL01-4838 | SL02-4838 | 208.5 | 219.5 | 221.5 | 4 | | | 260 | 69 | 2 | 565 | 1,290 | 57,500 | 131,000 | SL01-4938 | SL02-4938 | 216.5 | 232.5 | 235.5 | 4 | | 200 | 250 | 50 | 1.5 | 320 | 825 | 33,000 | 84,000 | SL01-4840 | SL02-4840 | 219 | 230 | 232 | 4 | | | 280 | 80 | 2.1 | 665 | 1,500 | 68,000 | 153,000 | SL01-4940 | SL02-4940 | 232 | 250 | 253.5 | 5 | | 220 | 270 | 50 | 1.5 | 340 | 905 | 34,500 | 92,500 | SL01-4844 | SL02-4844 | 240 | 251 | 253 | 4 | | | 300 | 80 | 2.1 | 695 | 1,620 | 70,500 | 165,000 | SL01-4944 | SL02-4944 | 249.5 | 267.5 | 271 | 5 | | 240 | 300 | 60 | 2 | 510 | 1,330 | 52,000 | 136,000 | SL01-4848 | SL02-4848 | 261 | 275 | 276.5 | 4 | | | 320 | 80 | 2.1 | 730 | 1,770 | 74,000 | 181,000 | SL01-4948 | SL02-4948 | 272.5 | 290.5 | 294 | 5 | | 260 | 320 | 60 | 2 | 535 | 1,450 | 54,500 | 148,000 | SL01-4852 | SL02-4852 | 283 | 297 | 300 | 4 | | | 360 | 100 | 2.1 | 1,070 | 2,520 | 109,000 | 257,000 | SL01-4952 | SL02-4952 | 297 | 320 | 324.5 | 6 | | 280 | 350 | 69 | 2 | 685 | 1,860 | 69,500 | 189,000 | SL01-4856 | SL02-4856 | 308 | 324 | 327 | 4 | | | 380 | 100 | 2.1 | 1,110 | 2,710 | 114,000 | 277,000 | SL01-4956 | SL02-4956 | 319 | 342 | 346 | 6 | **¹** Maximum allowable dimension for chamfer dimension r. **2** Allowable axial move. Fixed side Free side | | outment ar
t dimensio | | Mass | (approx.) | |----------------------------|--------------------------|-------------|-------------|-------------| | | mm | | k | g | | d_{a}^{\bullet} | $D_{\rm a}^{\ \ 0}$ | $r_{ m as}$ | Eivad aida | Eroo oido | | min | max | max | Fixed side | Free side | | 106.5 | 133.5 | 1 | 1.95 | 1.9 | | 116.5 | 143.5 | 1 | 2.15 | 2.1 | | 126.5 | 158.5 | 1 | 2.95 | 2.85 | | 138 | 172 | 1.5 | 3.95 | 3.8 | | 148 | 182 | 1.5 | 4.2 | 4.1 | | 156.5 | 183.5 | 1 | 2.9 | 2.8 | | 159 | 201 | 2 | 6.65 | 6.45 | | | | | | | | 166.5 | 193.5 | 1 | 3.05 | 2.9 | | 169 | 211 | 2 | 7 | 6.8 | | 176.5 | 208.5 | 1 | 4.1 | 3.95 | | 179 | 221 | 2 | 7.35 | 7.1 | | | | | | | | 186.5 | 218.5 | 1 | 4.3 | 4.15 | | 189 | 241 | 2 | 10.7 | 10.5 | | 198 | 232 | 1.5 | 5.65 | 5.45 | | 199 | 251 | 2 | 11.2 | 10.9 | | | 0.40 | 4.5 | 5.0 | | | 208
211 | 242
269 | 1.5
2 | 5.9
15.7 | 5.7
15.3 | | 211 | 209 | | 15.7 | 15.5 | | 228 | 262 | 1.5 | 6.4 | 6.2 | | 231 | 289 | 2 | 17.1 | 16.6 | | 249 | 291 | 2 | 10.2 | 9.9 | | 251 | 309 | 2 | 18.4 | 17.9 | | | | | | | | 269 | 311 | 2 | 11 | 10.6 | | 271 | 349 | 2 | 32 | 31.2 | | 289 | 341 | 2 | 16 | 15.6 | | 291 | 369 | 2 | 33.9 | 33.1 | | | | | | | $[{]f 3}$ Use J and K dimensions for bearings operating at inclined or large axial loads. SL01-48 type SL01-49 type (Fixed side) SL02-48 type SL02-49 type (Free side) #### d 300~440mm | | Bounda | ry dim | ensions | dynamic | | ad ratings
dynamic | static | Bearing | numbers | | Dimens | sions | | |-----|------------|------------|---------------|----------------|----------------|-----------------------|--------------------|------------------------|------------------------|------------|------------|------------|------------------------| | | | mm | | | :N | | gf | | | | mm | า | | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | Fixed side | Free side | J | K | M | $e^{oldsymbol{arrho}}$ | | 300 | 380
420 | 80
118 | 2.1
3 | 805
1,580 | 2,160
3,800 | 82,000
161,000 | 220,000
385,000 | SL01-4860
SL01-4960 | SL02-4860
SL02-4960 | 330
344 | 348
371 | 351
377 | 6
6 | | 320 | 400
440 | 80
118 | 2.1
3 | 835
1,650 | 2,310
4,100 | 85,000
168,000 | 236,000
415,000 | SL01-4864
SL01-4964 | SL02-4864
SL02-4964 | 353
371 | 371
398 | 374
404 | 6
6 | | 340 | 420
460 | 80
118 | 2.1
3 | 855
1,690 | 2,430
4,300 | 87,500
172,000 | 248,000
440,000 | SL01-4868
SL01-4968 | SL02-4868
SL02-4968 | 370
388 | 388
416 | 391
421 | 6
6 | | 360 | 440
480 | 80
118 | 2.1
3 | 885
1,730 | 2,580
4,500 | 90,000
176,000 | 264,000
460,000 | SL01-4872
SL01-4972 | SL02-4872
SL02-4972 | 393
406 | 411
434 | 414
439 | 6
6 | | 380 | 480
520 | 100
140 | 2.1
4 | 1,290
2,300 | 3,600
5,900 | 132,000
235,000 | 370,000
600,000 | SL01-4876
SL01-4976 | SL02-4876
SL02-4976 | 422
437 | 444
469 | 449
475 | 6
7 | | 400 | 540 | 140 | 4 | 2,410 | 6,200 | 246,000 | 635,000 | SL01-4980 | SL02-4980 | 450 | 484 | 490 | 7 | | 420 | 560 | 140 | 4 | 2,470 | 6,500 | 252,000 | 665,000 | SL01-4984 | SL02-4984 | 472 | 505 | 512 | 7 | | 440 | 600 | 160 | 4 | 3,000 | 7,850 | 305,000 | 800,000 | SL01-4988 | SL02-4988 | 503 | 540 | 546 | 7 | Fixed side Free side | | butment a | | Mass (approx.) | | | |-------------------------------|----------------------|-----------------|----------------|--------------|--| | ı (3 | mm
D₃ | | k | 9 | | | $d_{ m a}^{oldsymbol{6}}$ min | D_{a} max | $r_{ m as}$ max | Fixed side | Free side | | | 311
313 | 369
407 | 2
2.5 | 23
53 | 22.2
51.9 | | | 331
333 | 389
427 | 2
2.5 | 24.3
56 | 23.5
54.9 | | | 351
353 | 409
447 | 2
2.5 | 25.6
59 | 24.8
57.8 | | | 371
373 | 429
467 | 2
2.5 | 27
62 | 26
60.8 | | | 391
396 | 469
504 | 2
3 | 45.3
92.3 | 44
90.5 | | | 416 | 524 | 3 | 96.4 | 94.6 | | | 436 | 544 | 3 | 101 | 98.6 | | | 456 | 584 | 3 | 139 | 137 | | #### *d* 100∼380mm | | | Bound | ary dimens | sions | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |-----|-----|-------|------------|-------|-----|------------|-------------|-----------------------|-------------|--------------------| | | | | mm | | | , kN | J | kç | gf | | | d | D | В | C | t | r | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 100 | 150 | 67 | 66 | 1.5 | 1 | 330 | 580 | 33,500 | 59,500 | SL04-5020NR | | 110 | 170 | 80 | 79 | 1.8 | 1.5 | 385 | 695 | 39,000 | 71,000 | SL04-5022NR | | 120 | 180 | 80 | 79 | 1.8 | 1.5 | 400 | 750 | 41,000 | 76,500 | SL04-5024NR | | 130 | 200 | 95 | 94 | 1.8 | 1.5 | 535 | 1,000 | 55,000 | 102,000 | SL04-5026NR | | 140 | 210 | 95 | 94 | 1.8 | 1.5 | 600 | 1,120 | 61,000 | 115,000 | SL04-5028NR | | 150 | 225 |
100 | 99 | 2 | 1.5 | 690 | 1,290 | 70,500 | 131,000 | SL04-5030NR | | 160 | 240 | 109 | 108 | 2 | 2 | 720 | 1,390 | 73,500 | 142,000 | SL04-5032NR | | 170 | 260 | 122 | 121 | 2 | 2 | 925 | 1,790 | 94,500 | 182,000 | SL04-5034NR | | 180 | 280 | 136 | 135 | 2 | 2 | 1,090 | 2,140 | 111,000 | 218,000 | SL04-5036NR | | 190 | 290 | 136 | 135 | 2 | 2 | 1,120 | 2,230 | 114,000 | 227,000 | SL04-5038NR | | 200 | 310 | 150 | 149 | 2 | 2 | 1,310 | 2,650 | 133,000 | 270,000 | SL04-5040NR | | 220 | 340 | 160 | 159 | 2.5 | 2 | 1,640 | 3,300 | 167,000 | 335,000 | SL04-5044NR | | 240 | 360 | 160 | 159 | 2.5 | 2 | 1,710 | 3,550 | 175,000 | 365,000 | SL04-5048NR | | 260 | 400 | 190 | 189 | 3 | 2.5 | 2,130 | 4,500 | 217,000 | 460,000 | SL04-5052NR | | 280 | 420 | 190 | 189 | 3 | 2.5 | 2,170 | 4,700 | 221,000 | 475,000 | SL04-5056NR | | 300 | 460 | 218 | 216 | 3 | 2.5 | 2,670 | 5,850 | 272,000 | 600,000 | SL04-5060NR | | 320 | 480 | 218 | 216 | 3 | 2.5 | 2,720 | 6,100 | 278,000 | 620,000 | SL04-5064NR | | 340 | 520 | 243 | 241 | 3.5 | 3 | 3,650 | 8,000 | 370,000 | 815,000 | SL04-5068NR | | 360 | 540 | 243 | 241 | 3.5 | 3 | 3,750 | 8,300 | 380,000 | 845,000 | SL04-5072NR | | 380 | 560 | 243 | 241 | 3.5 | 3 | 3,800 | 8,750 | 385,000 | 895,000 | SL04-5076NR | Note 1. The above are greased bearings. 2. The above are treated for rust prevention. 3. The above are non contact shielded bearings. Also, contact sealed can be applied upon request. | | E | Dimen : | | | Abutment and fillet dimensions | | | Mass
kg | |-------------------|------------------------|----------------|-----|------|--------------------------------|-------|------------------|-------------------| | J | (approx.) | f | Cf | S | $d_{ m a}$ | E_1 | Cf_1^{\bullet} | (approx.) | | 118.5 | 156 | 2.5 | 54 | 6 | 106 | 180 | 54 | 4.03 | | 131.5 | 176 | 2.5 | 65 | 7 | 116.5 | 200 | 65 | 7 | | 141.5 | 188 | 3 | 65 | 7 | 126.5 | 210 | 65 | 7.5 | | 158 | 208 | 3 | 77 | 8.5 | 136.5 | 230 | 77 | 11.4 | | 167 | 218 | 3 | 77 | 8.5 | 146.5 | 245 | 77 | 12.1 | | 178 | 233 | 3 | 81 | 9 | 157 | 260 | 81 | 14.6 | | 191 | 248 | 3 | 89 | 9.5 | 167 | 275 | 89 | 18.2 | | 203 | 270 | 4 | 99 | 11 | 177 | 300 | 99 | 24.6 | | 220 | 290 | 4 | 110 | 12.5 | 187 | 320 | 110 | 32.3 | | 226 | 300 | 4 | 110 | 12.5 | 197 | 330 | 110 | 33.7 | | 245.5 | 320 | 4 | 120 | 14.5 | 207 | 350 | 120 | 43.5 | | 260 | 356 | 6 | 130 | 14.5 | 228.5 | 380 | 130 | 55.5 | | 280.5 | 376 | 6 | 130 | 14.5 | 248.5 | 400 | 130 | 59.5 | | 315.5 | 416 | 7 | 154 | 17.5 | 270 | 445 | 154 | 90.7 | | 325 | 436 | 7 | 154 | 17.5 | 290 | 465 | 154 | 96.2 | | 363 | 480 | 8 | 176 | 20 | 310 | 510 | 176 | 137 | | 376 | 500 | 8 | 176 | 20 | 330 | 530 | 176 | 144 | | 406 | 544 | 8 | 194 | 23.5 | 352 | 580 | 194 | 194 | | 421 | 564 | 10 | 194 | 23.5 | 372 | 600 | 194 | 203 | | 442
① (| 584 Cf_1 deviation | | | | 392
L04-5034N | | | | Bearing Basic load ratings #### d 400~440mm **Boundary dimensions** | | | | , | | | dynamic | static | dynamic | static | numbers | |-----|-----|-----|-----|-----|---|------------|-------------|------------|-------------|-------------| | | | | mm | | | k | N | ا | kgf | | | d | D | В | C | t | r | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 400 | 600 | 272 | 270 | 3.5 | 3 | 4,250 | 9,950 | 435,000 | 1,010,000 | SL04-5080NR | | 420 | 620 | 272 | 270 | 3.5 | 3 | 4,350 | 10,300 | 445,000 | 1,050,000 | SL04-5084NR | | 440 | 650 | 280 | 278 | 4.5 | 4 | 4,500 | 11,000 | 460,000 | 1,120,000 | SL04-5088NR | | | sions | | butment
et dimen | | Mass | | | | |-----|-----------|----|---------------------|----|------------|-------|------------------|-----------| | | _ | m | m | | | mm | | kg | | | E | | | | | | | | | J | (approx.) | f | Cf | S | $d_{ m a}$ | E_1 | Cf_1^{\bullet} | (approx.) | | | | | | | | | | | | 470 | 626 | 12 | 210 | 30 | 412 | 675 | 210 | 281 | | 470 | 020 | 12 | 210 | 00 | 712 | 075 | 210 | 201 | | 400 | 0.40 | 10 | 010 | 00 | 400 | 005 | 010 | 000 | | 486 | 646 | 12 | 210 | 30 | 432 | 695 | 210 | 292 | | | | | | | | | | | | 518 | 676 | 12 | 210 | 34 | 456 | 725 | 210 | 331 | #### 1. Type, Structure and Characteristics Tapered roller bearings are designed such that their conical rollers and raceways are arranged so that all elements of the roller and race way cones meet at a common apex on the bearing axis. (Refer to **Fig.1**) The rolling elements perform the real rotating movement on the raceway; the synthesized force from the inner and outer ring raceways guides the rollers, pressing them to the large rib on the inner ring. Metric and inch series are considered standard and both systems are widely used. The inner ring, rollers and cage can be separated as a unit, or the CONE, from the outer ring, or the CUP. The cup and cone are called sub-units. Sub-unit dimensions for the nominal cup small inside diameter and bearing contact angle, as shown in **Fig. 2**, are standardized by ISO and ABMA and are compatible between sub-units. Double row and four row bearings are available in addition to single row bearings. Models and characteristics are shown in **Tables 1** and **2**. Fig.1 Fig.2 Table 1 Structure and characteristics of double row tapered roller bearings | Model | Drawing | Nominal number | Characteristics | |--|---------|---|--| | Double row
with vertex
of contact
angles
outside of
the bearing | | 413XXX
423XXX
430XXX
432XXX
CRI | These bearings are designed with one double row outer ring and two pairs of inner rings with rollers. Bearings are adjusted so that their internal clearance becomes the specified value, the parts which have the same serial numbers should be assembled according to the assembly codes. These bearings support radial and axial loads. Since the cone pressure apex is wide, bearings are suitable where moment loads are applied. These bearings have the same function as the back-to-back duplex arrangement of single row bearings. | | Double row
with vertex
of contact
steep angles
outside of
the bearing | | CRI | This bearing model has a larger and steeper contact angle than the double row with vertex of contact angles outside the bearing. These bearings are used when the axial load is large. Since these bearings are adjusted so that the internal clearance is a specified value (like the double row with vertex of contact angles outside of bearing) the parts which have the same serial numbers should be assembled according to the assembly codes. | | Double row
with vertex
of contact
angles
inside of
the bearing | | 3230XX
3231XX
CRD | These bearings are designed with one double row inner ring with rollers and two pairs of outer rings and an outer ring spacer. These bearings accept the radial and axial loads. Since the cone pressure apex is short, bearings are not suitable when the moment is applied. Since these bearings are adjusted so that the internal clearance is the specified value (like the double row with vertex of contact angles outside of bearing) the parts which have the same serial numbers should be assembled according to the assembly codes. | | Double row
with vertex
of contact
steep angles
inside of the
bearing | | CRD | This bearing model has a larger and steeper contact angle than the double row with vertex of contact angles inside the bearing. These bearings are used when the axial load is large or only axials are applied. Models without an outer ring spacer and with a key groove or notch on the inner ring (refer to the drawing) are also available. Consult NTN Engineering about this bearing's fit. These bearings may be pressurized by using a spring between the housing shoulder and outer ring end. | Table 2 Structure and characteristics of the four row tapered roller bearings | Model | Drawing | Nominal numbers | Characteristics | |--|---------|-----------------------------------|--| | Four row
tapered
roller
bearing | | 6259XX
6230XX
6231XX
CRO | These bearings are designed with two double row inner rings with rollers, one double row outer ring, two single outer ring and outer ring spacer/inner ring
spacer. Bearings are adjusted so that their internal clearance becomes the specified value, the parts which have the same serial numbers should be assembled according to the assembly codes. The bearing is mainly used for the roll neck of rolling mill, and designed so as to become the maximum rating load for the allowable space in the roll neck part. The bearing uses the clearance-fit to make assemble and disassembley easier. For this purpose, bearings are designed with a helical groove on the inner ring bore to prevent wearing of the inner ring bore when creep occurs and uses the carbonized steel to prevent cracks on inner ring and improve the shock resistance. Please consult with NTN Engineering for fitting and bearing internal clearance. | | Four row
tapered
roller
bearing
enclosed
type | | CRO…LL | Bearings are designed with oil seals on both side of the bearing which is the same as the four row tapered roller bearings. Please consult with NTN Engineering for fitting and bearing internal clearance. | #### 2. Dimensional Accuracy/Rotation Accuracy Metric system bearingsTable 3.4 (Page A-14) Inch system bearingsTable 3.5 (Page A-16) #### 3. Recommended Fitting Metric system bearingsTable 4.2 (Page A-24) Inch system bearingsTable 4.5, 4.6 (Page A-27) #### 4. Bearing Internal Clearance Metric system bearingsTable 5.7 (Page A-32) Inch system bearingsTable 5.9 (Page A-34) #### 5. General Operating Cautions Slippage between the balls and raceways may occur when bearings are operated under small loads, or when the ratio between axial and radial loads of the duplexed bearings exceeds the value "e," and may cause smearing. This is most apparent when using large size tapered roller bearings due to the large cage mass. Please consult NTN Engineering for further details. ## Inch system sizes: Tapered Roller Bearings (Single row · Double row) index | Bearing number | ABMA | Page | |-----------------|------|-------| | CONE / CUP | Туре | i age | | | Турс | | | 8573/8520 | TS | B-109 | | 8573/8520D+A | TDO | B-140 | | 8575/8520 | TS | B-109 | | 8575/8520D+A | TDO | B-140 | | 8578/8520 | TS | B-111 | | 8578/8520D+A | TDO | B-140 | | 29875/29820 | TS | B-111 | | 29875/29820D+A | TDO | B-142 | | 29880/29820 | TS | B-111 | | 29880/29820D+A | TDO | B-142 | | 38880/38820 | TS | B-111 | | 38885/38820 | TS | B-111 | | 67983/67920 | TS | B-107 | | 67983/67920D+A | TDO | B-138 | | 67985/67920 | TS | B-107 | | 67985/67920D+A | TDO | B-140 | | 67989/67920 | TS | B-109 | | 67989/67920D+A | TDO | B-140 | | 80170/80217 | TS | B-117 | | 80176/80217 | TS | B-117 | | 80180/80217 | TS | B-117 | | 80385/80325 | TS | B-117 | | 80780/80720 | TS | B-121 | | 87737/87111 | TS | B-107 | | 87737/87112D+A | TDO | B-138 | | 87750/87111 | TS | B-107 | | 87750/87112D+A | TDO | B-138 | | 87762/87111 | TS | B-107 | | 87762/87112D+A | TDO | B-138 | | 93708/93125 | TS | B-107 | | 93750/93125 | TS | B-107 | | 93750/93127D+A | TDO | B-138 | | 93787/93125 | TS | B-107 | | 93787/93727D+A | TDO | B-138 | | 93800/93125 | TS | B-107 | | 93800/93127D+A | TDO | B-138 | | 93800D/93125+A | TDI | B-161 | | 93825/93125 | TS | B-109 | | 93825/93127D+A | TDO | B-140 | | 94649/94113 | TS | B-105 | | 94649/94114D+A | TDO | B-138 | | 94687/94113 | TS | B-105 | | 94687/94114D+A | TDO | B-138 | | 94700/94113 | TS | B-107 | | 94700/94114D+A | TDO | B-138 | | 94706D/94113+A | TDI | B-161 | | 96900/96140 | TS | B-109 | | 96900/96140D+A | TDO | B-140 | | 96925/96140 | TS | B-140 | | 96925/96140D+A | TDO | B-109 | | EE113089/113170 | TS | B-140 | | EE113099/113170 | TS | B-109 | | EE113091/113170 | TDO | B-140 | | EE114080/114160 | TS | B-140 | | EE114000/114100 | 13 | D-10/ | | Bearing number | ABMA | Page | |---------------------|------|-------| | CONE / CUP | Type | | | EE114080/114161D+A | TDO | B-138 | | EE117063/117148 | TS | B-105 | | EE126096D/126150+A | TDI | B-161 | | EE126097/126150 | TS | B-111 | | EE126097/126151D+A | TDO | | | EE126098/126151D+A | TDO | | | EE126098/126150 | TS | B-111 | | EE127095/127135 | TS | B-111 | | EE127095/127136D+A | TDO | B-140 | | EE127097D/127135+A | TDI | B-161 | | EE128111/128160 | TS | B-113 | | EE128111/128160D+A | TDO | - | | EE128112/128160 | TS | B-113 | | EE129120X/129172 | TS | B-113 | | EE129120X/129120D+A | TDO | B-144 | | EE130902/131400 | TS | B-109 | | EE130902/131401D+A | TDO | B-140 | | EE134100/134143 | TS | B-111 | | EE134100/134144D+A | TDO | B-142 | | EE134102/134143 | TS | B-111 | | EE134102/134144D+A | TDO | B-142 | | EE135111D/135155+A | TDI | B-163 | | HH144642/HH144614 | TS | B-107 | | EE147112/147198D+A | TDO | - | | EE161300/161900 | TS | B-115 | | EE161300/161901D+A | TDO | - | | EE161363/161900 | TS | B-115 | | EE161363/161901D+A | TDO | - | | EE161400/161850 | TS | B-115 | | EE161400/161900 | TS | B-115 | | EE161400/161901D+A | TDO | B-144 | | L163149/L163110 | TS | B-115 | | L163149/L163110D+A | TDO | | | L163149D/L163110+A | TDI | B-163 | | EE170950/171450 | TS | B-111 | | EE170950/171451D+A | TDO | | | EE170975/171450 | TS | B-111 | | EE170975/171451D+A | TDO | | | EE170975D/171450+A | TDI | _ | | EE192150/192200 | TS | B-115 | | EE192150/192201D+A | TDO | _ | | EE219068/219117 | TS | B-105 | | EE219068/219122 | TS | B-105 | | EE221025D/221575+A | TDI | B-161 | | EE221026/221575 | TS | B-111 | | EE221026/221576D+A | TD0 | B-142 | | EE222070/222127D+A | TDO | | | EE231400/231975 | TS | B-130 | | EE231400/231976D+A | TDO | | | EE231401D/231975+A | TDI | B-140 | | EE231462/231975 | TS | B-103 | | EE231462/231976D+A | TDO | | | HH231637/HH231615 | TS | B-140 | | HH231649/HH231610 | TS | B-105 | | | 13 | פטוים | | Bearing number | ABMA | Page | |----------------------|------|-------| | CONE / CUP | Type | | | HH231649/HH231615 | TS | B-105 | | HH234031/HH234010 | TS | B-105 | | HH234031/HH234011D+A | TDO | B-138 | | HH234048/HH234010 | TS | B-105 | | HH234048/HH234011D+A | TDO | B-138 | | EE234156/234213D+A | TDO | B-146 | | EE234156/234215 | TS | B-117 | | EE234156/234216D+A | TDO | B-146 | | EE234160/234213D+A | TDO | B-146 | | EE234160/234215 | TS | B-117 | | HM237532/HM237510 | TS | B-105 | | HM237532/HM237510D+A | TDO | B-138 | | HM237535/HM237510 | TS | B-105 | | HM237535/HM237510D+A | TDO | B-138 | | HM237542/HM237510 | TS | B-105 | | HM237542/HM237510D+A | TDO | B-138 | | HM237545/HM237510 | TS | B-107 | | HM237545/HM237513 | TS | B-107 | | HM237545/HM237510D+A | TDO | B-138 | | HM237546D/HM237510+A | TDI | B-161 | | H238140/H238110 | TS | B-105 | | H238148/H238110 | TS | B-105 | | H239640/H239610 | TS | B-107 | | H239640/H239612D+A | TDO | B-138 | | H239649/H239610 | TS | B-107 | | H239649/H239612 | TS | B-107 | | H239649/H239612D+A | TDO | B-138 | | H239649D/H239610+A | TDI | B-161 | | LM241149/LM241110 | TS | B-107 | | LM241149/LM241110D+A | TDO | B-138 | | M241547/M241510 | TS | B-107 | | M241543/M241510 | TS | B-107 | | M241543/M241510D+A | TDO | B-138 | | M241547/M241510D+A | TDO | B-138 | | M241549/M241510 | TS | B-107 | | M241549/M241510D+A | TDO | B-138 | | EE241701/242375 | TS | B-117 | | EE241701/242377D+A | TDO | B-146 | | H242649/H242610 | TS | B-107 | | H242649/H242610D+A | TDO | B-140 | | H242649D/H242610+A | TDI | B-161 | | EE243190/243250 | TS | B-119 | | EE243190/243251D+A | TDO | B-146 | | EE243192/243250 | TS | B-119 | | EE243192/243251D+A | TDO | B-148 | | EE243196/243250 | TS | B-119 | | EE243196/243251D+A | TDO | B-148 | | EE244180/244235 | TS | B-119 | | EE244180/244236D+A | TDO | B-146 | | M244249/M244210 | TS | B-109 | | M244249/M244210D+A | TDO | B-140 | | M244249D/M244210+A | TDI | B-161 | | H244849D/H244810+A | TDI | B-161 | | M246942/M246910 | TS | B-109 | # Inch system sizes: Tapered Roller Bearings (Single row · Double row) index | Bearing number | ABMA | Page | |-----------------------|------|-------| | CONE / CUP | Type | . ugo | | OONE / OOI | Турс | | | M246949/M246910 | TS | B-109 | | H247535/H247510 | TS | B-107 | | H247535/H247510D+A | TDO | B-138 | | H247549/H247510 | TS | B-109 | | H247549/H247510D+A | TDO | B-140 | | LM247748D/LM247710+A | TDI | B-161 | | H249148/H249111D+A | TDO | B-140 | | M249732/M249710 | TS | B-109 | | M249732/M249710D+A | TDO | B-140 | | M249734/M249710 | TS | B-109 | | M249734/M249710D+A | TDO | B-140 | | M249736/M249710 | TS | B-109 | | M249736/M249710D+A | TDO | B-140 | | M249748D/M249710+A | TDI | B-161 | | M249749/M249710 | TS | B-111 | | M249749/M249710D+A | TDO | B-142 | | HH249749/HH249910D+A | TDO | B-142 | | HH249949/HH249910 | TS | B-111 | | HH249949D/HH249910+A | TDI | B-161 | | M252337/M252310 | TS | B-111 | | HM252343/HM252310 | TS | B-111 | | HM252343/HM252310D+A | TDO | B-142 | | HM252344/HM252310D+A | TDO | B-142 | | M252349D/M252310+A | TDI | B-161 | | HM252348/HM252310 | TS | B-111 | | HM252348/HM252310D+A | TDO | B-142 | | HM252349/HM252310D+A | TDO | B-142 | | M252330/M252310 | TS | B-109 | | M252349/M252310 | TS | B-113 | | HH255149D/HH255110+A | TDI | B-161 | | M255449/M255410 | TS | B-113 | | M255449/M255410D+A | TDO | B-144 | | M255449D/M255410A+A | TDI | B-163 | | HM256849/HM256810 | TS. | B-113 | | HM256849/HM256810D+A | TDO | B-144 | | HM256849D/HM256810+A | TDI | B-163 | | M257149D/M257110+A | TDI | B-163 | | M257248D/M257210+A | TDI | B-163 | | HH258248/HH258210 | TS | B-103 | | HH258248/HH258210D+A | TDO | B-113 | | LM258648D/LM258610+A | TDI | B-163 | | HM259048/HM259010 | TS | B-103 | | HM259049/HM259010D+A | TDO | B-113 | | HM259049D/HM259010D+A | TDI | B-144 | | HM261049/HM261010 | | | | | TS | B-115 | | HM261049/HM261010D+A | TDO | B-144 | | HM261049D/HM261010+A | TDI | B-163 | | M262449D/M262410+A | TDI | B-163 | | HM262749/HM262710 | TS | B-115 | | HM262749/HM262710D+A | TDO | B-144 | | HM262749D/HM262710+A | TDI | B-163 | | HM262748/HM262710 | TS | B-115 | | LM263149D/LM263110+A | TDI | B-163 | | M263349D/M263310+A | TDI | B-163 | | Bearing number | ABMA | Page |
---|-----------|----------------| | CONE / CUP | Туре | 3 - | | | TDO | D 440 | | HM265049/HM265010D+A | TDO | B-146 | | HM265049D/HM265010+A | TDI | B-163 | | HM265049/HM265010 | TS | B-115 | | HM266447/HM266410 | TS | B-117 | | HM266448/HM266410 | TS | B-117 | | HM266449/HM266410
HM266449/HM266410D+A | TS | B-117 | | HM266446/HM266410D+A | TDO | B-146 | | HM266446/HM266410D+A | TS
TDO | B-117
B-146 | | | | | | HM266448/HM266410D+A | TDO | B-146 | | HM266449D/HM266410+A
M268730/M268710 | TDI
TS | B-163
B-117 | | HM268730/HM268710D+A | TDO | | | | TS | B-146
B-117 | | M268749/M268710
M268749/M268710D+A | TDO | B-117 | | M268749D/M268710D+A | TDI | B-146 | | | | | | M270749/M270710 | TS | B-117 | | M270749/M270710D+A | TDO | B-146 | | M270749D/M270710+A | TDI | B-165 | | LM272235/LM272210 | TS | B-119 | | LM272249/LM272210 | TS | B-119 | | LM272249/LM272210D+A | TDO | B-146 | | LM272249D/LM272210+A | TDI | B-165 | | M272647D/M272610+A | TDI | B-165 | | M272749/M272710 | TS | B-119 | | M272749/M272710D+A | TDO | B-146 | | M272749D/M272710+A | TDI | B-165 | | M274149/M274110 | TS | B-119 | | M274149D/M274110+A | TDI | B-165 | | LM274449D/LM274410+A | TDI | B-165 | | EE275095/275155 | TS | B-111 | | EE275095/275156D+A | TDO | B-140 | | EE275100/275155 | TS | B-111 | | EE275100/275156D+A | TDO | B-142 | | EE275105/275155 | TS | B-111 | | EE275105/275156D+A | TDO | B-142 | | EE275108/275155 | TS | B-113 | | EE275108/275156D+A | TDO | B-142 | | EE275109D/275155+A | TDI | B-161 | | M275349D/M275310+A | TDI | B-165 | | M276449/M276410 | TS | B-119 | | M276449/M276410D+A | TDO | B-148 | | M276449D/M276410+A | TDI | B-165 | | M276448D/M276410+A | TDI | B-165 | | M278749/M278710 | TS | B-119 | | M278749/M278710D+A | TDO | B-148 | | M278749D/M278710+A | TDI | B-165 | | M280049D/M280010+A | TDI | B-167 | | M280349D/M280310+A | TDI | B-167 | | EE280626/281200 | TS | B-105 | | M281049D/M281010+A | TDI | B-167 | | L281148/L281110 | TS | B-121 | | L281148/L281110D+A | TDO | B-148 | | L281149D/L281110+A | TDI | B-167 | | Bearing number | ABMA | Page | |----------------------|------|-------| | CONE / CUP | Туре | | | M281649D/M281610+A | TDI | B-167 | | LM281849D/LM281810+A | TDI | B-167 | | LM282549D/LM282510+A | TDI | B-167 | | LM283649/LM283610 | TS | B-121 | | LM283649D/LM283649+A | TDI | B-167 | | M284148D/M284111+A | TDI | B-167 | | M284249D/M284210+A | TDI | B-167 | | LM286249D/LM286210+A | TDI | B-167 | | LM287649D/LM287610+A | TDI | B-167 | | LM287849D/LM287810+A | TDI | B-167 | | EE291175/291750 | TS | B-113 | | EE291175/291751D+A | TDO | B-144 | | EE291200D/291750+A | TDI | B-161 | | EE291201/291750 | TS | B-113 | | EE291201/291751D+A | TDO | B-144 | | EE291250/291750 | TS | B-115 | | EE291250/291751D+A | TDO | B-144 | | EE295102/295193 | TS | B-111 | | EE295102/295192D+A | TDO | B-142 | | EE295110/295193 | TS | B-113 | | EE295110/295192D+A | TDO | B-142 | | EE329119D/329172+A | TDI | B-163 | | EE333137/333197 | TS | B-115 | | EE333137/333203D+A | TDO | B-144 | | EE333140/333197 | TS | B-115 | | EE333140/333203D+A | TDO | B-146 | | M348449/M348410 | TS | B-111 | | M349549/M349510 | TS | B-111 | | EE350701/351687 | TS | B-107 | | EE350750/351687 | TS | B-107 | | L357049/L357010 | TS | B-113 | | L357049/L357010D+A | TDO | B-144 | | LM361649/LM361610 | TS | B-115 | | LL365340/LL365310D+A | TDO | B-146 | | LL365348/LL365310 | TS | B-117 | | LM377449/LM377410 | TS | B-119 | | LM377449/LM377410D+A | TDO | B-148 | | LM377449D/LM377410+A | TDI | B-165 | | EE380080/380190 | TS | B-107 | | EE380081/380190 | TS | B-107 | | EE420751/421437 | TS | B-107 | | EE420751/421451D+A | TDO | B-138 | | EE420750D/421437+A | TDI | B-161 | | EE420800D/421437+A | TDI | B-161 | | EE420801/421437 | TS | B-107 | | EE420801/421451D+A | TDO | B-138 | | EE426200/426330 | TS | B-119 | | EE426200/426331D+A | TDO | B-148 | | EE430900/431575 | TS | B-109 | | EE430900/431576D+A | TDO | B-140 | | EE435102/435165 | TS | B-111 | | EE435102/435165D+A | TDO | B-142 | | HH437549/HH437510 | TS | B-105 | | LM446349/LM446310 | TS | B-109 | | | | | # Inch system sizes: Tapered Roller Bearings (Single row · Double row) index | Bearing number | ABMA | Page | |-------------------------|-------------|-------| | CONE / CUP | Type | | | 1 11440040# 11440040P A | TD 0 | D 440 | | LM446349/LM446310D+A | TDO | B-140 | | EE450601/451212 | TS | B-105 | | EE450601/451215D+A | TDO | B-138 | | 450900D/451212 | TDI | B-161 | | LM451345/LM451310 | TS | B-111 | | LM451345/LM451310D+A | TDO | B-142 | | LM451349/LM451310 | TS | B-111 | | LM451349/LM451310D+A | TDO | B-142 | | LM451349D/LM451310+A | TDI | B-161 | | L467549/L467510 | TS | B-117 | | L476549/L476510 | TS | B-119 | | L476549/L476510D+A | TDO | B-148 | | LL481448/LL481411 | TS | B-121 | | EE526130/526190 | TS | B-115 | | EE526130/526191D+A | TDO | B-144 | | EE529091D/529157+A | TDI | B-161 | | EE542220/542290 | TS | B-119 | | EE542220/542291D+A | TDO | B-148 | | HM542948/HM542911 | TS | B-107 | | 543085/543114 | TS | B-109 | | 543085/543115D+A | TDO | B-140 | | 544090/544118 | TS | B-109 | | 544091/544118 | TS | B-109 | | 545112/545141 | TS | B-113 | | 545112/545142D+A | TDO | B-144 | | LM545849/LM545810 | TS | B-109 | | EE547341D/547480+A | TDI | B-167 | | L555233/L555210 | TS | B-113 | | L555233/L555210D+A | TDO | B-142 | | L555249/L555210 | TS | B-113 | | L555249/L555210D+A | TDO | B-144 | | LL562749/LL562710 | TS | B-115 | | LM565943/LM565910 | TS | B-115 | | LM565949/LM565910 | TS | B-117 | | LM565949/LM565912 | TS | B-117 | | LL566848/LL566810 | TS | B-117 | | LM567949/LM567910 | TS | B-117 | | L570649/L570610 | TS | B-117 | | EE571703/572650 | TS | B-117 | | EE571703/572651D+A | TDO | B-146 | | LL575343/LL575310 | TS | B-119 | | LL575349/LL575310 | TS | B-119 | | EE626210/626321D+A | TDO | B-148 | | EE640192/640260 | TS | B-119 | | EE640192/640261D+A | TDO | B-113 | | EE649240/649310 | TS | B-121 | | EE649240/649311D+A | TDO | B-148 | | EE649241D/649310+A | TDI | B-140 | | LM654642/LM654610 | TS | B-107 | | LM654642/LM654610D+A | TDO | B-113 | | LM654648D/LM654610+A | TDI | B-142 | | LM654648D/LM654610+A | | B-103 | | | TS | | | LM654649/LM654610D+A | TDO | B-144 | | EE655270/655345 | TS | B-121 | | Bearing number CONE / CUP | ABMA
Type | Page | |--|--------------|-------| | EE655271D/655345+A | TDI | B-167 | | LM665949/LM665910 | TS. | B-117 | | LM665949/LM665910D+A | TDO | | | M667935/M667911 | TS | B-117 | | M667947D/M667910+A | TDI | B-165 | | M667948/M667910 | TS | B-117 | | EE671801/672873 | TS | B-119 | | EE671801/672875D+A | TDO | B-146 | | 680235/680270 | TS | B-121 | | LL687949/LL687910 | TS | B-121 | | LL687949/LL687910D+A | TDO | B-148 | | EE722110/722185 | TS | B-113 | | EE722110/722186D+A | TDO | B-142 | | EE722115/722185 | TS | B-113 | | EE722115/722186D+A | TDO | B-144 | | EE724120/724195 | TS | B-113 | | EE724120/724196D+A | TDO | B-142 | | LM742745/LM742710 | TS | B-109 | | LM742745/LM742710D+A | TDO | B-140 | | LM742747/LM742710 | TS | B-109 | | LM742749/LM742710 | TS | B-109 | | LM742749/LM742710D+A | TDO | B-140 | | LM742749D/LM742710+A | TDI | B-161 | | EE743240/743320 | TS | B-121 | | EE743240/743321D+A | TDO | B-148 | | HM746646/HM746610 | TS | B-109 | | HM746646/HM746610D+A | TDO | B-140 | | EE752305/752380 | TS | B-121 | | EE755280/755360 | TS | B-121 | | EE755280/755361D+A | TDO | B-148 | | EE755281D/755360+A | TDI | B-167 | | EE755285/755360 | TS | B-121 | | EE755285/755361D+A | TDO | - | | LM757049/LM757010 | TS | B-113 | | M757449D/M757410+A | TDI | B-163 | | LM761649D/LM761610+A | TDI | B-163 | | EE763330/763410 | TS | B-121 | | LM763449D/LM763410+A
LM767745D/LM767710+A | TDI | B-163 | | | TDI
TDI | B-165 | | LM767749D/LM767710+A
LM769349D/LM769310+A | TDI | B-165 | | L770847D/L770810+A | TDI | B-165 | | L770847D/L770810+A | TDI | B-165 | | LM770949/LM770910 | TS | B-103 | | LL771948/LL771911 | TS | B-119 | | LM772748/LM772710 | TS | B-119 | | LM772748/LM772710D+A | TDO | B-118 | | LM772749D/LM772710+A | TDI | B-140 | | EE776420/776520 | TS | B-103 | | EE776430/776520 | TS | B-121 | | LL778149/LL778110 | TS | B-119 | | LM778549D/LM778510+A | TDI | B-165 | | LL788345/LL788310 | TS | B-121 | | LL/00343/LL/00310 | 13 | D-121 | | Bearing number | ABMA | Page | |-------------------------------------|----------|-------| | CONE / CUP | Type | | | FF700444/700004 | TC | B-113 | | EE790114/790221 | TS
TS | B-113 | | EE790120/790221
EE833160X/833232 | | B-115 | | | TS | | | EE833160XD/833232+A | TDO | B-165 | | HH840249/HH840210 | TS | B-107 | | EE843220/843290 | TS | B-119 | | EE843220/843291D+A | TDO | B-148 | | EE843220D/843290+A | TDI | B-165 | | H852849/H852810 | TS | B-113 | | L853049/L853010 | TS | B-113 | | L860048/L860010 | TS | B-115 | | L860049/L860010 | TS | B-115 | | L865547/L865512 | TS | B-115 | | LM869448/LM869410 | TS | B-117 | | LM869448/LM869410D+A | TDO | B-146 | | LM869449D/LM869410+A | TDI | B-165 | | L879946/L879910 | TS | B-121 | | L879947/L879910 | TS | B-121 | | LL889049/LL889010 | TS | B-121 | | LL889049/LL889010D+A | TDO | B-148 | | EE911600/912400 | TS | B-117 | | EE911600/912401D+A | TDO | B-146 | | EE923095/923175 | TS | B-111 | | EE923095/923176D+A | TDO | B-140 | | HH926744/HH926710 | TS | B-105 | | HH926744/HH926716 | TS | B-105 | | HH926749/HH926710 | TS | B-105 | | HH932132/HH932110 | TS | B-105 | | HH932145/HH932110 | TS | B-105 | | HH932145/HH932115 | TS | B-105 | | H936340/H936310 | TS | B-105 | | H936340/H936316 | TS | B-105 | | H936349/H936310 | TS | B-105 | | EE941205/941950 | TS | B-113 | | HH949549/HH949510 | TS | B-109 | | HH949549/HH949510D+A | TDO | B-140 | | HH953749/HH953710 | TS | B-111 | | HH953749/HH953710D+A | TDO | B-142 | | LM961548/LM961511D+A | TDO | B-144 | | LM961548/LM961511 | TS | B-115 | | H961649/H961610 | TS | B-115 | | H961649/H961610D+A | TDO | B-144 | | EE971354/972100 | TS | B-115 | |
EE971354/972102D+A | TDO | B-144 | | | | | | | | | | | | | # Inch system sizes: Tapered Roller Bearings (Four Row) index | Bearing number
CONE / CUP | ABMA
Type | Page | |--------------------------------|--------------|-------| | T-8576D/8520/8520D | TQO | B-185 | | 9974D/9920/9920D | TQO | B-183 | | T-46791D/46720/46721D | TQO | B-181 | | T-48290D/48220/48220D | TQO | B-181 | | T-48393D/48320/48320D | TQO | B-181 | | T-48680D/48620/48620D | TQO | B-181 | | 67791D/67720/67721D | TQO | B-183 | | T-67885D/67820/67820D | TQO | B-183 | | T-67986D/67920/67920D | TQO | B-183 | | 81576D/81962/81963D | TQO | B-181 | | 82681D/82620/82620D | TQO | B-183 | | EE126096D/126150/126151D | TQO | B-185 | | EE127097D/127137/127137D | TQO | B-185 | | EE132082D/132125/132126D | TQO | B-183 | | EE134102D/134143/134144D | TQO | B-185 | | EE135111D/135155/135156D | TQO | B-187 | | L163149D/L163110/L163110D | TQO | B-191 | | EE171000D/171450/171451D | TQO | B-185 | | EE181455D/182350/182351D | TQO | B-191 | | EE221027D/221575/221576D | TQO | B-185 | | M224749D/M224710/M224710D | TQO | B-181 | | T-M231649D/M231610/M231610D | TQO | B-181 | | EE234161D/234215/234216D | TQO | B-191 | | M238849D/M238810/M238810D | TQO | B-183 | | M240648D/M240611/M240611D | TQO | B-183 | | M241538D/M241510/M241510D | TQO | B-183 | | EE244181D/244235/244236D | TQO | B-193 | | T-M244249D/M244210/M244210D | TQO | B-185 | | LM247748D/LM247710/LM247710D | TQO | B-185 | | T-M249748D/M249710/M249710D | TQO | B-185 | | T-M252349D/M252310/M252310D | TQO | B-187 | | HM252349D/HM252310/HM252310D | TQO | B-185 | | M255449D/M255410/M255410D | TQO | B-187 | | HM256849D/HM256810/HM256810DG2 | TQO | B-187 | | M257149D/M257110/M257110D | TQO | B-187 | | Bearing number CONE / CUP | ABMA
Type | Page | |----------------------------------|--------------|-------| | M257248D/M257210/M257210D | TQO | B-189 | | LM258649D/LM258610/LM258610D | TQO | B-189 | | T-HM259049D/HM259010/HM259010D | TQO | B-189 | | HM261049D/HM261010/HM261010DA | TQO | B-189 | | M262449D/M262410/M262410DG2 | TQO | B-189 | | T-HM262749D/HM262710/HM262710DG2 | TQO | B-189 | | LM263149D/LM263110/LM263110D | TQO | B-109 | | M263349D/M263310/M263310D | TQO | B-191 | | HM265049D/HM265010/HM265010DG2 | TQO | B-191 | | HM266449D/HM266410/HM266410DG2 | TQO | B-191 | | M268749D/M268710/M268710DG2 | | | | | TQO | B-193 | | M270749D/M270710/M270710DG2 | TQO | B-193 | | LM272249D/LM272210/LM272210DG2 | TQO | B-193 | | M274149D/M274110/M274110DG2 | TQO | B-195 | | LM274449D/LM274410/LM274410D | TQO | B-195 | | EE275106D/275155/275156D | TQO | B-185 | | EE275109D/275160/275161D | TQO | B-187 | | M275349D/M275310/M275310DG2 | TQO | B-195 | | M276449D/M276410/M276410DG2 | TQO | B-195 | | M278749D/M278710/M278710DG2 | TQO | B-195 | | LM278849D/LM278810/LM278810D | TQO | B-195 | | M280049D/M280010/M280010DG2 | TQO | B-197 | | M280349D/M280310/M280310DG2 | TQO | B-197 | | EE280700D/281200/281201D | TQO | B-183 | | L281149D/L281110/L281110DG2 | TQO | B-197 | | M281649D/M281610/M281610DG2 | TQO | B-197 | | LM281849D/LM281810/LM281810DG2 | TQO | B-197 | | M282249D/M282210/M282210D | TQO | B-197 | | M283449D/M283410/M283410D | TQO | B-199 | | LM283649D/LM283610/LM283610DG2 | TQO | B-199 | | M284148D/M284111/M284110DG2 | TQO | B-199 | | M284249D/M284210/M284210DG2 | TQO | B-199 | | M285848D/M285810/M285810D | TQO | B-199 | | LM286249D/LM286210/LM286210DG2 | TQO | B-199 | | LM287649D/LM287610/LM287610DG2 | TQO | B-199 | # Inch system sizes: Tapered Roller Bearings (Four Row) index | Bearing number
CONE / CUP | ABMA
Type | Page | |--------------------------------|--------------|-------| | LM288949D/LM288910/LM288910D | TQO | B-199 | | EE291202D/291750/291751D | TQO | B-187 | | EE329119D/329172/329173D | TQO | B-187 | | LM377449D/LM377410/LM377410DG2 | TQO | B-195 | | T-LM451349D/LM451310/LM451310D | TQO | B-185 | | EE522126D/523087/523088D | TQO | B-195 | | EE526131D/526190/526191D | TQO | B-189 | | EE531201D/531300/531301XDG2 | TQO | B-195 | | EE547341D/547480/547481DG2 | TQO | B-199 | | T-EE640193D/640260/640261DG2 | TQO | B-193 | | EE649241D/649310/649311DG2 | TQO | B-197 | | T-LM654644D/LM654610/LM654610D | TQO | B-187 | | T-LM654648D/LM654610/LM654610D | TQO | B-187 | | LM665949D/LM665910/LM665910D | TQO | B-191 | | EE655271D/655345/655346DG2 | TQO | B-197 | | M667947D/M667911/M667911DG2 | TQO | B-193 | | EE700090D/700167/700168D | TQO | B-185 | | EE722111D/722185/722186D | TQO | B-187 | | EE724121D/724195/724196DG2 | TQO | B-189 | | EE736173D/736238/736239D | TQO | B-193 | | EE737179D/737260/737260D | TQO | B-193 | | T-LM742749D/LM742714/LM742714D | TQO | B-183 | | EE755280D/755360/755361DG2 | TQO | B-197 | | EE755281D/755360/755361DG2 | TQO | B-197 | | M757448D/M757410/M757410D | TQO | B-187 | | M757449D/M757410/M757410D | TQO | B-189 | | LM761648D/LM761610/LM761610D | TQO | B-189 | | LM761649D/LM761610/LM761610D | TQO | B-189 | | LM763449D/LM763410/LM763410DG2 | TQO | B-191 | | LM765149D/LM765110/LM765110D | TQO | B-191 | | LM767745D/LM767710/LM767710DG2 | TQO | B-191 | | LM767749D/LM767710/LM767710DG2 | TQO | B-191 | | LM769349D/LM769310/LM769310D | TQO | B-193 | | L770849D/L770810/L770810DG2 | TQO | B-193 | | LM772749D/LM772710/LM772710DA | TQO | B-195 | | Bearing number | ABMA | Page | |----------------------------------|------|-------| | CONE / CUP | _ | i age | | CONE / COP | Туре | | | LM778549D/LM778510/LM778510DG2 | TQO | B-195 | | EE822101D/822175/822176D | TQO | B-185 | | EE833161D/833232/833233D | TQO | B-193 | | EE843221D/843290/843291D | TQO | B-195 | | T-LM869449D/LM869410/LM869410DG2 | TQO | B-193 | | EE911603D/912400/912401D | TQO | B-193 | | EE921150D/921875/921876D | TQO | B-187 | | EE931170D/931250/931251XDG2 | TQO | B-193 | | EE971355D/972100/972103D | TQO | B-189 | | | | | | | | | #### NTN ## **Metric system sizes** #### *d* 100∼120mm | | | Boundary d | imensions | | | | | ic load r | | ototio | Bearing | |-----|------------|------------|-----------|----------|---------------|------------------|---------------|-------------|-----------------|------------------|---------------------------| | | | mr | n | | | | dynamic
kN | static | dynamic
kç | static
of | numbers | | | | | | | | | | | ` | , | | | d | D | T | В | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 4.40 | 0.5 | 05 | 00 | 4.5 | 4.5 | 404 | 000 | 10.000 | 04.000 | 00000 | | | 140
140 | 25
25 | 25
24 | 20
20 | 1.5
1.5 | 1.5
1.5 | 121
97.5 | 206
162 | 12,300
9,950 | 21,000
16,500 | 32920XU
32920@ | | | 150 | 25
32 | 24
32 | 20
24 | 2 | 1.5 | 170 | 281 | 17,300 | 28,600 | 32920 3
32020XU | | | 150 | 39 | 32
39 | 32.5 | 2 | 1.5 | 224 | 390 | 22,800 | 39,500 | 33020U | | | 180 | 37 | 34 | 29 | 3 | 2.5 | 258 | 335 | 26,300 | 34,500 | 30220U | | 100 | 180 | 49 | 46 | 39 | 3 | 2.5 | 330 | 465 | 33,500 | 47,500 | 32220U | | | 215 | 51.5 | 47 | 39 | 4 | 3 | 410 | 500 | 41,500 | 51,000 | 30320U | | | 215 | 51.5 | 47 | 39 | 3 | 3 | 345 | 400 | 35,000 | 40,500 | 303200 | | | 215 | 56.5 | 51 | 35 | 4 | 3 | 355 | 435 | 36,000 | 44,000 | 31320XU | | | 215 | 77.5 | 73 | 60 | 4 | 3 | 570 | 770 | 58,500 | 78,500 | 32320U | | | 2.0 | 77.0 | , 0 | | • | | 0.0 | | | 7 0,000 | | | | 145 | 25 | 25 | 20 | 1.5 | 1.5 | 126 | 219 | 12,800 | 22,400 | 32921XA@ | | | 160 | 35 | 35 | 26 | 2.5 | 2 | 201 | 335 | 20,500 | 34,000 | 32021XU | | | 160 | 43 | 43 | 34 | 2.5 | 2 | 245 | 420 | 25,000 | 43,000 | 33021U | | | 190 | 39 | 36 | 30 | 3 | 2.5 | 287 | 380 | 29,300 | 38,500 | 30221U | | 105 | 190 | 53 | 50 | 43 | 3 | 2.5 | 380 | 540 | 38,500 | 55,500 | 32221U | | | 225 | 53.5 | 49 | 41 | 4 | 3 | 435 | 535 | 44,500 | 54,500 | 30321U | | | 225 | 53.5 | 49 | 41 | 3 | 3 | 365 | 420 | 37,000 | 43,000 | 30321@ | | | 225 | 58 | 53 | 36 | 4 | 3 | 380 | 470 | 39,000 | 47,500 | 31321XU | | | 225 | 81.5 | 77 | 63 | 4 | 3 | 610 | 825 | 62,500 | 84,500 | 32321U | | | 150 | 25 | 25 | 20 | 1.5 | 1.5 | 127 | 226 | 13,000 | 23,100 | 32922XA@ | | | 170 | 38 | 38 | 29 | 2.5 | 2 | 236 | 390 | 24,000 | 39,500 | 32022XU | | | 170 | 47 | 47 | 37 | 2.5 | 2 | 288 | 500 | 29,400 | 51,000 | 33022U | | | 200 | 41 | 38 | 32 | 3 | 2.5 | 325 | 435 | 33,000 | 44,000 | 30222U | | | 200 | 56 | 53 | 46 | 3 | 2.5 | 420 | 605 | 43,000 | 62,000 | 32222U | | 110 | 240 | 54.5 | 50 | 42 | 4 | 3 | 480 | 590 | 49,000 | 60,000 | 30322U | | | 240 | 54.5 | 50 | 42 | 3 | 3 | 400 | 465 | 40,500 | 47,000 | 303220 | | | 240 | 63 | 57 | 38 | 4 | 3 | 430 | 535 | 44,000 | 54,500 | 31322XU | | | 240 | 84.5 | 80 | 65 | 4 | 3 | 705 | 970 | 72,000 | 98,500 | 32322U | | | 240 | 84.5 | 80 | 65 | 3 | 3 | 620 | 830 | 63,500 | 84,500 | 323220 | | | | | | _ | | | | | | | | | | 165 | 29 | 29 | 23 | 1.5 | 1.5 | 162 | 294 | 16,500 | 30,000 | 32924XU | | | 165 | 29 | 27 | 23 | 1.5 | 1.5 | 118 | 205 | 12,000 | 20,900 | 32924@ | | 120 | 180 | 38 | 38 | 29 | 2.5 | 2 | 245 | 420 | 25,000 | 43,000 | 32024XU | | 120 | 215 | 43.5 | 40 | 34 | 3 | 2.5 | 345 | 470 | 35,500 | 48,000 | 30224U | | | 215 | 61.5 | 58 | 50 | 3 | 2.5 | 460 | 680 | 47,000 | 69,500 | 32224U | | | 260 | 59.5 | 55 | 46 | 4 | 3 | 560 | 695 | 57,000 | 71,000 | 30324U | | | 260 | 59.5 | 55 | 46 | 3 | 3
This book | 465 | 550 | 47,500 | 56,000 | 30324@ | Minimal allowable dimension for chamfer dimension r or r. This bearing does not incorporate the subunit dimensions. | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $ rac{F}{F}$ | $\frac{r_a}{r} > e$ | |-------------------------------|------------|--------------|---------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below. | | | Ab | utment an | nd fillet din | nensions | 3 | | | Load
center
mm | Constant | | ial
actors | Mass
kg | |------------|------------|------------
----------------|------------------|------------------|------------|-------------|--------------------|----------------------|--------------|--------------|------------------|-------------------| | $d_{ m a}$ | $d_{ m b}$ | I |) _a | D_{b} | S_{a} | $S_{ m b}$ | $r_{ m as}$ | r_{1as} | | | | | .vg | | min | max | max | ∽a
min | min | min | min | max | max | a | e | Y_2 | Y_{o} | (approx.) | | 111111 | max | max | | 111111 | | | mux | mux | - CO | | 12 | 10 | (approx.) | | 108.5 | 107.5 | 131.5 | 127.5 | 135.5 | 4 | 5 | 1.5 | 1.5 | 24.5 | 0.33 | 1.82 | 1.00 | 1.14 | | 108.5 | 107.5 | 131.5 | 127.5 | 135.5 | 4 | 5 | 1.5 | 1.5 | 25 | 0.35 | 1.73 | 0.95 | 1.08 | | 110 | 109 | 141.5 | 134 | 144 | 6 | 8 | 2 | 1.5 | 32.5 | 0.46 | 1.31 | 0.72 | 1.91 | | 110 | 108 | 141.5 | 135 | 143 | 7 | 6.5 | 2 | 1.5 | 29.5 | 0.29 | 2.09 | 1.15 | 2.37 | | 114 | 116 | 168 | 157 | 168 | 5 | 8 | 2.5 | 2 | 36 | 0.42 | 1.43 | 0.79 | 3.78 | | 114 | 114 | 168 | 154 | 171 | 5 | 10 | 2.5 | 2 | 41.5 | 0.42 | 1.43 | 0.79 | 5.12 | | 118 | 127 | 201 | 184 | 200 | 5 | 12.5 | 3 | 2.5 | 41.5 | 0.35 | 1.74 | 0.96 | 8.56 | | 118 | 127 | 201 | 184 | 200 | 5 | 12.5 | 3 | 2.5 | 42 | 0.35 | 1.73 | 0.95 | 7.72 | | 118 | 121 | 201 | 168 | 202 | 7 | 21.5 | 3 | 2.5 | 69 | 0.83 | 0.73 | 0.40 | 8.67 | | 118 | 121 | 201 | 177 | 200 | 5 | 17.5 | 3 | 2.5 | 53 | 0.35 | 1.74 | 0.96 | 12.7 | | | | | | | | | | | | | | | | | 113.5 | 113.5 | 136.5 | 131.5 | 140.5 | 5 | 5 | 1.5 | 1.5 | 25 | 0.34 | 1.76 | 0.97 | 1.2 | | 117 | 116 | 150 | 143 | 154 | 6 | 9 | 2 | 2 | 34.5 | 0.44 | 1.35 | 0.74 | 2.42 | | 117 | 116 | 150 | 145 | 153 | 7 | 9 | 2 | 2 | 31 | 0.28 | 2.12 | 1.17 | 3 | | 119 | 122 | 178 | 165 | 178 | 6 | 9 | 2.5 | 2 | 38 | 0.42 | 1.43 | 0.79 | 4.39 | | 119 | 119 | 178 | 161 | 180 | 6 | 10 | 2.5 | 2 | 44 | 0.42 | 1.43 | 0.79 | 6.25 | | 123 | 132 | 211 | 193 | 209 | 6 | 12.5 | 3 | 2.5 | 43.5 | 0.35 | 1.74 | 0.96 | 9.79 | | 123 | 132 | 211 | 193 | 209 | 6 | 12.5 | 3 | 2.5 | 43.5 | 0.35 | 1.73 | 0.95 | 8.93 | | 123 | 126 | 211 | 176 | 211 | 7 | 22 | 3 | 2.5 | 71.5 | 0.83 | 0.73 | 0.40 | 9.68 | | 123 | 128 | 211 | 185 | 209 | 6 | 18.5 | 3 | 2.5 | 55 | 0.35 | 1.74 | 0.96 | 14.5 | | 440.5 | 447.5 | 444.5 | 107 | 445.5 | _ | _ | 4 = | 4.5 | 00.5 | 0.00 | 4.00 | 0.00 | 4.00 | | 118.5 | 117.5 | 141.5 | 137 | 145.5 | 5 | 5 | 1.5 | 1.5 | 26.5 | 0.36 | 1.69 | 0.93 | 1.23 | | 122 | 122 | 160 | 152 | 163 | 7 | 9 | 2 | 2 | 36.5 | 0.43 | 1.39 | 0.77 | 3.07 | | 122 | 121 | 160 | 152 | 161 | 7 | 10 | 2 | 2 | 33.5 | 0.29 | 2.09 | 1.15 | 3.8 | | 124 | 129 | 188 | 174 | 188 | 6 | 9 | 2.5
2.5 | 2 | 40 | 0.42 | 1.43 | 0.79 | 5.18 | | 124
128 | 126
141 | 188
226 | 170
206 | 190
222 | 6 | 10
12.5 | | 2
2.5 | 47
45.5 | 0.42
0.35 | 1.43
1.74 | 0.79
0.96 | 7.43 | | 128 | 141 | 226 | 206 | 222 | 6
6 | 12.5 | 3
3 | 2.5 | 45.5
44 | 0.35 | 1.74 | 0.95 | 11.4
10.5 | | 128 | 135 | 226 | 188 | 224 | 7 | 25 | 3 | 2.5 | 74 | 0.83 | 0.73 | 0.40 | 11.9 | | 128 | 135 | 226 | 198 | 222 | 6 | 19.5 | 3 | 2.5 | 57.5 | 0.35 | 1.74 | 0.40 | 18 | | 128 | 135 | 226 | 198 | 222 | 6.5 | 19.5 | 3 | 2.5 | 56 | 0.35 | 1.74 | 0.95 | 16.9 | | 120 | 133 | 220 | 190 | 222 | 0.5 | 19.5 | | 2.5 | 50 | 0.33 | 1.73 | 0.95 | 10.9 | | 128.5 | 128.5 | 156.5 | 150 | 160 | 6 | 6 | 1.5 | 1.5 | 29.5 | 0.35 | 1.72 | 0.95 | 1.77 | | 128.5 | 130.5 | 156.5 | 147.5 | 159.5 | 6 | 6 | 1.5 | 1.5 | 31 | 0.37 | 1.60 | 0.88 | 1.63 | | 132 | 131 | 170 | 161 | 173 | 7 | 9 | 2 | 2 | 39 | 0.46 | 1.31 | 0.72 | 3.25 | | 134 | 140 | 203 | 187 | 203 | 6 | 9.5 | 2.5 | 2 | 44 | 0.44 | 1.38 | 0.76 | 6.23 | | 134 | 136 | 203 | 181 | 204 | 6 | 11.5 | 2.5 | 2 | 51.5 | 0.44 | 1.38 | 0.76 | 9.08 | | 138 | 152 | 246 | 221 | 239 | 6 | 13.5 | 3 | 2.5 | 49 | 0.35 | 1.74 | 0.96 | 14.2 | | 138 | 152 | 246 | 221 | 239 | 6 | 13.5 | 3 | 2.5 | 48.5 | 0.35 | 1.73 | 0.95 | 13.2 | | | | | | | | | | | | | | | | #### NTN ## **Metric system sizes** #### **d** 120∼160mm | | | Boundary di | mensions | | | Basic load ratings
dynamic static dynamic static | | | | | Bearing numbers | |-----|-----|------------------|----------|----|---------------|---|------------|-------------|-----------------|-------------|-----------------| | | | mm | า | | | | | kN | • | gf | numbers | | | | | | | | | | | | | | | d | D | T | В | C | $r_{ m smin}$ | $r_{ m ls\ min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 260 | 68 | 62 | 42 | 4 | 3 | 515 | 655 | 52,500 | 67,000 | 31324XU | | 120 | 260 | 90.5 | 86 | 69 | 4 | 3 | 815 | 1,130 | 83,000 | 116,000 | 32324U | | | 200 | 00.0 | | | • | | 0.0 | 1,100 | | 110,000 | | | | 180 | 32 | 32 | 25 | 2 | 1.5 | 194 | 350 | 19,800 | 36,000 | 32926XU | | | 180 | 32 | 30 | 26 | 2 | 2 | 142 | 252 | 14,500 | 25,700 | 32926@ | | | 200 | 45 | 45 | 34 | 2.5 | 2 | 320 | 545 | 32,500 | 55,500 | 32026XU | | 130 | 230 | 43.75 | 40 | 34 | 4 | 3 | 375 | 505 | 38,000 | 51,500 | 30226U | | 100 | 230 | 67.75 | 64 | 54 | 4 | 3 | 530 | 815 | 54,000 | 83,000 | 32226U | | | 280 | 63.75 | 58 | 49 | 5 | 4 | 650 | 830 | 66,000 | 84,500 | 30326U | | | 280 | 72 | 66 | 44 | 5 | 4 | 600 | 780 | 61,500 | 79,500 | 31326XU | | | 280 | 98.75 | 93 | 78 | 4 | 4 | 895 | 1,240 | 91,000 | 126,000 | 32326 | | | 190 | 32 | 32 | 25 | 2 | 1.5 | 200 | 375 | 20,400 | 38,000 | 32928XU | | | 210 | 45 | 45 | 34 | 2.5 | 2 | 330 | 580 | 33,500 | 59,500 | 32028XU | | | 250 | 45.75 | 42 | 36 | 4 | 3 | 420 | 570 | 43,000 | 58,500 | 30228U | | | 250 | 45.75 | 42 | 36 | 3 | 3 | 375 | 485 | 38,000 | 49,500 | 30228@ | | 140 | 250 | 71.75 | 68 | 58 | 4 | 3 | 610 | 920 | 62,500 | 94,000 | 32228U | | 0 | 300 | 67.75 | 62 | 53 | 5 | 4 | 735 | 950 | 75,000 | 97,000 | 30328U | | | 300 | 67.75 | 62 | 53 | 4 | 4 | 640 | 780 | 65,000 | 80,000 | 30328@ | | | 300 | 77 | 70 | 47 | 5 | 4 | 685 | 905 | 70,000 | 92,500 | 31328XU | | | 300 | 107.75 | 102 | 85 | 4 | 4 | 985 | 1,370 | 101,000 | 140,000 | 32328 | | | | | | | | _ | | | | | | | | 210 | 38 | 38 | 30 | 2.5 | 2 | 268 | 490 | 27,300 | 50,000 | 32930XU | | | 225 | 48 | 48 | 36 | 3 | 2.5 | 370 | 655 | 37,500 | 67,000 | 32030XU | | | 270 | 49 | 45 | 38 | 4 | 3 | 450 | 605 | 46,000 | 61,500 | 30230U | | 150 | 270 | 77 | 73 | 60 | 4 | 3 | 700 | 1,070 | 71,500 | 109,000 | 32230U | | | 320 | 72 | 65 | 55 | 5 | 4 | 825 | 1,070 | 84,000 | 109,000 | 30330U | | | 320 | 72 | 65 | 55 | 4 | 4 | 680 | 875 | 69,500 | 89,000 | 30330@ | | | 320 | 82 | 75 | 50 | 5 | 4 | 775 | 1,030 | 79,000 | 105,000 | 31330XU | | | 320 | 114 | 108 | 90 | 4 | 4 | 1,160 | 1,750 | 119,000 | 179,000 | 32330 | | | 220 | 38 | 38 | 30 | 2.5 | 2 | 276 | 520 | 28,200 | 53,000 | 32932XU | | | 240 | 51 | 51 | 38 | 3 | 2.5 | 435 | 790 | 44,500 | 80,500 | 32032XU | | | 290 | 52 | 48 | 40 | 4 | 3 | 525 | 720 | 53,500 | 73,500 | 30232U | | 160 | 290 | 84 | 80 | 67 | 4 | 3 | 890 | 1,420 | 90,500 | 145,000 | 32232U | | 100 | 340 | 75 | 68 | 58 | 5 | 4 | 915 | 1,200 | 93,500 | 122,000 | 30332U | | | 340 | 75 | 68 | 58 | 4 | 4 | 755 | 975 | 77,000 | 99,500 | 30332@ | | | 340 | 121 | 114 | 95 | 4 | 4 | 1,230 | 1,840 | 126,000 | 188,000 | 32332 | | | | ala dimanajan fa | | | | | | , | ata tha aubunit | | | Minimal allowable dimension for chamfer dimension r or r.This bearing does not incorporate the subunit dimensions. | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≤ e | $\frac{F}{F}$ | $\frac{\frac{a}{r}}{r} > e$ | |-------------------------------|------------|---------------|-----------------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below. | | | | Abu | utment and | | ensions | S | | | Load center | Constant | | ial
actors | Mass | |---|------------|------------|------------|------------------------|-------------|------------------|------------|-------------|--------------|-------------|----------|-------|---------------|--------------| | | | | _ | | mm | ~ | ~ | | | mm | | | | kg | | | $d_{ m a}$ | $d_{ m b}$ | L | | $D_{\rm b}$ | S_{a} | $S_{ m b}$ | $r_{ m as}$ | $r_{ m 1as}$ | | | | | | | | min | max | max | min | min | min | min | max | max | a | e | Y_2 | $Y_{\rm o}$ | (approx.) | | | 138 | 145 | 246 | 203 | 244 | 9 | 26 | 3 | 2.5 | 82.5 | 0.83 | 0.73 | 0.40 | 15.4 | | | 138 | 145 | 246 | 213 | 239 | 6 | 21.5 | 3 | 2.5 | 61.5 | 0.35 | 1.74 | 0.96 | 22.4 | | - | | | | | | | | | | | | | | | | | 140 | 139 | 171.5 | 163.5 | 174 | 6 | 7 | 2 | 1.5 | 31.5 | 0.34 | 1.77 | 0.97 | 2.36 | | | 140 | 139 | 170 | 163.5 | 174 | 6 | 6 | 2 | 2 | 34 | 0.37 | 1.60 | 0.88 | 2.22 | | | 142 | 144 | 190 | 178 | 192 | 8 | 11 | 2 | 2 | 43.5 | 0.43 | 1.38 | 0.76 | 4.96 | | | 148 | 152 | 216 | 203 | 218 | 7 | 9.5 | 3 | 2.5 | 45.5 | 0.44 | 1.38 | 0.76 | 7.25 | | | 148 | 146 | 216 | 193 | 219 | 7 | 13.5 | 3 | 2.5 | 57 | 0.44 | 1.38 | 0.76 | 11.2 | | | 152 | 164 | 262 | 239 | 255 | 8 | 14.5 | 4 | 3 | 53.5 | 0.35 | 1.74 | 0.96 | 17.4 | | | 152 | 155.5 | 262 | 214.5 | 263 | 9 | 28 | 4 | 3 | 87.5 | 0.83 | 0.73 | 0.40 | 19 | | | 148 | 160.5 | 262 | 230 | 264 | 2.4 | 20 | 3 | 3 | 67.5 | 0.35 | 1.73 | 0.95 | 27.2 | | - | | | | | | | | | | | | | | | | | 150 | 150 | 181.5 | 177 | 184 | 6 | 6 | 2 | 1.5 | 34 | 0.36 | 1.67 | 0.92 | 2.51 | | | 152 | 153 | 200 | 187 | 202 | 8 | 11 | 2 | 2 | 46 | 0.46 | 1.31 | 0.72 | 5.28 | | | 158 | 163 | 236 | 219 | 237 | 7 | 9.5 | 3 | 2.5 | 48.5 | 0.44 | 1.38 | 0.76 | 9.26 | | | 158 | 163 | 236 | 219 | 237 | 7 | 9.5 | 2.5 | 2.5 | 47.5 | 0.43 | 1.39 | 0.77 | 8.37 | | | 158 | 158 | 236 | 210 | 238 | 9 | 13.5 | 3 | 2.5 | 61 | 0.44 | 1.38 | 0.76 | 14.1 | | | 162 | 179 | 282 | 251 | 273 | 9 | 14.5 | 4 | 3 | 56.5 | 0.35 | 1.74 | 0.96 | 21.2 | | | 162 | 179 | 282 | 252 | 273 | 9 | 14.5 | 4 | 3 | 57 | 0.35 | 1.73 | 0.95 | 20.4 | | | 162 | 165 | 282 | 234 | 280 | 9 | 30 | 4 | 3 | 94 | 0.83 | 0.73 | 0.40 | 23 | | | 158 | 170.5 | 282 | 244 |
281 | 1.5 | 20 | 3 | 3 | 74.5 | 0.35 | 1.73 | 0.95 | 33.2 | | | 162 | 162 | 200 | 192 | 202 | 7 | 8 | 2 | 2 | 36.5 | 0.33 | 1.83 | 1.01 | 3.92 | | | 164 | 164 | 213 | 200 | 216 | 8 | 12 | 2.5 | 2 | 49.5 | 0.33 | 1.31 | 0.72 | 6.37 | | | 168 | 175 | 256 | 234 | 255 | 7 | 11 | 3 | 2.5 | 51.5 | 0.44 | 1.38 | 0.72 | 11.2 | | | 168 | 175 | 256
256 | 23 4
226 | 253
254 | | 17 | 3 | 2.5 | 64.5 | 0.44 | 1.38 | 0.76 | 18.2 | | | 172 | 193 | 302 | 269 | 292 | 8
8 | 17 | 4 | 3 | 61 | 0.44 | 1.74 | 0.76 | 25.5 | | | 172 | 193 | 302 | 269 | 292 | | 17 | | | 62.5 | 0.35 | 1.60 | | 23.5
24.7 | | | | | | | | 8 | | 4 | 3 | | | | 0.88 | | | | 172 | 176 | 302 | 250 | 302 | 9 | 32 | 4 | 3 | 100 | 0.83 | 0.73 | 0.40 | 27.7 | | | 168 | 184 | 302 | 254 | 298 | 4.3 | 24 | 3 | 3 | 80 | 0.37 | 1.60 | 0.88 | 42 | | | 172 | 170.5 | 210 | 199 | 213.5 | 7 | 8 | 2 | 2 | 38.5 | 0.35 | 1.73 | 0.95 | 4.15 | | | 174 | 175 | 228 | 213 | 231 | 8 | 13 | 2.5 | 2 | 52.5 | 0.46 | 1.31 | 0.72 | 7.8 | | | 178 | 189 | 276 | 252 | 272 | 8 | 12 | 3 | 2.5 | 55.5 | 0.44 | 1.38 | 0.76 | 12.9 | | | 178 | 182 | 276 | 242 | 275 | 10 | 17 | 3 | 2.5 | 70 | 0.44 | 1.38 | 0.76 | 23.5 | | | 182 | 205 | 322 | 286 | 310 | 10 | 17 | 4 | 3 | 64 | 0.35 | 1.74 | 0.96 | 29.9 | | | 182 | 205 | 322 | 286 | 311 | 10 | 17 | 4 | 3 | 65.5 | 0.37 | 1.60 | 0.88 | 29.2 | | | 178 | 197.5 | 322 | 272 | 318.5 | 2.3 | 26 | 3 | 3 | 85 | 0.37 | 1.60 | 0.88 | 49 | | | ., 0 | 107.0 | 022 | -, - | 0.0.0 | 2.0 | 20 | 0 | 0 | 00 | 0.07 | 1.00 | 0.00 | 10 | #### NTN ## Metric system sizes #### *d* 170∼220mm | | | Boundary | dimensions | s | | | B dynamic | asic load r | atings
dynamic | static | Bearing
numbers | |-----|------------|-----------|------------|-----------|---------------|------------------|------------------|----------------|--------------------|--------------------|--------------------------| | | | r | mm | | | | • | (N | | gf | nambers | | | _ | | _ | | • | | | _ | | | | | d | D | T | В | C | $r_{ m smin}$ | $r_{ m ls\ min}$ | C_{r} | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 230 | 38 | 38 | 30 | 2.5 | 2 | 286 | 560 | 29,200 | 57,000 | 32934XU | | | 260 | 57 | 57 | 43 | 3 | 2.5 | 500 | 895 | 51,000 | 91,000 | 32034XU | | | 310 | 57 | 52 | 43 | 5 | 4 | 610 | 845 | 62,000 | 86,500 | 30234U | | 170 | 310 | 91 | 86 | 71 | 5 | 4 | 1,000 | 1,600 | 102,000 | 163,000 | 32234U | | 170 | 360 | 80 | 72 | 62 | 5 | 4 | 1,010 | 1,320 | 103,000 | 135,000 | 30334U | | | 360 | 80 | 72 | 62 | 4 | 4 | 845 | 1,100 | 86,000 | 113,000 | 30334@ | | | 360 | 127 | 120 | 100 | 4 | 4 | 1,310 | 1,940 | 133,000 | 198,000 | 32334 | | | 250 | 45 | 45 | 34 | 2.5 | 2 | 350 | 700 | 36,000 | 71,500 | 32936XU | | | 280 | 64 | 64 | 48 | 3 | 2.5 | 645 | 1,170 | 66,000 | 119,000 | 32036XUE1 | | 180 | 320 | 57 | 52 | 43 | 5 | 4 | 630 | 890 | 64,000 | 91,000 | 30236U | | 100 | 320 | 91 | 86 | 71 | 5 | 4 | 1,030 | 1,690 | 105,000 | 172,000 | 32236U | | | 380 | 83 | 75 | 64 | 4 | 4 | 910 | 1,190 | 93,000 | 121,000 | 30336 | | | 380 | 134 | 126 | 106 | 4 | 4 | 1,440 | 2,150 | 147,000 | 219,000 | 32336 | | | 260 | 45 | 45 | 34 | 2.5 | 2 | 355 | 710 | 36,000 | 72,000 | 32938XU | | | 260 | 45 | 42 | 36 | 2.5 | 2.5 | 280 | 525 | 28,600 | 53,500 | 32938@ | | | 290 | 64 | 64 | 48 | 3 | 2.5 | 655 | 1,210 | 67,000 | 124,000 | 32038XUE1 | | 190 | 340 | 60 | 55 | 46 | 5 | 4 | 715 | 1,000 | 73,000 | 102,000 | 30238U | | | 340 | 97 | 92 | 75
75 | 5 | 4 | 1,150 | 1,850 | 117,000 | 189,000 | 32238U | | | 340 | 97 | 92
78 | 75
65 | 4 | 4 | 1,000 | 1,670 | 102,000 | 171,000 | 32238@ | | | 400
400 | 86
140 | 78
132 | 65
109 | 5
5 | 5
5 | 935
1,590 | 1,200
2,390 | 95,000
162,000 | 123,000
244,000 | 30338
32338 | | | 400 | 140 | 132 | 109 | 5 | 5 | 1,390 | 2,390 | 162,000 | 244,000 | 32336 | | | 280 | 51 | 51 | 39 | 3 | 2.5 | 485 | 895 | 49,000 | 91,000 | 32940XUE1 | | | 310 | 70 | 70 | 53 | 3 | 2.5 | 800 | 1,470 | 81,500 | 149,000 | 32040XUE1 | | 000 | 360 | 64
104 | 58 | 48 | 5 | 4 | 785 | 1,110 | 80,000 | 113,000 | 30240U | | 200 | 360
360 | 104 | 98
98 | 82
82 | 5
4 | 4
4 | 1,320
1,150 | 2,130
1,970 | 134,000
118,000 | 217,000 | 32240U
32240 @ | | | 420 | 89 | 90
80 | 62
67 | 5 | 5 | 1,150 | 1,370 | 107,000 | 201,000
140,000 | 30340 | | | 420 | 146 | 138 | 115 | 5 | 5 | 1,740 | 2,650 | 178,000 | 270,000 | 32340 | | | 300 | 51 | 51 | 39 | 3 | 2.5 | 480 | 950 | 49,000 | 97,000 | 32944XUE1 | | | 300 | 51 | 48 | 41 | 2.5 | 2.5 | 345 | 670 | 35,500 | 68,500 | 32944E1@ | | | 340 | 76 | 76 | 57 | 4 | 3 | 920 | 1,690 | 94,000 | 173,000 | 32044XU | | 220 | 400 | 72 | 65 | 54 | 4 | 4 | 815 | 1,220 | 83,000 | 124,000 | 30244 | | | 400 | 114 | 108 | 90 | 4 | 4 | 1,390 | 2,410 | 142,000 | 246,000 | 32244 | | | 460 | 97 | 88 | 73 | 5 | 5 | 1,260 | 1,690 | 129,000 | 172,000 | 30344 | | | 460 | 154 | 145 | 122 | 5 | 5 | 2,020 | 3,050 | 206,000 | 315,000 | 32344 | Minimal allowable dimension for chamfer dimension r or r.This bearing does not incorporate the subunit dimensions. | $\frac{F_{\rm a}}{F_{ m r}}$ | ≦ e | $\frac{F}{F}$ | $\frac{a}{r} > e$ | |------------------------------|------------|---------------|-------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below. | | | Ak | outment a | nd fillet dir | mensions | | | | Load center | Constant | | cial
factors | Mass | |------------|------------|-----|--------------------|------------------|------------------|--------------|-------------|-----------|-------------|----------|-------|-----------------|-----------| | , | , | | D | mm | a | C | | | mm | | | | kg | | $d_{ m a}$ | $d_{ m b}$ | | D_{a} . | D_{b} | S_{a} | $S_{ m b}$. | $r_{ m as}$ | r_{1as} | | | V | v | , | | min | max | max | min | min | min | min | max | max | a | e | Y_2 | $Y_{\rm o}$ | (approx.) | | 182 | 183 | 220 | 213 | 222 | 7 | 8 | 2 | 2 | 42.5 | 0.38 | 1.57 | 0.86 | 4.4 | | 184 | 187 | 248 | 230 | 249 | 10 | 14 | 2.5 | 2 | 56 | 0.44 | 1.35 | 0.74 | 10.5 | | 192 | 203 | 292 | 266 | 288 | 8 | 14 | 4 | 3 | 60.5 | 0.44 | 1.38 | 0.76 | 17 | | 192 | 201 | 292 | 258 | 293 | 10 | 20 | 4 | 3 | 75 | 0.44 | 1.38 | 0.76 | 28.7 | | 192 | 221 | 342 | 303 | 329 | 10 | 18 | 4 | 3 | 68 | 0.35 | 1.74 | 0.96 | 35.3 | | 192 | 221 | 342 | 303 | 332 | 10 | 18 | 4 | 3 | 69.5 | 0.37 | 1.60 | 0.88 | 34.8 | | 188 | 209 | 342 | 287 | 336 | 1.5 | 27 | 3 | 3 | 89.5 | 0.37 | 1.60 | 0.88 | 56.5 | | 192 | 193 | 240 | 225 | 241 | 8 | 11 | 2 | 2 | 54 | 0.48 | 1.25 | 0.69 | 6.54 | | 194 | 199 | 268 | 247 | 267 | 10 | 16 | 2.5 | 2 | 59.5 | 0.42 | 1.42 | 0.78 | 14.5 | | 202 | 211 | 302 | 274 | 297 | 9 | 14 | 4 | 3 | 63 | 0.45 | 1.33 | 0.73 | 17.7 | | 202 | 204 | 302 | 267 | 305 | 10 | 20 | 4 | 3 | 77.5 | 0.45 | 1.33 | 0.73 | 30.7 | | 198 | 227.5 | 362 | 314 | 345 | 1.5 | 19 | 3 | 3 | 72.5 | 0.37 | 1.60 | 0.88 | 38.9 | | 198 | 221 | 362 | 305 | 357 | 2.4 | 28 | 3 | 3 | 95 | 0.37 | 1.60 | 0.88 | 67.8 | | 202 | 204 | 250 | 235 | 251 | 8 | 11 | 2 | 2 | 55 | 0.48 | 1.26 | 0.69 | 6.77 | | 202 | 204 | 248 | 235 | 251 | 8 | 9 | 2 | 2 | 48.5 | 0.37 | 1.60 | 0.88 | 6.43 | | 204 | 209 | 278 | 257 | 279 | 10 | 16 | 2.5 | 2 | 62.5 | 0.44 | 1.36 | 0.75 | 15.1 | | 212 | 228 | 322 | 295 | 316 | 9 | 14 | 4 | 3 | 64 | 0.44 | 1.38 | 0.76 | 20.8 | | 212 | 216 | 322 | 282 | 323 | 11 | 22 | 4 | 3 | 82 | 0.44 | 1.38 | 0.76 | 36.1 | | 212 | 216 | 322 | 286 | 323 | 11 | 22 | 4 | 3 | 87.5 | 0.49 | 1.23 | 0.68 | 33.3 | | 212 | 242 | 378 | 335 | 366.5 | 2.3 | 21 | 4 | 4 | 74.5 | 0.37 | 1.60 | 0.88 | 43.5 | | 212 | 233.5 | 378 | 320 | 373.5 | 1.5 | 31 | 4 | 4 | 100 | 0.37 | 1.60 | 0.88 | 76.9 | | 214 | 214 | 268 | 254 | 271 | 9 | 12 | 2.5 | 2 | 53.5 | 0.39 | 1.52 | 0.84 | 8.88 | | 214 | 221 | 298 | 273 | 297 | 11 | 17 | 2.5 | 2 | 66.5 | 0.43 | 1.39 | 0.77 | 19.3 | | 222 | 242 | 342 | 311 | 336 | 10 | 16 | 4 | 3 | 70 | 0.44 | 1.38 | 0.76 | 25.4 | | 222 | 230 | 342 | 298 | 340 | 11 | 22 | 4 | 3 | 85 | 0.41 | 1.48 | 0.81 | 43.6 | | 222 | 230 | 342 | 302 | 344 | 11 | 22 | 4 | 3 | 91.5 | 0.49 | 1.23 | 0.68 | 43.6 | | 222 | 252.5 | 398 | 350 | 382.5 | 5.3 | 22 | 4 | 4 | 77 | 0.37 | 1.60 | 0.88 | 51.5 | | 222 | 243.5 | 398 | 335 | 391.5 | 3.2 | 31 | 4 | 4 | 105 | 0.37 | 1.60 | 0.88 | 88.8 | | 234 | 234 | 288 | 271 | 290 | 10 | 12 | 2.5 | 2 | 59.5 | 0.43 | 1.41 | 0.78 | 10.2 | | 234 | 235 | 288 | 274 | 290 | 10 | 10 | 2.5 | 2 | 57 | 0.39 | 1.55 | 0.85 | 9.63 | | 238 | 243 | 326 | 300 | 326 | 12 | 19 | 3 | 2.5 | 72.5 | 0.43 | 1.39 | 0.77 | 25 | | 238 | 263 | 382 | 334 | 368 | 3.4 | 18 | 3 | 3 | 82 | 0.49 | 1.23 | 0.68 | 34.7 | | 238 | 255 | 382 | 323 | 380.5 | 4.4 | 24 | 3 | 3 | 102 | 0.49 | 1.23 | 0.68 | 59.9 | | 242 | 276.5 | 438 | 383 | 418.5 | 4.2 | 24 | 4 | 4 | 86.5 | 0.37 | 1.60 | 0.88 | 66.7 | | 242 | 267.5 | 438 | 371 | 431 | 1.5 | 32 | 4 | 4 | 112 | 0.37 | 1.60 | 0.88 | 112.8 | ## **Metric system sizes** #### **d** 240∼380mm | | | Boundary of | limensions | | | | Basic load ratings | | | | Bearing | |-----|-----|-------------|------------|-----|---------------|------------------|--------------------|-------------|------------|-------------|-----------| | | | | | | | | dynamic | static | dynamic | static | numbers | | | | m | m | | | | K | (N | K! | gf | | | d | D | T | B | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | | | | | _ | | | | | | | | | 320 | 51 | 51 | 39 | 3 | 2.5 | 490 | 1,000 | 50,000 | 102,000 | 32948XUE1 | | | 360 | 76 | 76 | 57 | 4 | 3 | 930 | 1,760 | 95,000 | 179,000 | 32048XU | | 240 | 440 | 79 | 72 | 60 | 4 | 4 | 975 | 1,480 | 99,500 | 151,000 | 30248 | | 240 | 440 | 127 | 120 | 100 | 4 | 4 | 1,700 | 2,750 | 174,000 | 280,000 | 32248 | | | 500 | 105 | 95 | 80 | 5 | 5 | 1,480 | 2,000 | 151,000 | 204,000 | 30348 | | | 500 | 165 | 155 |
132 | 5 | 5 | 2,330 | 3,600 | 238,000 | 365,000 | 32348 | | | 360 | 63.5 | 63.5 | 48 | 3 | 2.5 | 705 | 1,430 | 72,000 | 146,000 | 32952XUE1 | | 260 | 400 | 87 | 87 | 65 | 5 | 4 | 1,200 | 2,270 | 123,000 | 231,000 | 32052XU | | 260 | 480 | 89 | 80 | 67 | 5 | 5 | 1,170 | 1,810 | 119,000 | 185,000 | 30252 | | | 480 | 137 | 130 | 106 | 5 | 5 | 1,880 | 3,350 | 192,000 | 340,000 | 32252 | | | 380 | 63.5 | 63.5 | 48 | 3 | 2.5 | 725 | 1,520 | 74,000 | 155,000 | 32956XUE1 | | | 420 | 87 | 87 | 65 | 5 | 4 | 1,220 | 2,350 | 125,000 | 240,000 | 32056XU | | 280 | 500 | 89 | 80 | 67 | 5 | 5 | 1,240 | 1,910 | 126,000 | 195,000 | 30256 | | 200 | 500 | 137 | 130 | 106 | 5 | 5 | 1,980 | 3,500 | 202,000 | 355,000 | 32256 | | | 580 | 187 | 175 | 145 | 6 | 6 | 3,250 | 5,250 | 335,000 | 535,000 | 32356 | | | | | .,, | | | | 0,200 | <u> </u> | <u> </u> | | 02000 | | | 420 | 76 | 76 | 57 | 4 | 3 | 1,010 | 2,090 | 103,000 | 213,000 | 32960XUE1 | | 300 | 460 | 100 | 100 | 74 | 5 | 4 | 1,490 | 2,830 | 152,000 | 289,000 | 32060XU | | 300 | 540 | 96 | 85 | 71 | 5 | 5 | 1,420 | 2,220 | 145,000 | 226,000 | 30260 | | | 540 | 149 | 140 | 115 | 5 | 5 | 2,300 | 4,100 | 235,000 | 420,000 | 32260 | | | 440 | 76 | 76 | 57 | 4 | 3 | 1,010 | 2,150 | 103,000 | 219,000 | 32964XUE1 | | | 440 | 76 | 72 | 63 | 3 | 3 | 865 | 1,880 | 88,000 | 192,000 | 32964E1@ | | 320 | 480 | 100 | 100 | 74 | 5 | 4 | 1,520 | 2,940 | 155,000 | 300,000 | 32064XU | | | 580 | 104 | 92 | 75 | 5 | 5 | 1,660 | 2,580 | 170,000 | 263,000 | 30264 | | | 580 | 159 | 150 | 125 | 5 | 5 | 2,620 | 4,650 | 267,000 | 470,000 | 32264 | | | 460 | 76 | 76 | 57 | 4 | 3 | 1,040 | 2,270 | 106,000 | 232,000 | 32968XUE1 | | 340 | 460 | 76 | 72 | 63 | 3 | 3 | 910 | 1,980 | 93,000 | 201,000 | 32968E1@ | | 340 | 520 | 112 | 106 | 90 | 5 | 5 | 1,650 | 3,150 | 169,000 | 320,000 | 32068 | | | | | | | | | | | | | | | 360 | 480 | 76 | 76 | 57 | 4 | 3 | 1,050 | 2,330 | 107,000 | 238,000 | 32972XUE1 | | 300 | 540 | 112 | 106 | 90 | 5 | 5 | 1,740 | 3,300 | 178,000 | 340,000 | 32072 | | | 520 | 87 | 82 | 72 | 4 | 4 | 1,140 | 2,500 | 116,000 | 255,000 | 32976 | | 380 | 560 | 112 | 106 | 90 | 5 | 5 | 1,920 | 3,800 | 196,000 | 390,000 | 32076 | | | | | | | | | • | • | • | , | | | $\frac{F_{\rm a}}{F_{ m r}}$ | ≤ e | $\frac{F}{F}$ | $\frac{\frac{a}{r}}{r} > e$ | |------------------------------|------------|---------------|-----------------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below. | d ₄ d ₆ D ₈ D ₈ S ₈ S ₈ r ₁₀₀ | | | | Ab | utment ar | nd fillet dir | mensions | | | | Load center | Constant | | cial
factors | Mass | |--|---|------------|------------|-----|-------------|---------------|------------------|------------|-------------|--------------|-------------|----------|-------|-----------------|-----------| | Mile | | | | | | mm | | | | | mm | | | | kg | | 254 254 308 290 311 10 12 2.5 2 65.5 0.46 1.31 0.72 10.9 258 261 346 318 346 12 19 3 2.5 78 0.46 1.31 0.72 26.8 258 290 422 368 408 3.9 19 3 3 91 0.49 1.23 0.68 47.7 258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 383 14 22 | | $d_{ m a}$ | $d_{ m b}$ | Ì | $D_{\rm a}$ | $D_{ m b}$ | S_{a} | $S_{ m b}$ | $r_{ m as}$ | $r_{ m 1as}$ | | | | | | | 258 261 346 318 346 12 19 3 2.5 78 0.46 1.31 0.72 26.8 258 290 422 368 408 3.9 19 3 3 91 0.49 1.23 0.68 47.7 258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 301 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 312 458 385 453 2.9 31 <t< td=""><td></td><td>min</td><td>max</td><td>max</td><td>min</td><td>min</td><td>min</td><td>min</td><td>max</td><td>max</td><td>a</td><td>e</td><td>Y_2</td><td>$Y_{\rm o}$</td><td>(approx.)</td></t<> | | min | max | max | min | min | min | min | max | max | a | e | Y_2 | $Y_{\rm o}$ | (approx.) | | 258 290 422 368 408 3.9 19 3 3 91 0.49 1.23 0.68 47.7 258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 291 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 | | 254 | 254 | 308 | 290 | 311 | 10 | 12 | 2.5 | 2 | 65.5 | 0.46 | 1.31 | 0.72 | 10.9 | | 258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 301 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 814.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 95.5 0.49 1.23 0.68 63.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 355 462 370 402 14 | | 258 | 261 | 346 | 318 | 346 | 12 | 19 | 3 | 2.5 | 78 | 0.46 | 1.31 | 0.72 | 26.8 | | 262 301 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 63.4 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 301 478 402 464.5 5.9 22 <td< td=""><td></td><td>258</td><td>290</td><td>422</td><td>368</td><td>408</td><td>3.9</td><td>19</td><td>3</td><td>3</td><td>91</td><td>0.49</td><td>1.23</td><td>0.68</td><td>47.7</td></td<> | | 258 | 290 | 422 | 368 | 408 | 3.9 | 19 | 3 | 3 | 91 | 0.49 | 1.23 | 0.68 | 47.7 | | 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 63.4 282 302 355 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 422 464.5 5.9 | | 258 | 277.5 | 422 | 365 | 421.5 | 4.1 | 27 | 3 | 3 | 107 | 0.43 | 1.39 | 0.77 | 78.8 | | 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 63.4 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.43 1 | | 262 | 301 | 478 | 417 | 456 | 8.1 | 25 | 4 | 4 | 94 | 0.37 | 1.60 | 0.88 | 87.2 | | 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.4 31 4 4 102.3 0.49 1.23 0.68 60.6 302 318 478 405 540.5 3.4 42 < | | 262 | 291 | 478 | 402 | 467 | 1.5 | 33 | 4 | 4 | 120.5 | 0.37 | 1.60 | 0.88 | 141.9 | | 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.4 31 4 4 102.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 | Ī | 274 | 279 | 348 | 325 | 347 | 11 | 15 | 2.5 | 2 | 69.5 | 0.41 | 1.48 | 0.81 | 18.8 | | 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 402 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 66.6 302 318 349 405 13 19 3 | | | | | | | | | | | | | | | | | 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 | | | 312 | | 396 | | | | | 4 | 99.5 | 0.49 | | | | | 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 422 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23
0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 < | | | | | | | | | 4 | 4 | | | | | | | 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 422 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 < | | 294 | 298 | 368 | 344 | 368 | 11 | 15 | 2.5 | 2 | 75 | 0.43 | 1.39 | 0.76 | 20 | | 302 331 478 422 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 | | | | | | | | | | | | | | | | | 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 84.3 322 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 | | | | | | | | | | | | | | | | | 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 138.7 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 | | | | | | | | | | | | | | | | | 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 84.3 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 172.1 358 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | | | 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 84.3 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 172.1 358 <t< td=""><td></td><td>318</td><td>324</td><td>406</td><td>379</td><td>405</td><td>13</td><td>19</td><td>3</td><td>2.5</td><td>80</td><td>0.39</td><td>1.52</td><td>0.84</td><td>31.4</td></t<> | | 318 | 324 | 406 | 379 | 405 | 13 | 19 | 3 | 2.5 | 80 | 0.39 | 1.52 | 0.84 | 31.4 | | 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 138.7 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 87 0.39 1.55 0.85 36 362 <td< td=""><td></td><td></td><td></td><td></td><td>404</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | 404 | | | | | | | | | | | | 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 138.7 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 | | | | | | | | | | | | | | | | | 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | | | 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 <t< td=""><td></td><td>338</td><td>344</td><td>426</td><td>398</td><td>426</td><td>13</td><td>19</td><td>3</td><td>2.5</td><td>85</td><td>0.42</td><td>1.44</td><td>0.79</td><td>33.1</td></t<> | | 338 | 344 | 426 | 398 | 426 | 13 | 19 | 3 | 2.5 | 85 | 0.42 | 1.44 | 0.79 | 33.1 | | 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 | | | | | | | | | | | | | | | | | 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3 | | | | | | | | | | | | | | | | | 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3 | | | | | | | | | | | | | | | | | 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3 | | | | | | | | | | | | | | | | | 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3 | | 358 | 362 | 446 | 417 | 446 | 13 | 19 | 3 | 2.5 | 90.5 | 0.44 | 1.37 | 0.75 | 34.9 | | 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3 | | | | | | | | | | | | | | | | | 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3 | | | | | | | | | | | | | | | | | 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3 | | 378 | 381 | 466 | 436 | 466 | 13 | 19 | 3 | 25 | 96.5 | 0.46 | 1.31 | 0.72 | 36.6 | 398 | 408 | 502 | 464.5 | 503 | 4 | 15 | 3 | 3 | 101 | 0.40 | 1.49 | 0.82 | 51.3 | | | | | | | | | | | | | | | | | | # Single Row Tapered Roller Bearings #### **Metric system sizes** #### *d* 400∼850mm | | | Boundary di | | | | | dynamic | asic load r
static
N | atings
dynamic
ko | static
gf | Bearing
numbers | |-----|------------|--------------|-----------|-----------|---------------|----------------|----------------|----------------------------|--------------------------------|--------------------|-----------------------| | d | D | T | В | C | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 400 | 540
600 | 87
125 | 82
118 | 71
100 | 4
5 | 4
5 | 1,200
2,180 | 2,710
4,250 | 122,000
222,000 | 276,000
435,000 | 32980
32080 | | 420 | 560
620 | 87
125 | 82
118 | 71
100 | 4
6 | 4
5 | 1,230
2,280 | 2,840
4,550 | 125,000
233,000 | 290,000
465,000 | 32984
32084 | | 440 | 600
650 | 100
130 | 95
122 | 82
104 | 4
6 | 4
6 | 1,600
2,530 | 3,450
5,000 | 164,000
258,000 | 355,000
510,000 | 32988
32088 | | 500 | 640
750 | 87.36
150 | 82
140 | 72
120 | 4
7.5 | 4
7.5 | 1,330
3,100 | 3,300
6,950 | 141,000
315,000 | 335,000
705,000 | CR-10010
☆CR-10024 | | 530 | 670 | 100 | 95 | 82 | 5 | 5 | 1,540 | 3,800 | 157,000 | 385,000 | CR-10601 | | 570 | 695 | 57 | 52 | 50 | 3 | 2.5 | 865 | 2,080 | 88,000 | 212,000 | CR-11402 | | 600 | 870 | 118 | 111 | 93 | 6 | 6 | 2,870 | 5,700 |
292,000 | 580,000 | CR-12006 | | 720 | 880 | 80 | 75 | 60 | 5 | 5 | 1,300 | 3,450 | 132,000 | 350,000 | CR-14403 | | 740 | 900 | 80 | 75 | 65 | 5 | 5 | 1,370 | 3,700 | 140,000 | 375,000 | CR-14803 | | 750 | 1,000 | 110 | 107 | 80 | 6 | 6 | 2,620 | 5,800 | 267,000 | 590,000 | CR-15002 | | 780 | 925 | 95 | 92 | 75 | 5 | 5 | 2,120 | 6,600 | 216,000 | 675,000 | CR-15602 | | 850 | 1,120 | 118 | 112 | 80 | 6 | 6 | 2,880 | 7,100 | 294,000 | 720,000 | CR-17001 | | | | | | | | | | | | | | | $\frac{F_{\rm a}}{F_{ m r}}$ | ≤ e | $\frac{F}{F}$ | $\frac{\frac{a}{r}}{r} > e$ | | | |------------------------------|------------|---------------|-----------------------------|--|--| | X | Y | X | Y | | | | 1 | 0 | 0.4 | Y_2 | | | static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below. | | | A | butment ar | nd fillet dim | ension | S | | | Load center | Constant | | ial
actors | Mass | |------------|----------------|------------|----------------|------------------|-------------|------------|-------------|-----------|--------------|--------------|--------------|------------------|-------------| | | | | | mm | | | | | mm | | | | kg | | $d_{ m a}$ | $d_{ m b}$ | | $D_{\rm a}$ | D_{b} | $S_{\rm a}$ | $S_{ m b}$ | $r_{ m as}$ | r_{1as} | | | | | | | min | max | max | min | min | min | min | max | max | a | e | Y_2 | Y_{o} | (approx.) | | 418
422 | 427
434.5 | 522
578 | 482
526 | 521.5
575 | 4
5 | 16
25 | 3
4 | 3
4 | 106
119 | 0.42
0.37 | 1.43
1.60 | 0.79
0.88 | 54
115 | | 438
422 | 445.5
455.5 | 542
598 | 501.5
549 | 543
598 | 3.5
6.5 | 16
25 | 3
4 | 3
4 | 111.5
120 | 0.44
0.37 | 1.37
1.60 | 0.76
0.88 | 56.6
121 | | 458
468 | 472.5
475 | 582
622 | 543
576.5 | 580.5
627.5 | 3.5
5 | 18
26 | 3
5 | 3
5 | 106
127 | 0.35
0.37 | 1.70
1.60 | 0.93
0.88 | 76
136 | | 518
536 | 523.5
566.5 | 622
714 | 584.5
658.5 | 627.5
722.5 | 3.5
1.5 | 15
30 | 3
6 | 3
6 | 125
154 | 0.45
0.41 | 1.34
1.48 | 0.74
0.81 | 64.3
224 | | 552 | 552 | 648 | 616.5 | 653 | 1.5 | 18 | 4 | 4 | 111 | 0.33 | 1.80 | 0.99 | 76.2 | | 584 | 598.5 | 683 | 652.5 | 675.5 | 5 | 7 | 2.5 | 2 | 102.5 | 0.36 | 1.67 | 0.92 | 41.7 | | 628 | 656 | 842 | 782.5 | 828 | 1.5 | 25 | 5 | 5 | 147 | 0.37 | 1.60 | 0.88 | 208 | | 742 | 757 | 858 | 818 | 853.5 | 5.5 | 20 | 4 | 4 | 158.5 | 0.46 | 1.31 | 0.72 | 94 | | 762 | 775.5 | 878 | 839 | 877.5 | 5 | 15 | 4 | 4 | 159 | 0.46 | 1.31 | 0.72 | 96 | | 778 | 801.5 | 972 | 915 | 954 | 7 | 30 | 5 | 5 | 155 | 0.37 | 1.60 | 0.88 | 210 | | 802 | 810 | 903 | 873.5 | 907 | 9.5 | 20 | 4 | 4 | 137.5 | 0.33 | 1.80 | 0.99 | 115 | | 878 | 920.5 | 1,092 | 1,026.5 | 1,063 | 8.5 | 38 | 5 | 5 | 154.5 | 0.33 | 1.80 | 0.99 | 276 | #### NTN #### Inch system sizes #### d 114.300~174.625mm | | | Boundary di | mensions | | Basic load ratings dynamic static dynamic static | | | | | | |---------|---------|-------------|----------|--------|--|-------------|------------|---------------|--|--| | | | mm | 1 | | dynamic
ki | | dynamic | static
kgf | | | | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 114.300 | 273.050 | 82.550 | 82.550 | 53.975 | 760 | 975 | 77,500 | 99,500 | | | | | 279.400 | 82.550 | 82.550 | 53.975 | 760 | 975 | 77,500 | 99,500 | | | | 120.650 | 273.050 | 82.550 | 82.550 | 53.975 | 760 | 975 | 77,500 | 99,500 | | | | 127.000 | 295.275 | 82.550 | 87.312 | 57.150 | 880 | 1,190 | 89,500 | 122,000 | | | | | 304.800 | 88.900 | 82.550 | 57.150 | 820 | 1,120 | 83,500 | 115,000 | | | | 139.700 | 288.925 | 82.550 | 87.312 | 57.150 | 880 | 1,190 | 89,500 | 122,000 | | | | | 295.275 | 82.550 | 87.312 | 57.150 | 880 | 1,190 | 89,500 | 122,000 | | | | | 307.975 | 88.900 | 93.662 | 66.675 | 1,010 | 1,390 | 103,000 | 142,000 | | | | 146.050 | 304.800 | 88.900 | 82.550 | 57.150 | 820 | 1,120 | 83,500 | 115,000 | | | | | 311.150 | 88.900 | 82.550 | 57.150 | 820 | 1,120 | 83,500 | 115,000 | | | | 152.400 | 307.975 | 88.900 | 93.662 | 61.912 | 880 | 1,310 | 89,500 | 133,000 | | | | | 307.975 | 88.900 | 93.662 | 66.675 | 1,010 | 1,390 | 103,000 | 142,000 | | | | 155.575 | 330.200 | 85.725 | 79.375 | 53.975 | 875 | 1,260 | 89,000 | 129,000 | | | | | 342.900 | 85.725 | 79.375 | 53.975 | 875 | 1,260 | 89,000 | 129,000 | | | | 158.750 | 304.800 | 66.675 | 69.106 | 42.862 | 540 | 780 | 55,000 | 79,500 | | | | 160.325 | 288.925 | 63.500 | 63.500 | 47.625 | 680 | 1,070 | 69,000 | 109,000 | | | | 161.925 | 374.650 | 87.312 | 79.375 | 60.325 | 845 | 1,140 | 86,500 | 117,000 | | | | 165.100 | 288.925 | 63.500 | 63.500 | 47.625 | 550 | 950 | 56,000 | 97,000 | | | | | 288.925 | 63.500 | 63.500 | 47.625 | 680 | 1,070 | 69,000 | 109,000 | | | | | 311.150 | 82.550 | 82.550 | 65.088 | 925 | 1,480 | 94,500 | 151,000 | | | | | 336.550 | 92.075 | 95.250 | 69.850 | 1,060 | 1,510 | 108,000 | 154,000 | | | | 168.275 | 330.200 | 85.725 | 79.375 | 53.975 | 875 | 1,260 | 89,000 | 129,000 | | | | 174.625 | 288.925 | 63.500 | 63.500 | 47.625 | 550 | 950 | 56,000 | 97,000 | | | | | 288.925 | 63.500 | 63.500 | 47.625 | 680 | 1,070 | 69,000 | 109,000 | | | | | 298.450 | 82.550 | 82.550 | 63.500 | 810 | 1,330 | 83,000 | 136,000 | | | | | 311.150 | 82.550 | 82.550 | 63.500 | 810 | 1,330 | 83,000 | 136,000 | | | | | 311.150 | 82.550 | 82.550 | 65.088 | 925 | 1,480 | 94,500 | 151,000 | | | Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions r_{m} and r_{mm} are larger than the maximum value. | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | | |---|----|-----------------------------------|-------|--|--|--|--|--| | X | Y | X | Y | | | | | | | 1 | 0 | 0.4 | Y_2 | | | | | | #### static | Bearing numbers | | Abutmer | nt and fillet | dimensio | | Load [®] center | Constant | A)
load f | Mass
kg | | | |--|------------|------------|---------------|------------------|-------------|--------------------------|--------------|--------------|-------------------|--------------|--------------| | | | | | _ | $r_{ m as}$ | r_{1as} | | | | | | | | $d_{ m a}$ | $d_{ m b}$ | $D_{\rm a}$ | D_{b} | max | max | a | e | Y_2 | $Y_{ m o}$ | (approx.) | | T-HH926744/HH926710 | 164 | 147 | 230 | 253 | 6.4 | 6.4 | 6.6 | 0.63 | 0.95 | 0.52 | 22.2 | | T-HH926744/HH926716 | 164 | 147 | 233 | 253 | 6.4 | 6.4 | 6.6 | 0.63 | 0.95 | 0.52 | 23.5 | | 1-11113207-4-711113207-10 | 104 | 177 | 200 | 200 | 0.4 | 0.4 | 0.0 | 0.00 | 0.33 | 0.52 | 20.0 | | T-HH926749/HH926710 | 168 | 147 | 230 | 253 | 6.4 | 6.4 | 6.6 | 0.63 | 0.95 | 0.52 | 21.7 | | T-HH231637/HH231615 | 174 | 150 | 258 | 264 | 13.5 | 6.4 | 26.7 | 0.32 | 1.88 | 1.04 | 27.1 | | T-HH932132/HH932110 | 182 | 172 | 260 | 288 | 6.4 | 6.4 | -1.9 | 0.73 | 0.82 | 0.45 | 32.8 | | | | | | | | | | | | | | | T-HH231649/HH231610 | 177 | 161 | 255 | 264 | 9.7 | 6.4 | 26.7 | 0.32 | 1.88 | 1.04 | 24.4 | | T-HH231649/HH231615 | 177 | 161 | 258 | 264 | 9.7 | 6.4 | 26.7 | 0.32 | 1.88 | 1.04 | 25.8 | | T-HH234031/HH234010 | 180 | 168 | 276.1 | 285.5 | 9.7 | 6.8 | 26.7 | 0.33 | 1.84 | 1.01 | 30.9 | | T UU022145/UU022110 | 105 | 174 | 060 | 000 | 6.4 | 6.4 | 1.0 | 0.70 | 0.00 | 0.45 | 20.6 | | T-HH932145/HH932110
T-HH932145/HH932115 | 195
195 | 174
174 | 260
262 | 288
288 | 6.4
6.4 | 6.4
6.4 | −1.9
−1.9 | 0.73
0.73 | 0.82
0.82 | 0.45
0.45 | 30.6
32.2 | | 1-00932145/00932115 | 195 | 174 | 202 | 200 | 0.4 | 0.4 | -1.9 | 0.73 | 0.62 | 0.45 | 32.2 | | T-EE450601/451212 | 189 | 177 | 269 | 275 | 9.7 | 6.8 | 28.2 | 0.33 | 1.84 | 1.01 | 29.4 | | T-HH234048/HH234010 | 191 | 179 | 276 | 285 | 9.7 | 6.8 | 26.4 | 0.33 | 1.84 | 1.01 | 29.4 | | | | | | | | | | | | | | | T-H936340/H936310 | 209 | 193 | 282 | 311 | 6.4 | 6.4 | -16.9 | 0.81 | 0.74 | 0.41 | 34.9 | | T-H936340/H936316 | 209 | 193 | 287 | 311 | 6.4 | 6.4 | -16.9 | 0.81 | 0.74 | 0.41 | 38.4 | | EE280626/281200 | 192 | 180 | 279 | 282 | 6.4 | 3.3 | 12.5 | 0.36 | 1.67 | 0.92 | 20.8 | | T-HM237532/HM237510 | 192 | 181 | 266 | 271 | 7 | 3.3 | 11.6 | 0.32 | 1.88 | 1.04 | 16.0 | | EE117063/117148 | 207 | 197 | 322 | 341 | 6.4 | 3.3 | -11.5 | 0.71 | 0.85 | 0.47 | 47.9 | | T 04040/04443 | 407 | 400 | 050 | 070 | 7 | 0.0 | 2.5 | 0.47 | 4.00 | 0.70 | 47.4 | | T-94649/94113 | 197 | 186 | 259 | 272 | 7 | 3.3 | 0.9 | 0.47 | 1.28 | 0.70 | 17.1 | | T-HM237535/HM237510 | 195 | 184 | 266
280 | 271 | 7
6.4 | 3.3 | 11.6 | 0.32 | 1.88 | 1.04 | 15.6 | | T-H238140/H238110
T-HH437549/HH437510 | 198
196 | 188
196 | 280
297 | 289
308 | 6.4
3.3 | 6.4
6.4 | 18.8
21.4 | 0.33
0.37 | 1.81
1.62 | 1.00
0.89 | 27.5
36.6 | | 1-111437349/111437310 | 190 | 190 | 291 | 300 | 3.3 | 0.4 | 21.4 | 0.37 | 1.02 | 0.69 | 30.0 | | T-H936349/H936310 | 218 | 193 | 282 | 311.4 | 6.4 | 6.4 | -16.9 | 0.81 | 0.74 | 0.41 | 33.2 | | T-94687/94113 | 204 | 193 | 259 | 272 | 7 | 3.3 | 0.9 | 0.47 | 1.28 | 0.70 | 14.7 | | T-HM237542/HM237510 | 202 | 191 | 266 | 271 | 7 | 3.3 | 11.6 | 0.32 | 1.88 | 1.04 | 14.7 | | T-EE219068/219117 | 204 | 193 | 269 | 282 | 6.4 | 6.4 | 15.3 | 0.38 | 1.59 | 0.87 | 21.1 | | T-EE219068/219122 | 204 | 193 | 275 | 282 | 6.4 | 6.4 | 15.3 | 0.38 | 1.59 | 0.87 | 23.9 | | T-H238148/H238110 | 205 | 195 | 280 | 289 | 6.4 | 6.4 | 18.8 | 0.33 | 1.81 | 1.00 | 23.9 | #### Inch system sizes #### d 177.800~206.375mm | | | Boundary d | imensions | | dynamic | Basic loa | d ratings | static | |-----------------|-----------------|------------|-----------|--------|------------|-------------|------------|-------------| | | | mr | m | | | :N | dynamic | kgf | | d | D | T | В |
C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 000 005 | CO FOO | 60.500 | 47.005 | 550 | 050 | FC 000 | 07.000 | | | 288.925 | 63.500 | 63.500 | 47.625 | 550 | 950 | 56,000 | 97,000 | | | 288.925 | 63.500 | 63.500 | 47.625 | 680
680 | 1,070 | 69,000 | 109,000 | | 177.800 | %289.974 | 63.500 | 63.500 | 48.000 | | 1,070 | 69,000 | 109,000 | | | 319.964 | 88.900 | 85.725 | 65.088 | 930 | 1,400 | 94,500 | 142,000 | | | 428.625 | 106.362 | 95.250 | 61.912 | 1,190 | 1,610 | 122,000 | 165,000 | | %179.975 | 317.500 | 63.500 | 63.500 | 46.038 | 615 | 1,160 | 63,000 | 118,000 | | | 282.575 | 50.800 | 47.625 | 36.512 | 365 | 615 | 37,000 | 63,000 | | 187.325 | 319.964 | 88.900 | 85.725 | 65.088 | 925 | 1,400 | 94,500 | 142,000 | | | 320.675 | 88.900 | 85.725 | 65.088 | 925 | 1,400 | 94,500 | 142,000 | | | 282.575 | 50.800 | 47.625 | 36.512 | 365 | 615 | 37,000 | 63,000 | | | 317.500 | 63.500 | 63.500 | 46.038 | 615 | 1,160 | 63,000 | 118,000 | | 190.500 | 336.550 | 98.425 | 95.250 | 73.025 | 1,030 | 1,830 | 105,000 | 187,000 | | 190.500 | 365.049 | 92.075 | 88.897 | 63.500 | 975 | 1,600 | 99,500 | 164,000 | | | 428.625 | 106.362 | 95.250 | 61.912 | 1,190 | 1,610 | 122,000 | 165,000 | | 193.675 | 282.575 | 50.800 | 47.625 | 36.512 | 365 | 615 | 37,000 | 63,000 | | | 292.100 | 57.945 | 57.945 | 46.038 | 535 | 1,030 | 54,500 | 105,000 | | | 317.500 | 63.500 | 63.500 | 46.038 | 615 | 1,160 | 63,000 | 118,000 | | 200.025 | 384.175 | 112.712 | 112.712 | 90.488 | 1,460 | 2,730 | 149,000 | 279,000 | | | 393.700 | 111.125 | 111.125 | 84.138 | 1,340 | 2,020 | 137,000 | 206,000 | | | 276.225 | 42.862 | 42.862 | 34.133 | 340 | 690 | 35,000 | 70,500 | | | 282.575 | 46.038 | 46.038 | 36.512 | 360 | 785 | 37,000 | 80,000 | | | 292.100 | 57.945 | 57.945 | 46.038 | 535 | 1,030 | 54,500 | 105,000 | | | 317.500 | 63.500 | 63.500 | 46.038 | 615 | 1,160 | 63,000 | 118,000 | | 203.200 | 346.075 | 79.375 | 80.962 | 60.325 | 900 | 1,460 | 92,000 | 149,000 | | | 365.049 | 92.075 | 88.897 | 63.500 | 975 | 1,600 | 99,500 | 164,000 | | | 406.400 | 92.075 | 85.725 | 57.150 | 960 | 1,480 | 98,000 | 151,000 | | | 482.600 | 117.475 | 95.250 | 73.025 | 1,310 | 1,860 | 134,000 | 190,000 | | 204.788 | 292.100 | 57.945 | 57.945 | 46.038 | 535 | 1,030 | 54,500 | 105,000 | | | 282.575 | 46.038 | 46.038 | 36.512 | 360 | 785 | 37,000 | 80,000 | | 206.375 | 336.550 | 98.425 | 100.012 | 77.788 | 1,110 | 2,030 | 113,000 | 207,000 | | | 482.600 | 117.475 | 95.250 | 73.025 | 1,310 | 1,860 | 134,000 | 190,000 | | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | | | | |---|----|---|----|--|--|--| | X | Y | X | Y | | | | | 1 | 0 | 0.4 Y ₂ | | | | | #### static | Bearing numbers | | Abutmen | t and fillet | dimensior | ıs | | Load [®] center | Constant | | cial
actors | Mass
kg | |----------------------|-------------------------------------|------------|--------------|------------|-------------|--------------|--------------------------|----------|-------|------------------|-------------------| | | | | 111111 | | $r_{ m as}$ | $r_{ m 1as}$ | 111111 | | | | Ng | | | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{ m b}$ | $D_{\rm a}$ | $D_{ m h}$ | max | max | a | e | Y_2 | Y_{o} | (approx.) | | | | **** | — <i>a</i> | _ 5 | | | - | | -2 | - 0 | () | | T-94700/94113 | 207 | 195 | 259 | 272 | 7 | 3.3 | 0.9 | 0.47 | 1.28 | 0.70 | 14.4 | | T-HM237545/HM237510 | 205 | 194 | 266 | 271 | 7 | 3.3 | 11.6 | 0.32 | 1.88 | 1.04 | 14.4 | | T-HM237545/HM237513 | 205 | 194 | 267 | 272 | 7 | 3 | 11.6 | 0.32 | 1.88 | 1.04 | 14.6 | | T-H239640/H239610 | 202 | 198 | 293 | 301 | 3.5 | 4.8 | 22.3 | 0.32 | 1.88 | 1.04 | 30.2 | | EE350701/351687 | 230 | 221 | 365 | 383 | 6.4 | 6.4 | -13.8 | 0.76 | 0.79 | 0.43 | 77.7 | | T 00700/00405 | 000 | 004 | 000 | 000 | 0.5 | | 7.0 | 0.50 | 4.45 | 0.00 | 10.0 | | T-93708/93125 | 209 | 204 | 286 | 300 | 3.5 | 3.3 | -7.9 | 0.52 | 1.15 | 0.63 | 19.0 | | T-87737/87111 | 207 | 201 | 261 | 267 | 3.5 | 3.3 | -3.8 | 0.42 | 1.44 | 0.79 | 10.9 | | T-H239649/H239610 | 214 | 205 | 293 | 301 | 5.5 | 4.8 | 22.3 | 0.32 | 1.88 | 1.04 | 28.7 | | T-H239649/H239612 | 214 | 205 | 293 | 301 | 5.5 | 4.8 | 22.3 | 0.32 | 1.88 | 1.04 | 28.9 | | T-87750/87111 | 209 | 203 | 261 | 267 | 3.5 | 3.3 | -3.8 | 0.42 | 1.44 | 0.79 | 10.6 | | T-93750/93125 | 218 | 212 | 286 | 300 | 4.3 | 3.3 | -7.9 | 0.52 | 1.15 | 0.63 | 17.9 | | T-HH840249/HH840210 | 234 | 216 | 290 | 318 | 6.4 | 6.4 | 5.4 | 0.58 | 1.04 | 0.57 | 36.4 | | T-EE420751/421437 | 227 | 218 | 329 | 334 | 6.4 | 3.3 | 15.4 | 0.40 | 1.49 | 0.82 | 42.9 | | EE350750/351687 | 240 | 237 | 365 | 383 | 6.4 | 6.4 | -13.9 | 0.76 | 0.79 | 0.43 | 75.3 | | T-87762/87111 | 211 | 206 | 261 | 267 | 3.5 | 3.3 | -3.8 | 0.42 | 1.44 | 0.79 | 10.3 | | T-M241543/M241510 | 219 | 215 | 272 | 279 | 3.5 | 3.3 | 4.7 | 0.33 | 1.80 | 0.99 | 11.5 | | T-93787/93125 | 225 | 219 | 286 | 300 | 4.3 | 3.3 | -7.9 | 0.52 | 1.15 | 0.63 | 18.3 | | T-H247535/H247510 | 241 | 231 | 346 | 362 | 6.4 | 6.4 | 28.1 | 0.33 | 1.80 | 0.99 | 53.0 | | HH144642/HH144614 | 235 | 226 | 352 | 357 | 6.4 | 6.4 | 35.1 | 0.30 | 2.01 | 1.11 | 55.9 | | LM241149/LM241110 | 220 | 214.1 | 260 | 267 | 3.5 | 3.3 | -2.1 | 0.32 | 1.88 | 1.04 | 6.56 | | T-67983/67920 | 222 | 216 | 260 | 275 | 3.5 | 3.3 | -15.9 | 0.51 | 1.18 | 0.65 | 7.76 | | T-M241547/M241510 | 221 | 217 | 272 | 279 | 3.5 | 3.3 | 4.7 | 0.33 | 1.80 | 0.99 | 11.2 | | T-93800/93125 | 227 | 222 | 286 | 300 | 4.3 | 3.3 | -7.9 | 0.52 | 1.15 | 0.63 | 16.5 | | T-HM542948/HM542911 | 224 | 224 | 315 | 322 | 1.5 | 3.3 | 9 | 0.39 | 1.55 | 0.85 | 28.8 | | T-EE420801/421437 | 230 | 227 | 329 | 334.4 | 3.3 | 3.3 | 15.4 | 0.40 | 1.49 | 0.82 | 40.7 | | EE114080/114160 | 246 | 237 | 349 | 374 | 6.4 | 6.4 | -27.9 | 0.80 | 0.75 | 0.41 | 54.8 | | ☆T-EE380080/380190G2 | 262 | 256 | 402 | 428 | 6.4 | 6.4 | -34.3 | 0.87 | 0.69 | 0.38 | 108 | | T-M241549/M241510 | 223 | 219 | 272 | 279 | 3.5 | 3.3 | 4.7 | 0.33 | 1.80 | 0.99 | 11.0 | | T-67985/67920 | 224 | 219 | 260 | 275 | 3.5 | 3.3 | -15.9 | 0.51 | 1.18 | 0.65 | 8.4 | | T-H242649/H242610 | 231 | 227 | 306 | 318 | 3.3 | 3.3 | 25.4 | 0.33 | 1.80 | 0.99 | 32.1 | | ☆T-EE380081/380190G2 | 264 | 258 | 402 | 428 | 6.4 | 6.4 | -34.3 | 0.87 | 0.69 | 0.38 | 107 | # Single Row Tapered Roller Bearings #### Inch system sizes #### d 209.550~237.330mm | | | Boundary d | imensions | | dynamic | Basic loa | d ratings
dynamic | static | |---------|--|---|---|--|--|--|---|--| | | | mr | n | | , | :N | | gf | | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 209.550 | 282.575
317.500 | 46.038
63.500 | 46.038
63.500 | 36.512
46.038 | 360
615 | 785
1,160 | 37,000
63,000 | 80,000
118,000 | | 212.725 | 285.750 | 46.038 | 46.038 | 34.925 | 380 | 820 | 38,500 | 83,500 | | 215.900 | 285.750
290.010 | 46.038
31.750 | 46.038
31.750 | 34.925
22.225 | 380
206 | 820
405 | 38,500
21,100 | 83,500
41,000 | | 216.408 | 285.750 | 46.038 | 49.212 | 34.925 | 380 | 820 | 38,500 | 83,500 | | 220.662 | 314.325 | 61.912 | 61.912 | 49.212 | 625 | 1,220 | 63,500 | 125,000 | | 228.397 | 431.800 | 92.075 | 85.725 | 49.212 | 855 | 1,240 | 87,000 | 126,000 | | 228.460 | 431.800 | 92.075 | 85.725 | 49.212 | 855 | 1,240 | 87,000 | 126,000 | | 228.600 | 300.038
327.025
355.600
355.600
355.600
358.775
400.050
488.950 | 33.338
52.388
68.262
69.850
69.850
71.438
88.900
123.825 | 31.750
52.388
66.675
69.850
69.850
71.438
87.312
111.125 | 23.812
36.512
47.625
49.212
50.800
53.975
63.500
73.025 | 215
475
640
715
720
815
945
1,570 | 435
950
1,270
1,260
1,240
1,640
1,620
2,260 | 22,000
48,500
65,500
73,000
73,500
83,000
96,500
161,000 | 44,500
97,000
130,000
128,000
127,000
168,000
166,000
231,000 | | 231.775 | 300.038
336.550
358.775 | 33.338
65.088
71.438 | 31.750
65.088
71.438 | 23.812
50.800
53.975 | 215
710
815 | 435
1,410
1,640 | 22,000
72,500
83,000 | 44,500
144,000
168,000 | | 234.950 | 311.150
314.325
327.025
355.600
381.000
384.175 | 46.038
49.212
52.388
68.262
74.612
112.712 | 46.038
49.212
52.388
66.675
74.612
112.712 | 33.338
36.512
36.512
47.625
57.150
90.488 | 405
470
475
640
885
1,460 | 820
935
950
1,270
1,790
2,730 | 41,500
48,000
48,500
65,500
90,500
149,000 | 83,500
95,500
97,000
130,000
183,000
279,000 | | 237.330 | 336.550
358.775 | 65.088
71.438 | 65.088
71.438 | 50.800
53.975 | 710
815 | 1,410
1,640 | 72,500
83,000 | 144,000
168,000 | | $\frac{F_{ m a}}{F_{ m r}}$ | ≤ e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | |-----------------------------|------------|---|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | #### static | Bearing numbers | | Abutme | nt and fillet | dimensio | ns | | Load [®] center | Constant | | rial
actors | Mass
kg | |------------------------|------------|------------|---------------|------------------|--------------|------------|--------------------------|--------------
-------|----------------|-------------------| | | | | | | $r_{\rm as}$ | r_{1as} | | | | | | | | $d_{ m a}$ | $d_{ m b}$ | $D_{\rm a}$ | D_{b} | max | max | a | e | Y_2 | $Y_{ m o}$ | (approx.) | | T-67989/67920 | 007 | 221 | 260 | 075 | 0.5 | 0.0 | 15.0 | 0.51 | 1.18 | 0.05 | 7.00 | | T-93825/93125 | 227
233 | 221
227 | 286 | 275
300 | 3.5
4.3 | 3.3
3.3 | -15.9
-7.9 | 0.51
0.52 | 1.15 | 0.65
0.63 | 7.23
15.8 | | 1-33023/33123 | 200 | 221 | 200 | 300 | 4.0 | 0.0 | -7.5 | 0.52 | 1.15 | 0.00 | 10.0 | | T-LM742745/LM742710 | 230 | 225 | 266 | 279 | 3.5 | 3.3 | -14.2 | 0.48 | 1.25 | 0.69 | 7.33 | | T-LM742749/LM742710 | 233 | 227 | 266 | 279 | 3.5 | 3.3 | -14.2 | 0.48 | 1.25 | 0.69 | 7.05 | | 543085/543114 | 232 | 226 | 272 | 276 | 3.5 | 3.3 | -12.5 | 0.38 | 1.58 | 0.87 | 5.20 | | T-LM742747/LM742710 | 233 | 227 | 266 | 279 | 3.5 | 3.3 | -14.2 | 0.48 | 1.25 | 0.69 | 7.40 | | T-M244249/M244210 | 245 | 235 | 293 | 300 | 6.4 | 3.3 | 4.4 | 0.33 | 1.80 | 0.99 | 13.6 | | EE113089/113170 | 274 | 267 | 375 | 397 | 6.4 | 6.4 | -40.3 | 0.88 | 0.68 | 0.37 | 59.4 | | EE113091/113170 | 274 | 267 | 375 | 397 | 6.4 | 6.4 | -40.3 | 0.88 | 0.68 | 0.37 | 59.4 | | T-544090/544118 | 244 | 240 | 282 | 287 | 3.5 | 3.3 | -15.8 | 0.40 | 1.49 | 0.82 | 6.05 | | T-8573/8520 | 255 | 244 | 305 | 313 | 6.4 | 3.3 | -7.8 | 0.41 | 1.48 | 0.81 | 12.5 | | T-96900/96140 | 260 | 249 | 318 | 334 | 7 | 3.3 | -16.9 | 0.59 | 1.02 | 0.56 | 24.3 | | T-EE130902/131400 | 257 | 247 | 329 | 330 | 6.8 | 1.5 | 9.9 | 0.33 | 1.82 | 1.00 | 22.7 | | HM746646/HM746610 | 258 | 248 | 324 | 338.7 | 6.4 | 6.4 | -6 | 0.47 | 1.27 | 0.70 | 22.7 | | T-M249732/M249710 | 256 | 251 | 335 | 343 | 3.5 | 3.3 | 6.9 | 0.33 | 1.80 | 0.99 | 23.9 | | EE430900/431575 | 271 | 253 | 360 | 364 | 10.5 | 3.3 | 2.8 | 0.44 | 1.36 | 0.75 | 46.0 | | ☆T-HH949549/HH949510G2 | 297 | 280 | 416 | 456 | 6.4 | 6.4 | -39.9 | 0.94 | 0.64 | 0.35 | 111 | | T-544091/544118 | 247 | 243 | 282 | 287 | 3.5 | 3.3 | -15.8 | 0.40 | 1.49 | 0.82 | 5.81 | | T-M246942/M246910 | 258 | 249 | 313 | 322 | 6.4 | 3.3 | 4.7 | 0.33 | 1.80 | 0.99 | 16.9 | | T-M249734/M249710 | 263 | 254 | 335 | 343 | 6.4 | 3.3 | 6.9 | 0.33 | 1.80 | 0.99 | 23.4 | | LM446349/LM446310 | 252 | 246 | 294 | 301 | 3.5 | 3.3 | -6.6 | 0.36 | 1.66 | 0.91 | 8.38 | | T-LM545849/LM545810 | 252 | 246 | 296 | 306 | 3.5 | 3.3 | -8.4 | 0.40 | 1.51 | 0.83 | 9.38 | | T-8575/8520 | 259 | 248 | 305 | 313 | 6.4 | 3.3 | -7.8 | 0.41 | 1.48 | 0.81 | 11.9 | | T-96925/96140 | 265 | 254 | 318 | 334 | 7 | 3.3 | -16.9 | 0.59 | 1.02 | 0.56 | 22.5 | | T-M252330/M252310 | 271 | 261 | 356 | 364 | 6.4 | 3.3 | 6.2 | 0.33 | 1.80 | 0.99 | 29.3 | | T-H247549/H247510 | 269 | 259 | 346 | 362 | 6.4 | 6.4 | 28.1 | 0.33 | 1.80 | 0.99 | 45.5 | | T-M246949/M246910 | 262 | 253 | 313 | 322 | 6.4 | 3.3 | 4.7 | 0.33 | 1.80 | 0.99 | 16.2 | | T-M249736/M249710 | 267 | 258 | 335 | 343 | 6.4 | 3.3 | 6.9 | 0.33 | 1.80 | 0.99 | 22.6 | | | | _30 | | 0 | ٠ | | 0.0 | | | | | ## Inch system sizes #### d 241.300~266.700mm | | | Boundary d | imensions | | dynamic | Basic loa | d ratings
dynamic | static | |---------|---------|------------|-----------|--------|------------|-------------|----------------------|-------------| | | | mr | n | | , | N | uynaniic | kgf | | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 327.025 | 52.388 | 52.388 | 36.512 | 475 | 950 | 48,500 | 97,000 | | | 349.148 | 57.150 | 57.150 | 44.450 | 550 | 1,000 | 56,000 | 103,000 | | 044 000 | 368.300 | 50.800 | 50.800 | 33.338 | 460 | 810 | 47,000 | 83,000 | | 241.300 | 393.700 | 73.817 | 69.850 | 50.005 | 780 | 1,400 | 79,500 | 143,000 | | | 444.500 | 101.600 | 100.012 | 76.200 | 1,390 | 2,120 | 142,000 | 216,000 | | 244.475 | 381.000 | 79.375 | 76.200 | 57.150 | 755 | 1,440 | 77,000 | 147,000 | | | 346.075 | 63.500 | 63.500 | 50.800 | 720 | 1,450 | 73,500 | 148,000 | | 047.050 | 368.300 | 50.800 | 50.800 | 33.338 | 460 | 815 | 47,000 | 83,000 | | 247.650 | 381.000 | 74.612 | 74.612 | 57.150 | 885 | 1,790 | 90,500 | 183,000 | | | 406.400 | 115.888 | 117.475 | 93.662 | 1,650 | 3,000 | 168,000 | 305,000 | | 249.250 | 381.000 | 79.375 | 76.200 | 57.150 | 755 | 1,440 | 77,000 | 147,000 | | | 323.850 | 22.225 | 22.225 | 15.875 | 126 | 315 | 12,800 | 32,500 | | | 358.775 | 71.438 | 71.438 | 53.975 | 815 | 1,640 | 83,000 | 168,000 | | 254.000 | 365.125 | 58.738 | 58.738 | 42.862 | 615 | 1,190 | 62,500 | 122,000 | | 254.000 | 393.700 | 73.817 | 69.850 | 50.005 | 780 | 1,400 | 79,500 | 143,000 | | | 422.275 | 86.121 | 79.771 | 66.675 | 1,160 | 1,800 | 119,000 | 184,000 | | | 533.400 | 133.350 | 120.650 | 77.788 | 1,680 | 2,610 | 171,000 | 266,000 | | 257.175 | 342.900 | 57.150 | 57.150 | 44.450 | 580 | 1,270 | 59,000 | 130,000 | | 257.175 | 342.900 | 57.150 | 57.150 | 44.450 | 580 | 1,270 | 59,000 | 130,000 | | | 365.125 | 58.738 | 58.738 | 42.862 | 615 | 1,190 | 62,500 | 122,000 | | | 400.050 | 69.850 | 67.470 | 46.038 | 710 | 1,230 | 72,500 | 126,000 | | 260.350 | 419.100 | 85.725 | 84.138 | 61.912 | 925 | 1,610 | 94,000 | 165,000 | | | 422.275 | 86.121 | 79.771 | 66.675 | 1,160 | 1,800 | 119,000 | 184,000 | | | 488.950 | 120.650 | 120.650 | 92.075 | 1,760 | 2,970 | 180,000 | 305,000 | | 263.525 | 325.438 | 28.575 | 28.575 | 25.400 | 211 | 520 | 21,600 | 53,000 | | 203.325 | 355.600 | 57.150 | 57.150 | 44.450 | 625 | 1,330 | 64,000 | 136,000 | | | 323.850 | 22.225 | 22.225 | 15.875 | 126 | 315 | 12,800 | 32,500 | | | 325.438 | 28.575 | 28.575 | 25.400 | 211 | 520 | 21,600 | 53,000 | | 266.700 | 355.600 | 57.150 | 57.150 | 44.450 | 625 | 1,340 | 54,000 | 136,000 | | | 355.600 | 57.150 | 57.150 | 44.450 | 500 | 995 | 51,000 | 101,000 | | | 393.700 | 73.817 | 69.850 | 50.005 | 780 | 1,400 | 79,500 | 143,000 | | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | |---|----|---|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | #### static | Bearing numbers | | Abutme | nt and fillet
mm | dimensio | ons | | Load [®] center | Constant | A)
load f | Mass
kg | | |----------------------|------------|------------|---------------------|------------------|-------------|--------------------|--------------------------|--------------|--------------|-------------------|-----------| | | | | | | $r_{ m as}$ | r_{1as} | | | | | | | | $d_{ m a}$ | $d_{ m b}$ | $D_{\rm a}$ | D_{b} | max | max | a | e | Y_2 | $Y_{\rm o}$ | (approx.) | | | | | | | | | | | | | | | T-8578/8520 | 264 | 253 | 305 | 313 | 6.4 | 3.3 | -7.8 | 0.41 | 1.48 | 0.81 | 11.2 | | EE127095/127135 | 267 | 257 | 325 | 329 | 6.4 | 3.3 | -3.2 | 0.35 | 1.70 | 0.93 | 15.9 | | EE170950/171450 | 269 | 260 | 340 | 337 | 6.4 | 3.3 | -6.2 | 0.36 | 1.65 | 0.90 | 17.2 | | T-EE275095/275155 | 278 | 268 | 366 | 378 | 6.4 | 6.4 | -2.5 | 0.40 | 1.49 | 0.82 | 34.3 | | ☆T-EE923095/923175G2 | 277 | 268 | 403 | 407 | 6.4 | 4.8 | 19.3 | 0.34 | 1.78 | 0.98 | 68.0 | | EE126097/126150 | 275 | 266 | 343 | 358 | 6.4 | 4.8 | -8 | 0.52 | 1.16 | 0.64 | 32.6 | | T-M348449/M348410 | 273 | 263 | 321 | 332 | 6.4 | 6.4 | 1.3 | 0.34 | 1.75 | 0.96 | 16.2 | | EE170975/171450 | 274 | 264 | 340 | 337 | 6.4 | 3.3 | -6.2 | 0.36 | 1.65 | 0.90 | 16.5 | | T-M252337/M252310 | 280 | 271 | 356 | 364 | 6.4 | 3.3 | 6.2 | 0.33 | 1.80 | 0.99 | 27.3 | | HH249949/HH249910 | 284 | 275 | 366 | 383 | 6.4 | 6.4 | 28.9 | 0.33 | 1.80 | 0.99 | 55.6 | | EE126098/126150 | 279 | 269 | 343 | 358 | 6.4 | 4.8 | -8 | 0.52 | 1.16 | 0.64 | 31.7 | | 29875/29820 | 267 | 266 | 310 | 312 | 1.5 | 1.5 | -21.1 | 0.35 | 1.73 | 0.95 | 3.92 | | T-M249749/M249710 | 274 | 270 | 335 | 343 | 3.5 | 3.3 | -6.9 | 0.33 | 1.80 | 0.99 | 20.1 | | T-EE134100/134143 | 281 | 272 | 339 | 347 | 6.4 | 6.4 | - 5 | 0.37 | 1.60 | 0.88 | 17.7 | | T-EE275100/275155 | 287 | 277 | 366 | 378 | 6.4 | 6.4 | -2.5 | 0.40 | 1.49 | 0.82 | 32.1 | | T-HM252343/HM252310 | 287 | 281 | 392 | 400 | 6.8 | 3.3 | 9.3 | 0.33 | 1.80 | 0.99 | 47.1 | | HH953749/HH953710 | 328 | 306.3 | 455 | 496 | 6.4 | 6.4 | -44.7 | 0.94 | 0.64 | 0.35 | 141 | | M349549/M349510 | 201 | 269 | 322 | 333 | 6.4 | 3.3 | -2.5 | 0.25 | 1.73 | 0.05 | 12.9 | | M349549A/M349510 | 281
289 | 269 | 322 | 333 | 10.7 | 3.3 | -2.5
-2.5 | 0.35
0.35 | 1.73 | 0.95
0.95 | 12.9 | | M0433437/M043310 | 200 | 200 | OLL | 000 | 10.7 | 0.0 | 2.0 | 0.00 | 1.70 | 0.00 | 12.0 | | T-EE134102/134143 | 286 | 276 | 339 | 347 | 6.4 | 6.4 | - 5 | 0.37 | 1.60 | 0.88 | 16.8 | | EE221026/221575 | 296 | 280 | 366 | 372 | 9.7 | 6.4 | -1.8 | 0.39 | 1.52 | 0.84 | 27.0 | | EE435102/435165 | 295 | 285 | 376 | 395 | 6.4 | 3.3 | -20.7 | 0.61 | 0.99 | 0.54 | 44.4 | | T-HM252348/HM252310 | 292 | 285 | 392 | 400 | 6.8 | 3.3 | 9.3 | 0.33 | 1.80 | 0.99 | 45.7 | | EE295102/295193 | 299 | 290 | 444 | 451 | 6.4 | 6.4 | 28.7 | 0.31 | 1.92 | 1.06 | 90.3 | | T-38880/38820 | 275 | 275 | 312 | 315 | 1.5 | 1.5 | -20.5 | 0.37 | 1.64 | 0.90 | 4.56 | | T-LM451345/LM451310 | 283 | 275
279 | 335 | 343 | 3.5 | 3.3 | -20.5
-4.7 | 0.37 | 1.67 | 0.90 | 14.2 | | | | _, _ | | | 3.0 | 0.0 | ••• | 0.00 | | 0.02 | | | 29880/29820 | 277 | 275 | 310 | 312 | 1.5 | 1.5 | -21.1 | 0.35 | 1.73 | 0.95 | 3.28 | | T-38885/38820 | 277 | 277 | 312 | 315 | 1.5 | 1.5 | -20.5 | 0.37 | 1.64 | 0.90 | 4.35 | | T-LM451349/LM451310 | 285 | 281 | 335 | 343 | 3.5 | 3.3 | -4.7 | 0.36 | 1.67 | 0.92 | 15.0 | | T-LM451349A/LM451310 | 299 | 281 | 335 | 343 | 10.5 | 3.3 | -4.7 | 0.36 | 1.67 | 0.92 | 13.8 | | T-EE275105/275155 | 296 | 287 | 366 | 378 | 6.4 | 6.4 | -2.5 | 0.40 | 1.49 | 0.82 | 29.7 | # Single Row Tapered Roller Bearings #### Inch system sizes #### d 266.700~304.800mm | | | Douridary di | imensions | | dynamic | Basic loa
static | ad ratings
dynamic | static | |-----------------|--|--
--|--|--|--|--|--| | | | mn | n | | 1 | kN | · | kgf | | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 266.700 | 444.500 | 120.650 | 117.475 | 88.900 | 1,570 | 3,050 | 160,000 | 310,000 | | 269.875 | 381.000 | 74.612 | 74.612 | 57.150 | 885 | 1,790 | 90,500 | 183,000 | | 273.050 | 393.700 | 73.817 | 69.850 | 50.005 | 780 | 1,400 | 79,500 | 143,000 | | 276.225 | 352.425 | 36.512 | 34.925 | 23.812 | 295 | 605 | 30,000 | 61,500 | | 279.400 | 374.650
469.900
488.950 | 47.625
95.250
120.650 | 47.625
93.662
120.650 | 34.925
69.850
92.075 | 470
1,180
1,760 | 1,010
2,170
2,970 | 48,000
121,000
180,000 | 103,000
222,000
305,000 | | 279.982 | 380.898 | 65.088 | 65.088 | 49.212 | 660 | 1,550 | 67,500 | 159,000 | | 280.000 | 406.400 | 69.850 | 67.673 | 53.975 | 760 | 1,550 | 77,500 | 158,000 | | 280.192 | 406.400 | 69.850 | 67.673 | 53.975 | 760 | 1,550 | 77,500 | 158,000 | | 285.750 | 358.775
380.898 | 33.338
65.088 | 31.750
65.088 | 22.225
49.212 | 263
660 | 540
1,550 | 26,900
67,500 | 55,000
159,000 | | 288.925 | 406.400 | 77.788 | 77.788 | 60.325 | 1,010 | 2,080 | 103,000 | 212,000 | | 292.100 | 374.650
469.900
558.800 | 47.625
95.250
136.525 | 47.625
93.662
136.525 | 34.925
69.850
98.425 | 470
1,180
1,950 | 1,010
2,170
3,800 | 48,000
121,000
199,000 | 103,000
222,000
385,000 | | 298.450 | 444.500 | 63.500 | 61.912 | 39.688 | 630 | 1,150 | 64,000 | 117,000 | | %299.974 | 495.300 | 141.288 | 141.288 | 114.300 | 2,440 | 4,900 | 249,000 | 500,000 | | 300.038 | 422.275 | 82.550 | 82.550 | 63.500 | 1,130 | 2,400 | 116,000 | 245,000 | | 304.800 | 393.700
406.400
438.048
444.500
495.300
495.300 | 50.800
63.500
76.200
63.500
76.200
95.250 | 50.800
63.500
76.992
61.912
74.612
92.075 | 38.100
47.625
53.975
39.688
53.975
69.850 | 485
700
805
630
1,140
1,230 | 1,030
1,580
1,590
1,150
1,940
2,350 | 49,500
71,500
82,000
64,000
116,000
126,000 | 105,000
161,000
163,000
117,000
198,000
240,000 | Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions $r_{\tiny m}$ and $r_{\tiny m}$ are larger than the maximum value. 2. Bearing numbers marked ""\(z_{\tiny m} " \) designate bearing with hollow rollers and pin type cages. B-114 | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | |---|----|---|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | #### static | Bearing numbers | _ | Abutme | nt and fillet | dimensio | | | Load [®] center | Constant | Axial load factors | | Mass
kg | |------------------------|------------|------------|------------------|------------|-----------------|------------------|--------------------------|----------|--------------------|------------------|-------------------| | | $d_{ m a}$ | $d_{ m b}$ | D_{a} | $D_{ m b}$ | $r_{ m as}$ max | $r_{ m 1as}$ max | a | e | Y_2 | Y_{o} | (approx.) | | | | | | | | | | | | | | | H852849/H852810 | 315 | 297 | 390 | 422 | 6.4 | 0.6 | 0.3 | 0.58 | 1.04 | 0.57 | 73.3 | | T-M252349/M252310 | 296 | 287 | 356 | 364 | 6.4 | 3.3 | 6.2 | 0.33 | 1.80 | 0.99 | 25.4 | | T-EE275108/275155 | 301 | 291 | 366 | 378 | 6.4 | 6.4 | -2.5 | 0.40 | 1.49 | 0.82 | 28.5 | | L853049/L853010 | 293 | 288 | 332 | 342 | 3.5 | 3.3 | -34.8 | 0.54 | 1.12 | 0.62 | 8.40 | | L555233/L555210 | 300 | 296 | 355 | 362 | 3.5 | 3.3 | -17 | 0.40 | 1.49 | 0.82 | 13.0 | | EE722110/722185 | 321 | 314 | 430 | 433 | 9.7 | 3.3 | 6.3 | 0.38 | 1.58 | 0.87 | 65.3 | | EE295110/295193 | 303 | 304 | 444 | 451 | 1.3 | 6.4 | 28.7 | 0.31 | 1.92 | 1.06 | 84.9 | | T-LM654642/LM654610 | 302 | 298 | 356 | 368 | 3.5 | 3.3 | -11.5 | 0.43 | 1.39 | 0.76 | 19.0 | | EE128112/128160 | 308 | 307 | 378 | 384 | 6.4 | 3.3 | -4.4 | 0.39 | 1.56 | 0.86 | 29.1 | | EE128111/128160 | 309 | 307 | 378 | 384 | 6.8 | 3.3 | -4.4 | 0.39 | 1.56 | 0.86 | 29.1 | | 545112/545141A | 302 | 298 | 340 | 345 | 3.5 | 3.3 | -33.9 | 0.49 | 1.22 | 0.67 | 7.54 | | T-LM654649/LM654610 | 306 | 302 | 356 | 368 | 3.5 | 3.3 | -11.5 | 0.43 | 1.39 | 0.76 | 18.0 | | M255449/M255410A | 316 | 310 | 379 | 388 | 6.4 | 3.3 | 4.1 | 0.34 | 1.78 | 0.98 | 27.8 | | L555249/L555210 | 309 | 305 | 355 | 362 | 3.5 | 3.3 | -17 | 0.40 | 1.49 | 0.82 | 11.5 | | EE722115/722185 | 330 | 324 | 430 | 433 | 9.7 | 3.3 | 6.3 | 0.38 | 1.58 | 0.87 | 62.0 | | EE790114/790221 | 335 | 329 | 501 | 513 | 6.4 | 6.4 | 23.8 | 0.39 | 1.52 | 0.84 | 135 | | EE291175/291750 | 332 | 320 | 416 | 415 | 8 | 1.5 | -9.1 | 0.38 | 1.58 | 0.87 | 33.1 | | ☆HH258248/HH258210G2 | 342 | 332 | 448 | 467 | 6.4 | 6.4 | 35.4 | 0.33 | 1.80 | 0.99 | 96.0 | | ☆T-HM256849/HM256810G2 | 328 | 319 | 394 | 403 | 6.4 | 3.3 | 5.7 | 0.34 | 1.78 | 0.98 | 31.9 | | L357049/L357010 | 329 | 319 | 374 | 380 | 6.4 | 3.3 | -12.5 | 0.36 | 1.67 | 0.92 | 13.8 | | T-LM757049/LM757010 | 331 | 322 | 380 | 393 | 6.4 | 3.3 | -16.3 | 0.44 | 1.36 | 0.75 | 20.1 | | T-EE129120X/129172 | 334 | 328 | 406 | 411 | 6.4 | 4.8 | -7.3 | 0.42 | 1.44 | 0.79 | 34.8 | | EE291201/291750 | 337 | 324 | 416 | 415 | 8 | 1.5 | -9.1 | 0.38 | 1.58 | 0.87 | 31.9 | | EE941205/941950A | 339 | 329 | 459 | 463 | 6.4 | 3.3 | -10 | 0.40 | 1.49 | 0.82 | 55.8 | | EE724120/724195 | 359 | 330 | 450 | 459 | 16 | 6.4 | 0.9 | 0.40 | 1.49 | 0.82 | 69.7 | ## Inch system sizes #### d 304.800~381.000mm | | | Boundary d | imensions | | dynamic | Basic loa | ad ratings
dynamic | static | |---------|---|--|--|--|-----------------------------------|---|---|---| | | | mr | n | | , | N | • | kgf | | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 304.800 | 558.800 | 136.525 | 136.525 | 98.425 | 1,950 | 3,800 | 199,000 | 385,000 | | 317.500 | 444.500
447.675
622.300 | 63.500
85.725
147.638 | 61.912
85.725
131.762 | 39.688
68.262
82.550 | 630
1,160
2,080 | 1,150
2,390
3,550 | 64,000
118,000
212,000 | 117,000
244,000
365,000 | | 330.200 | 415.925
415.925
482.600
482.600 | 47.625
47.625
60.325
85.725 | 47.625
47.625
55.562
80.167 | 34.925
34.925
38.100
60.325 | 445
445
700
955 | 1,060
1,060
1,430
1,970 | 45,000
45,000
71,500
97,500 | 108,000
108,000
146,000
201,000 | | 333.375 | 469.900 | 90.488 | 90.488 | 71.438 | 1,350 | 2,760 | 138,000 | 282,000 | | 342.900 | 450.850
457.098
533.400 | 66.675
68.262
76.200 | 66.675
63.500
76.200 | 52.388
47.625
50.800 | 785
705
1,070 | 1,780
1,640
1,730 | 80,000
72,000
109,000 | 182,000
167,000
176,000 | | 346.075 | 482.600
488.950
488.950 | 60.325
95.249
95.250 | 55.562
95.250
95.250 | 38.100
74.612
74.612 | 700
1,420
1,480 | 1,430
3,000
3,200 | 71,500
145,000
151,000 | 146,000
305,000
325,000 | | 349.250 | 501.650 | 90.488 | 84.138 | 69.850 | 1,190 | 2,280 | 122,000 | 233,000 | | 355.600 | 444.500
469.900
482.600
501.650
501.650 | 60.325
60.325
60.325
74.612
90.488 | 60.325
55.562
55.562
66.675
84.138 | 47.625
38.100
38.100
50.800
69.850 | 655
700
700
900
1,190 | 1,740
1,430
1,430
1,830
2,280 | 67,000
71,500
71,500
92,000
122,000 | 177,000
146,000
146,000
187,000
233,000 | | 361.950 | 406.400 | 23.812 | 23.812 | 17.462 | 173 | 470 | 17,600 | 48,000 | | 368.249 | 523.875 | 101.600 | 101.600 | 79.375 | 1,520 | 3,250 | 155,000 | 335,000 | | 371.475 | 501.650 | 74.612 | 66.675 | 50.800 | 900 | 1,830 | 92,000 | 187,000 | | 374.650 | 522.288 | 85.725 | 84.138 | 61.912 | 1,060 | 2,270 | 108,000 | 232,000 | | 381.000 | 479.425
508.000 | 49.212
63.500 | 47.625
58.738 | 34.925
38.100 | 540
540 | 1,270
1,130 | 55,500
55,000 | 130,000
116,000 | | $\frac{F_{ m a}}{F_{ m r}}$ | ≤ e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ $X \mid Y$ | | | | | | |-----------------------------|------------|--|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | Y_2 | | | | | #### static | Bearing numbers | | Abutme | nt and fillet | dimensio | ons | | Load [®] center | Constant | | cial
actors | Mass
kg | |------------------------------------|------------|------------|------------------|------------------|--------------|------------|--------------------------|--------------|--------------|------------------|-------------------| | | | | | _ | $r_{\rm as}$ | r_{1as} | | | | | | | | $d_{ m a}$ | $d_{ m b}$ | D_{a} | D_{b} | max | max | a | e | Y_2 | Y_{o} | (approx.) | | EE790120/790221 | 335 | 335 | 501 | 513 | 1.3 | 6.4 | 23.8 | 0.39 | 1.52 | 0.84 | 131 | | EE291250/291750 | 346 | 334 | 416 | 415 | 8 | 1.5 | -9.1 | 0.38 | 1.58 | 0.87 | 29.5 | | T-HM259048/HM259010 | 341 | 337 | 418 | 428 | 3.5 | 3.3 | 4.8 | 0.33 | 1.79 | 0.99 | 37.3 | | ☆H961649/H961610G2 | 410 | 373 | 531 | 582 | 14.3 | 12.7 | -60.7 | 0.95 | 0.63 | 0.35 | 203 | | T-L860048/L860010 | 367 | 345 | 394 | 402 | 12.7 | 3.3 | -35.4 | 0.50 | 1.20 | 0.66 |
13.3 | | T-L860049/L860010 | 349 | 345 | 394 | 402 | 3.5 | 3.3 | -35.4 | 0.50 | 1.20 | 0.66 | 13.3 | | T-EE161300/161900 | 367 | 356 | 451 | 455 | 7 | 6.4 | -33.6 | 0.50 | 1.20 | 0.66 | 35.9 | | EE526130/526190 | 360 | 351 | 449 | 454 | 6.4 | 3.3 | -2.8 | 0.39 | 1.53 | 0.84 | 51.0 | | HM261049/HM261010A | 363 | 357 | 439 | 449 | 6.4 | 3.3 | 5.4 | 0.33 | 1.79 | 0.99 | 43.4 | | LM361649/LM361610 | 373 | 360 | 425 | 435 | 8.5 | 3.5 | -8.7 | 0.35 | 1.71 | 0.94 | 25.0 | | LM961548/LM961511 | 367 | 363 | 423 | 443 | 3.3 | 3.3 | -53.6 | 0.71 | 0.84 | 0.46 | 30.0 | | EE971354/972100 | 373 | 367 | 501 | 501 | 4.8 | 3.3 | -2.5 | 0.33 | 1.80 | 0.99 | 55.6 | | T-EE161363/161900 | 379 | 368 | 451 | 455 | 7 | 6.4 | -33.6 | 0.50 | 1.20 | 0.66 | 32.8 | | T-HM262748/HM262710 | 377 | 367 | 456 | 467 | 6.4 | 3.3 | 6.4 | 0.33 | 1.79 | 0.99 | 52.5 | | ☆T-HM262749/HM262710G2 | 377 | 367 | 456 | 467 | 6.4 | 3.3 | 6.4 | 0.33 | 1.79 | 0.99 | 49.7 | | EE333137/333197 | 382 | 372 | 470 | 478 | 6.4 | 3.3 | -1.9 | 0.36 | 1.65 | 0.90 | 56.4 | | T-L163149/L163110 | 374 | 370 | 422 | 430 | 3.5 | 3.3 | -7.2 | 0.31 | 1.95 | 1.07 | 18.8 | | T-EE161400/161850 | 386 | 375 | 445 | 455 | 7 | 6.4 | -33.6 | 0.50 | 1.20 | 0.66 | 27.3 | | T-EE161400/161900 | 386 | 375 | 451 | 455 | 7 | 6.4 | -33.6 | 0.50 | 1.20 | 0.66 | 30.8 | | T-EE231400/231975 | 388 | 379 | 472 | 481 | 6.4 | 3.3 | -19.8 | 0.44 | 1.36 | 0.75 | 44.9 | | EE333140/333197 | 387 | 377 | 470 | 483 | 6.4 | 3.3 | -1.9 | 0.36 | 1.65 | 0.90 | 50.8 | | LL562749/LL562710 | 372 | 371 | 396 | 401 | 2.3 | 1.5 | -38.3 | 0.40 | 1.49 | 0.82 | 3.56 | | ☆HM265049/HM265010G2 | 400 | 394 | 487 | 499 | 6.4 | 6.4 | 8 | 0.33 | 1.80 | 0.99 | 61.7 | | T-EE231462/231975 | 400 | 390 | 472 | 481 | 6.4 | 3.3 | -19.8 | 0.44 | 1.36 | 0.75 | 40.7 | | LM565943/LM565910 | 407 | 397 | 493 | 500 | 6.4 | 3.3 | -7.6 | 0.39 | 1.56 | 0.86 | 54.5 | | L865547/L865512
EE192150/192200 | 407
410 | 395
400 | 456
478 | 465
482 | 6.4
6.4 | 3.3
3.3 | -42.4
-40.6 | 0.49
0.53 | 1.21
1.13 | 0.67
0.62 | 20.0
34.4 | ## Inch system sizes #### d 381.000~457.200mm | | | Boundary d | imensions | | dynamic | Basic loa | d ratings
dynamic | static | |---------|---------|------------|-----------|--------|------------|-------------|----------------------|-------------| | | | mr | n | | | :N | * | kgf | | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 522,288 | 85.725 | 84.138 | 61.912 | 1,060 | 2,270 | 108,000 | 232,000 | | | 523.875 | 85.725 | 84.138 | 61.912 | 1,060 | 2,270 | 108,000 | 232,000 | | 381.000 | 546.100 | 104.775 | 104.775 | 82.550 | 1,720 | 3,700 | 176,000 | 375,000 | | 361.000 | 546.100 | 104.775 | 104.775 | 82.550 | 1,840 | 4,000 | 188,000 | 410,000 | | | 590.550 | 114.300 | 114.300 | 88.900 | 2,140 | 4,700 | 218,000 | 480,000 | | | 441.325 | 28.575 | 28.575 | 20.638 | 246 | 655 | 25,100 | 66,500 | | 384.175 | 546.100 | 104.775 | 104.775 | 82.550 | 1,720 | 3,700 | 176,000 | 375,000 | | | 546.100 | 104.775 | 104.775 | 82.550 | 1,840 | 4,000 | 188,000 | 410,000 | | 385.762 | 514.350 | 82.550 | 82.550 | 63.500 | 1,230 | 2,780 | 126,000 | 283,000 | | 387.248 | 546.100 | 87.312 | 87.312 | 68.262 | 1,390 | 3,150 | 142,000 | 325,000 | | 396.875 | 546.100 | 76.200 | 61.120 | 55.562 | 775 | 1,640 | 79,500 | 167,000 | | 403.225 | 460.375 | 28.575 | 28.575 | 20.638 | 206 | 600 | 21,000 | 61,500 | | | 508.000 | 61.912 | 61.912 | 47.625 | 660 | 1,690 | 67,500 | 172,000 | | | 546.100 | 76.200 | 61.120 | 55.562 | 775 | 1,640 | 79,500 | 167,000 | | 406.400 | 549.275 | 85.725 | 84.138 | 61.912 | 1,320 | 2,920 | 135,000 | 298,000 | | | 590.550 | 107.950 | 107.950 | 80.962 | 1,640 | 3,400 | 167,000 | 345,000 | | | 609.600 | 92.075 | 84.138 | 60.325 | 1,260 | 2,400 | 129,000 | 245,000 | | 409.575 | 546.100 | 87.312 | 87.312 | 68.262 | 1,350 | 3,050 | 137,000 | 310,000 | | 415.925 | 590.550 | 114.300 | 114.300 | 88.900 | 2,140 | 4,700 | 218,000 | 480,000 | | | 533.400 | 46.038 | 46.038 | 34.925 | 555 | 1,310 | 56,500 | 134,000 | | | 552.450 | 44.450 | 44.450 | 31.750 | 615 | 1,340 | 62,500 | 137,000 | | 431.800 | 571.500 | 74.612 | 74.612 | 52.388 | 1,090 | 2,470 | 112,000 | 252,000 | | | 603.250 | 76.200 | 73.025 | 50.800 | 975 | 2,050 | 99,500 | 209,000 | | | 673.100 | 88.900 | 87.833 | 60.325 | 1,490 | 2,670 | 152,000 | 272,000 | | 447.675 | 552.450 | 44.450 | 44.450 | 31.750 | 615 | 1,340 | 62,500 | 137,000 | | 447.073 | 635.000 | 120.650 | 120.650 | 95.250 | 2,420 | 5,550 | 247,000 | 565,000 | | 457.200 | 552.450 | 44.450 | 44.450 | 31.750 | 615 | 1,340 | 62,500 | 137,000 | | 1011200 | 573.088 | 74.612 | 74.612 | 57.150 | 1,000 | 2,680 | 103,000 | 274,000 | Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions r_{m} and r_{m} are larger than the maximum value. 2. Bearing numbers marked " "" "designate bearing with hollow rollers and pin type cages. B-118 | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤ e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | |---|------------|---|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | #### static | Bearing numbers | | Abutmer | nt and fillet | dimensior | ıs | | Load [®] center | Constant | | cial
actors | Mass
kg | |----------------------------------|------------|-------------|------------------|------------|--------------|------------|--------------------------|----------|-------|----------------|-------------------| | | | | | | $r_{\rm as}$ | r_{1as} | | | | | | | | $d_{ m a}$ | $d_{ m b}$ | D_{a} | $D_{ m b}$ | max | max | a | e | Y_2 | $Y_{ m o}$ | (approx.) | | | | | | | | | | | | | | | LM565949/LM565910 | 411 | 402 | 493 | 500 | 6.4 | 3.3 | -7.6 | 0.39 | 1.56 | 0.86 | 52.5 | | LM565949/LM565912 | 411 | 402 | 493 | 500 | 6.4 | 3.3 | -7.6 | 0.39 | 1.56 | 0.86 | 53.2 | | T-HM266446/HM266410 | 415 | 405 | 507 | 520 | 6.4 | 6.4 | 7.1 | 0.33 | 1.80 | 0.99 | 76.0 | | ☆T-HM266447/HM266410G2 | 415 | 405 | 507 | 520 | 6.4 | 6.4 | 7.1 | 0.33 | 1.80 | 0.99 | 70.1 | | ☆T-M268730/M268710G2 | 425 | 415 | 549 | 561 | 6.4 | 6.4 | 9.4 | 0.33 | 1.80 | 0.99 | 102 | | LL365348/LL365310 | 399 | 393 | 427 | 433 | 3.5 | 3.3 | -30 | 0.34 | 1.77 | 0.97 | 5.89 | | T-HM266448/HM266410 | 417 | 407 | 507 | 519 | 6.4 | 6.4 | 7.1 | 0.33 | 1.80 | 0.99 | 69.0 | | ☆T-HM266449/HM266410G2 | 417 | 407 | 507 | 519 | 6.4 | 6.4 | 7.1 | 0.33 | 1.80 | 0.99 | 69.0 | | A 1 11111200 110/11111200 110/10 | 117 | 107 | 007 | 010 | 0.1 | 0.1 | , | 0.00 | 1.00 | 0.00 | 00.0 | | LM665949/LM665910 | 415 | 406 | 482 | 495 | 6.4 | 3.3 | -16.3 | 0.42 | 1.43 | 0.79 | 41.8 | | ☆M667935/M667911G2 | 424 | 414 | 510 | 528 | 6.4 | 6.4 | -16.2 | 0.42 | 1.43 | 0.79 | 56.6 | | EE234156/234215 | 428 | 418 | 504 | 516 | 6.4 | 6.4 | -35.8 | 0.47 | 1.27 | 0.70 | 51.5 | | LL566848/LL566810 | 418 | 414 | 445 | 452 | 3.5 | 3.3 | -41.5 | 0.40 | 1.49 | 0.82 | 6.17 | | L467549/L467510 | 426 | 423 | 483 | 492 | 3.3 | 3.3 | -19.6 | 0.37 | 1.63 | 0.90 | 25.1 | | EE234160/234215 | 435 | 425 | 504 | 516 | 6.4 | 6.4 | -35.8 | 0.47 | 1.27 | 0.70 | 48.7 | | LM567949/LM567910 | 437 | 427 | 519 | 525 | 6.4 | 3.3 | -14.7 | 0.41 | 1.47 | 0.81 | 56.2 | | EE833160X/833232 | 448 | 435 | 549 | 561 | 9.7 | 6.4 | 8.5 | 0.33 | 1.84 | 1.01 | 86.6 | | EE911600/912400 | 443 | 439 | 567 | 570 | 6.8 | 6.4 | -11.5 | 0.38 | 1.57 | 0.86 | 91.3 | | M667948/M667911 | 440 | 431 | 510 | 528 | 6.4 | 6.4 | -16.2 | 0.42 | 1.43 | 0.79 | 49.8 | | ☆T-M268749/M268710 G 2 | 451 | 441 | 549 | 561 | 6.4 | 6.4 | 9.4 | 0.33 | 1.80 | 0.99 | 87.8 | | T-80385/80325 | 450 | 446 | 510 | 510 | 3.3 | 3.3 | -23.4 | 0.31 | 1.94 | 1.07 | 19.7 | | 80170/80217 | 456 | 452 | 531 | 536 | 3.3 | 3.3 | -27.5 | 0.32 | 1.88 | 1.04 | 23.1 | | T-LM869448/LM869410 | 457 | 453 | 537 | 549 | 3.3 | 3.3 | -50.1 | 0.55 | 1.10 | 0.60 | 45.7 | | EE241701/242375 | 446 | 457 | 558 | 564 | 6.4 | 6.4 | -46.5 | 0.53 | 1.14 | 0.63 | 64.9 | | EE571703/572650 | 472 | 466 | 630 | 632.6 | 6.4 | 3.3 | -21.4 | 0.40 | 1.49 | 0.82 | 114 | | 80176/80217 | 467 | 464 | 531 | 536 | 3.3 | 3.3 | -27.5 | 0.32 | 1.88 | 1.04 | 20.4 | | ☆M270749/M270710AG2 | 484 | 474 | 591 | 606 | 6.4 | 6.4 | 8.5 | 0.33 | 1.80 | 0.99 | 107 | | 80180/80217 | 474 | 471 | 531 | 536 | 3.3 | 3.3 | -27.5 | 0.32 | 1.88 | 1.04 | 18.7 | | L570649/L570610 | 474
485 | 47 i
475 | 543 | 558 | 3.3
6.4 | 3.3
6.4 | -27.5
-26.2 | 0.32 | 1.66 | 0.82 | 38.9 | | L3/0043/L3/0010 | 400 | 4/5 | 543 | 556 | 0.4 | 0.4 | -20.2 | 0.40 | 1.49 | 0.8∠ | 30.9 | # Single Row Tapered Roller Bearings #### NTN #### Inch system sizes #### d 457.200~584.200mm | | | Boundary d | imensions | | dynamic | Basic loa | nd ratings
dynamic | static | |---------|--------------------|------------------|------------------|------------------|----------------|----------------|-----------------------|--------------------| | | | mr | n | | • | .N | | gf | | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | | | | | | | | | | 596.900 | 76.200 | 73.025 | 53.975 | 975 | 2,350 | 99,500 | 239,000 | | 457.200 | 603.250
615.950 | 85.725
85.725 | 84.138
85.725 | 60.325
66.675 | 1,140
1,350 | 2,680
3,350 | 116,000
138,000 | 274,000
340,000 | | 1011200 | 730.148 | 120.650 | 114.300 | 82.550 | 2,540 | 4,350 | 259,000 | 445,000 | | 476.250 | 565.150 | 41.275 | 41.275 | 31.750 | 405 | 1,200 | 41,500 | 122,000 | | 479.425 | 679.450 | 128.588 | 128.588 | 101.600 | 2,850 | 6,500 | 290,000 | 660,000 | | 400.053 | 615.950 | 85.725 | 85.725 | 66.675 | 1,350 | 3,350 | 138,000 | 340,000 | | 482.600 | 634.873 | 80.962 | 80.962 | 63.500 | 1,170 | 3,100 | 119,000 | 315,000 | | 400.050 | 634.873 | 84.138 | 84.138 | 61.912 | 1,460 | 3,450 | 149,000 | 355,000 | | 488.950 | 660.400 | 93.662 | 94.458 | 69.850 | 1,830 | 4,000 | 186,000 | 410,000 | | 489.026 | 634.873 | 80.962 | 80.962 | 63.500 | 1,170 | 3,100 | 119,000 | 315,000 | |
498.475 | 634.873 | 80.962 | 80.962 | 63.500 | 1,170 | 3,100 | 119,000 | 315,000 | | 501.650 | 711.200 | 136.525 | 136.525 | 106.362 | 2,940 | 6,850 | 300,000 | 695,000 | | 508.000 | 838.200 | 146.050 | 139.700 | 104.775 | 3,150 | 6,400 | 325,000 | 655,000 | | 533.400 | 635.000 | 50.800 | 50.800 | 38.100 | 695 | 1,680 | 71,000 | 171,000 | | 536.575 | 761.873 | 146.050 | 146.050 | 114.300 | 3,450 | 7,600 | 350,000 | 775,000 | | 539.750 | 635.000 | 50.800 | 50.800 | 38.100 | 695 | 1,680 | 71,000 | 171,000 | | 549.275 | 692.150 | 80.962 | 80.962 | 61.912 | 1,350 | 3,500 | 138,000 | 355,000 | | | 736.600 | 76.200 | 76.200 | 50.800 | 1,200 | 2,690 | 122,000 | 275,000 | | 558.800 | 736.600 | 88.108 | 88.108 | 63.500 | 1,460 | 3,350 | 148,000 | 345,000 | | | 736.600 | 104.775 | 104.775 | 80.962 | 1,850 | 4,400 | 189,000 | 450,000 | | 571.500 | 812.800 | 155.575 | 155.575 | 120.650 | 4,050 | 9,150 | 415,000 | 935,000 | | 584.200 | 685.800 | 49.212 | 49.212 | 34.925 | 705 | 1,930 | 72,000 | 197,000 | Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions r_m and r_m are larger than the maximum value. 2. Bearing numbers marked " " "designate bearing with hollow rollers and pin type cages. | $\frac{F_{ m a}}{F_{ m r}}$ | ≤ e | $\frac{F_{ m a}}{F_{ m r}}$ | >e | |-----------------------------|------------|-----------------------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_2 | #### static | Bearing numbers | | Abutme | nt and fillet | dimensio | ns | | Load [®] center | Constant | | cial
actors | Mass | |----------------------|------------|------------|---------------|------------|--------------|--------------------|--------------------------|----------|-------|------------------|-----------| | | | | mm | | | | mm | | | | kg | | | J | j. | D | D | $r_{\rm as}$ | r_{1as} | | | 7.7 | 7.7 | , | | | $d_{ m a}$ | $d_{ m b}$ | $D_{\rm a}$ | $D_{ m b}$ | max | max | a | e | Y_2 | Y_{o} | (approx.) | | EE244180/244235 | 494 | 478 | 567 | 570 | 9.7 | 3.3 | -27.1 | 0.40 | 1.48 | 0.82 | 53.9 | | LM770949/LM770910 | 489 | 479 | 570 | 579 | 6.4 | 3.3 | -29.7 | 0.46 | 1.32 | 0.72 | 63.8 | | ☆LM272235/LM272210G2 | 493 | 483 | 585 | 597 | 6.4 | 6.4 | -11.3 | 0.33 | 1.80 | 0.99 | 63.8 | | EE671801/672873 | 507 | 491 | 675 | 681 | 9.7 | 6.4 | -6.6 | 0.39 | 1.53 | 0.84 | 188 | | LL771948/LL771911 | 495 | 491 | 543 | 549 | 3.3 | 3.3 | -58.4 | 0.47 | 1.28 | 0.70 | 16.7 | | | 100 | 101 | 0.10 | 0.10 | 0.0 | 0.0 | 00.1 | 0.17 | 1.20 | 0.70 | 10.7 | | ☆T-M272749/M272710G2 | 516 | 507 | 633 | 648 | 6.4 | 6.4 | 8.9 | 0.33 | 1.80 | 0.99 | 130 | | ☆LM272249/LM272210G2 | 513 | 501 | 585 | 597 | 6.4 | 6.4 | -11.3 | 0.33 | 1.80 | 0.99 | 54.9 | | EE243190/243250 | 516 | 510 | 603 | 609 | 6.4 | 3.3 | -18.5 | 0.34 | 1.76 | 0.97 | 60.2 | | LM772748/LM772710A | 522 | 510 | 600 | 613 | 6.4 | 3.3 | -40.4 | 0.47 | 1.27 | 0.70 | 60.3 | | ☆T-EE640192/640260G2 | 522 | 513 | 624 | 630 | 6.4 | 6.4 | -4.9 | 0.31 | 1.95 | 1.07 | 85.2 | | EE243192/243250 | 522 | 516 | 603 | 609 | 6.4 | 3.3 | -18.5 | 0.34 | 1.76 | 0.97 | 58.0 | | EE243196/243250 | 528 | 522 | 603 | 609 | 6.4 | 3.3 | -18.5 | 0.34 | 1.76 | 0.97 | 54.7 | | ☆M274149/M274110G2 | 540 | 534 | 663 | 678 | 6.4 | 6.4 | 11.8 | 0.33 | 1.80 | 0.99 | 152 | | EE426200/426330 | 564 | 552 | 759 | 768 | 9.7 | 9.7 | -26.1 | 0.48 | 1.25 | 0.69 | 296 | | LL575343/LL575310 | 558 | 549 | 612 | 621 | 6.4 | 6.4 | -50.3 | 0.41 | 1.48 | 0.81 | 26.4 | | ☆M276449/M276410G2 | 576 | 570 | 711 | 726 | 6.4 | 6.4 | 10.5 | 0.33 | 1.80 | 0.99 | 187 | | LL575349/LL575310 | 564 | 555 | 612 | 621 | 6.4 | 6.4 | -50.3 | 0.41 | 1.48 | 0.81 | 24.9 | | L476549/L476510 | 579 | 570 | 657 | 666 | 6.4 | 6.4 | -32.2 | 0.38 | 1.59 | 0.88 | 68.2 | | EE542220/542290 | 594 | 585 | 696 | 705 | 6.4 | 6.4 | -66.6 | 0.51 | 1.17 | 0.65 | 76.7 | | EE843220/843290 | 591 | 585 | 699 | 708 | 6.4 | 6.4 | -21.8 | 0.34 | 1.76 | 0.97 | 88.7 | | LM377449/LM377410 | 594 | 585 | 696 | 708 | 6.4 | 6.4 | -15.6 | 0.35 | 1.73 | 0.95 | 106 | | ☆M278749/M278710AG2 | 615 | 609 | 756 | 774 | 6.4 | 6.4 | 12.7 | 0.33 | 1.80 | 0.99 | 227 | | T-LL778149/LL778110 | 603 | 600 | 663 | 669 | 3.5 | 3.3 | -64.5 | 0.44 | 1.37 | 0.75 | 27.8 | ## Single Row Tapered Roller Bearings #### Inch system sizes #### *d* 596.900∼1,270.000mm | d D T B C C, C= C, C= C, C= C, C= C, C= | | | Boundary di | mensions | | Basic load ratings | | | | | | |--|-----------|-----------|-------------|----------|---------|--------------------|--------------|--------------|---------------------------------------|--|--| | d D T B C C, C, C, C, 596.900 685.800 31.750 31.750 25.400 335 895 34,000 91,000 609.396 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 787.400 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 69.850 2,190 5,050 223,000 515,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 | | | mn | n | | dynamic
k | static
:N | dynamic
I | static
kgf | | | | 596.900 685.800 31.750 31.750 25.400 335 895 34,000 91,000 609.396 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 787.400 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 60.325 1,670 3,900 170,000 400,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 | | | | | | | | | | | | | 609.396 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 812.800 93.662 93.662 69.850 2,190 5,050 223,000 515,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 | d | D | T | В | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 787.400 93.662 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 60.325 1,670 3,900 170,000 400,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 <th>596.900</th> <th>685.800</th> <th>31.750</th> <th>31.750</th> <th>25.400</th> <th>335</th> <th>895</th> <th>34,000</th> <th>91,000</th> | 596.900 | 685.800 | 31.750 | 31.750 | 25.400 | 335 | 895 | 34,000 | 91,000 | | | | 609.600 787.400 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 60.325 1,670 3,900 170,000 400,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450< | 609.396 | 762.000 | 95.250 | 92.075 | 71.438 | 1,770 | 4,850 | 180,000 | 495,000 | | | | 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 < | 609.600 | 787.400 | 93.662 | 93.662 | 69.850 | 2,190 | 5,050 | 223,000 | 515,000 | | | | 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200
914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 | 635.000 | 736.600 | 57.150 | 53.975 | 41.275 | 695 | 1,980 | 71,000 | 202,000 | | | | 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 | 660.400 | 812.800 | 95.250 | 95.250 | 73.025 | 1,950 | 5,150 | 199,000 | 530,000 | | | | 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,320.800 95.250 88.900 69.850< | 673.100 | 793.750 | 66.675 | 61.912 | 49.212 | 985 | 2,700 | 101,000 | 275,000 | | | | 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 685.800 | 876.300 | 93.662 | 92.075 | 69.850 | 2,060 | 5,450 | 210,000 | 555,000 | | | | 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 711.200 | 914.400 | 85.725 | 82.550 | 60.325 | 1,810 | 4,450 | 185,000 | 455,000 | | | | 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 723.900 | 914.400 | 84.138 | 80.962 | 60.325 | 1,810 | 4,450 | 185,000 | 455,000 | | | | 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 749.300 | 990.600 | 159.500 | 160.337 | 123.000 | 4,300 | 11,300 | 440,000 | 1,160,000 | | | | 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 774.700 | 965.200 | 93.662 | 80.962 | 66.675 | 1,530 | 3,450 | 156,000 | 350,000 | | | | 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 838.200 | 1,041.400 | 93.662 | 88.900 | 66.675 | 2,120 | 5,200 | 216,000 | 530,000 | | | | 1,066.800 1,219.200 | 977.900 | 1,130.300 | 66.675 | 63.500 | 47.625 | 1,190 | 3,600 | 122,000 | 365,000 | | | | 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 1,063.625 | 1,219.200 | 65.088 | 65.088 | 42.862 | 1,410 | 4,300 | 144,000 | 435,000 | | | | | 1,066.800 | , | | | | , | , | | · · · · · · · · · · · · · · · · · · · | | | | 1,092.200 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000 | 1,092.200 | 1,320.800 | 95.250 | 88.900 | 69.850 | 2,330 | 6,200 | 237,000 | 635,000 | | | | 1,270.000 1,435.100 69.850 65.088 47.625 1,590 5,050 162,000 515,000 | 1,270.000 | 1,435.100 | 69.850 | 65.088 | 47.625 | 1,590 | 5,050 | 162,000 | 515,000 | | | | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤ e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | |---|------------|-----------------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | Y_2 | | | | | #### static | Bearing numbers | | Abutme | ent and fille
mm | et dimensio | ns | | Load [®] center | Constant | | cial
actors | Mass
kg | |---------------------------------------|----------------|----------------|---------------------|----------------|--------------|------------|--------------------------|--------------|--------------|----------------|-------------------| | | , | | | 5 | $r_{\rm as}$ | r_{1as} | | | 7.7 | 7.7 | | | | $d_{ m a}$ | $d_{ m b}$ | $D_{\rm a}$ | $D_{ m b}$ | max | max | a | e | Y_2 | $Y_{\rm o}$ | (approx.) | | 680235/680270 | 615 | 615 | 663 | 669 | 3.5 | 3.3 | -94.8 | 0.53 | 1.14 | 0.63 | 15.8 | | L879946/L879910 | 642 | 633 | 720 | 741 | 6.4 | 6.4 | -58.2 | 0.49 | 1.23 | 0.68 | 95.7 | | L879947/L879910
☆EE649240/649310G2 | 642
642 | 633
633 | 720
747 | 741
764 | 6.4
6.4 | 6.4
6.4 | -58.2
-23.8 | 0.49
0.33 | 1.23
1.80 | 0.68
0.99 | 95.6
112 | | EE743240/743320 | 645 | 636 | 768 | 768 | 6.4 | 6.4 | -31.8 | 0.33 | 1.83 | 1.01 | 104 | | 80780/80720 | 654 | 651 | 714 | 717 | 3.3 | 3.3 | -69.2 | 0.44 | 1.37 | 0.75 | 38.3 | | L281148/L281110A | 693 | 681 | 777 | 789 | 6.4 | 6.4 | -27.7 | 0.33 | 1.80 | 0.99 | 93.5 | | LL481448/LL481411 | 702 | 690 | 765 | 771 | 6.4 | 6.4 | -53.8 | 0.36 | 1.67 | 0.92 | 51.3 | | ☆EE655270/655345G2 | 723 | 714 | 831 | 843 | 6.4 | 6.4 | -56.6 | 0.42 | 1.43 | 0.79 | 134 | | ☆EE755280/755360G2 | 750 | 741 | 873 | 876 | 6.4 | 6.4 | -52.4 | 0.38 | 1.58 | 0.87 | 136 | | ☆EE755285/755360G2 | 756 | 750 | 873 | 876 | 5.5 | 6.4 | - 54 | 0.38 | 1.58 | 0.87 | 126 | | ☆LM283649/LM283610G2 | 792 | 786 | 936 | 952 | 6.4 | 6.4 | -4.4 | 0.33 | 1.80 | 0.99 | 309 | | EE752305/752380 | 810 | 798 | 921 | 924 | 6.4 | 3.3 | -66.6 | 0.40 | 1.49 | 0.82 | 126 | | ☆EE763330/763410G2 | 876 | 870 | 996 | 1,000 | 6.4 | 6.4 | -85.3 | 0.44 | 1.36 | 0.75 | 172 | | LL687949/LL687910 | 1,010 | 1,005 | 1,095 | 1,100 | 6.4 | 6.4 | -118.2 | 0.44 | 1.37 | 0.75 | 103 | | LL788345/LL788310 | 1,090 | 1,085 | 1,185 | 1,190 | 3.3 | 3.3 | -142.8 | 0.48 | 1.26 | 0.69 | 422 | | LL788349/LL788310
EE776420/776520 | 1,090
1,115 | 1,090
1,115 | 1,185
1,260 | 1,190
1,289 | 3.3
6.4 | 3.3
6.4 | -142.8
-175.6 | 0.48
0.57 | 1.26
1.05 | 0.69
0.58 | 422
796 | | EE776430/776520 | 1,135 | 1,130 | 1,260 | 1,289 | 6.4 | 6.4 | -175.6 | 0.57 | 1.05 | 0.58 | 794 | | LL889049/LL889010 | 1,305 | 1,300 | 1,395 | 1,405 | 6.4 | 6.4 | -220.2 | 0.58 | 1.04 | 0.57 | 666 | # Double Row Tapered Roller Bearings (Outside Direction) #### NTN ## **Metric system sizes** #### *d* 100∼120mm | | | Bounda | ary dimens | ions | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |-----|---------------------|--------|------------|---------------|------------------|------------|-------------|-----------------------|-------------|--------------------| | | | | mm | | | kN | | kg | | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 165 | 52 | 46 | 2.5 | 0.8 | 204 | 305 | 20,800 | 31,500 | CRI-2052 | | | 180 | 82 | 66 | 3 | 1 | 440 | 675 | 45,000 | 68,500 | CRI-2059 | | | 180 | 83 | 67 | 3 | 1 | 440 | 675 | 45,000 | 68,500 | 430220XU | | | 180 | 107 | 87 | 3 | 1 | 565 | 925 | 58,000 | 94,500 | 432220XU | | 100 | 180 | 140 | 115 | 2.5 | 1 | 585 | 1,090 | 59,500 | 111,000 | CRI-2010 | | | 190 | 124.5 | 102 | 3 | 1 | 760 | 1,220 | 77,500 | 124,000 | CRI-2072 | | | 215 | 112 | 87 | 4 | 1 | 700 | 995 | 71,500 | 102,000 | 430320XU | | | 215 | 112 | 87 | 3 | 1 | 590 | 800 | 60,000 | 81,500 | 430320X | | | 215 | 162 | 127 | 4 | 1 | 980 | 1,540 | 100,000 | 157,000 | 432320U | | | 190 | 88 | 70 | 3 | 1 | 490 | 760 | 50,000 | 77,500 | 430221XU | | | 190 | 115 | 95 | 3 | 1 | 650 | 1,080 | 66,000 | 111,000 | 432221XU | | 105 | 190 | 117 | 96 | 3 | 1 | 650 | 1,080 | 66,000 | 111,000 | CRI-2152 | | 105 | 225 | 116 | 91 | 4 | 1 | 750 | 1,060 | 76,000 | 109,000 | 430321XU | | | 225 | 116 | 91 | 3 | 1 | 625 | 845 | 63,500 | 86,000 | 430321X | | | 225 | 170 | 133 | 3 | 1 | 955 | 1,470 | 97,500 | 150,000 | 432321 | | | 160 | 57.5 | 47.5 | 1.5 | 0.5 | 218 | 450 | 22,200 | 46,000 | CRI-2258 | | | 180 | 56 | 50 | 2.5 | 0.6 | 228 | 340 | 23,300 | 35,000 | 413122 | | | 180 | 70 | 56 | 2.5 | 0.6 | 298 | 485 | 30,500 | 49,500 | 423122 | | | 180 | 125 | 100 | 2.5 | 0.6 | 515 | 980 | 52,500 | 99,500 | CRI-2219 |
| 110 | 200 | 92 | 74 | 3 | 1 | 555 | 865 | 56,500 | 88,500 | 430222XU | | 110 | 200 | 121 | 101 | 3 | 1 | 720 | 1,210 | 73,500 | 124,000 | 432222XU | | | 240 | 118 | 93 | 4 | 1 | 825 | 1,180 | 84,000 | 120,000 | 430322U | | | 240 | 118 | 93 | 3 | 1 | 685 | 925 | 69,500 | 94,500 | 430322 | | | 240 | 181 | 142 | 4 | 1 | 1,210 | 1,940 | 123,000 | 197,000 | 432322U | | | 240 | 181 | 142 | 3 | 1 | 1,070 | 1,660 | 109,000 | 169,000 | 432322 | | | 180 | 46 | 41 | 2.5 | 0.6 | 193 | 298 | 19,700 | 30,500 | 413024 | | | 180 | 58 | 46 | 2.5 | 0.6 | 230 | 375 | 23,500 | 38,000 | 423024 | | | 200 | 62 | 55 | 2.5 | 0.6 | 263 | 435 | 26,800 | 44,500 | 413124 | | | 200 | 78 | 62 | 2.5 | 0.6 | 370 | 610 | 38,000 | 62,500 | 423124 | | | 200 | 78 | 62 | 2.5 | 0.6 | 370 | 610 | 38,000 | 62,500 | CRI-2460 | | 120 | 200 | 100 | 84 | 2.5 | 1 | 530 | 1,100 | 54,000 | 113,000 | CRI-2416 | | | 215 | 97 | 78 | 3 | 1 | 595 | 940 | 60,500 | 96,000 | 430224XU | | | 215 | 132 | 109 | 3 | 1 | 790 | 1,360 | 80,500 | 139,000 | 432224XU | | | 260 | 128 | 101 | 4 | 1 | 960 | 1,390 | 97,500 | 142,000 | 430324XU | | | 260 | 128 | 101 | 3 | 1 | 800 | 1,100 | 81,500 | 112,000 | 430324X | | | 260
Minimum allo | 188 | 145 | 4 | 1 | 1,400 | 2,270 | 143,000 | 231,000 | 432324U | lacktriangled Minimum allowable dimension for chamfer dimension r or r_1 . | $\frac{F_{ m a}}{F_{ m r}}$ | ≤ e | $\frac{F_i}{F_i}$ | >e | |-----------------------------|------------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e, Y_2 and Y_0 see the table below. | A | butment ar | nd fillet din | nensions | | Load
center
mm | Constant | Axia | al load fac | tors | Mass
kg | |------------|------------|----------------|-------------|--------------|----------------------|----------|------------|-------------|------------------|-------------------| | d | D | | 0.0 | 24 | 111111 | | | | | ĸy | | $d_{ m a}$ | $D_{ m b}$ | S _b | $r_{ m as}$ | $r_{ m las}$ | a | 0 | Y_1 | Y_2 | Y_{o} | () | | min | min | min | max | max | a | e | <i>I</i> 1 | I 2 | I_0 | (approx.) | | 110 | 150 | 0 | 0 | 0.0 | F0 F | 0.00 | 0.00 | 0.00 | 1.00 | 0.04 | | 112 | 153 | 3 | 2 | 0.8 | 53.5 | 0.33 | 2.03 | 3.02 | 1.98 | 3.94 | | 114 | 169 | 8 | 2.5 | 1 | 80.5 | 0.42 | 1.61 | 2.39 | 1.57 | 8.08 | | 114 | 168 | 8 | 2.5 | 1 | 81.5 | 0.42 | 1.61 | 2.39 | 1.57 | 8.11 | | 114 | 171 | 10 | 2.5 | 1 | 92
07 F | 0.42 | 1.61 | 2.39 | 1.57 | 10.7 | | 112 | 168.5 | 12.5 | 2 | 1 | 97.5 | 0.33 | 2.06 | 3.06 | 2.01 | 13.8 | | 114 | 179.5 | 11.5 | 2.5 | 1 | 95.5 | 0.33 | 2.02 | 3.00 | 1.97 | 14.3 | | 118 | 200 | 12.5 | 3 | 1 | 92 | 0.35 | 1.96 | 2.91 | 1.91 | 18.4 | | 118 | 200 | 12.5 | 3 | 1 | 93.5 | 0.35 | 1.95 | 2.90 | 1.91 | 16.5 | | 118 | 200 | 17.5 | 3 | 1 | 113 | 0.35 | 1.96 | 2.91 | 1.91 | 26.5 | | 119 | 178 | 9 | 2.5 | 1 | 86 | 0.42 | 1.61 | 2.39 | 1.57 | 9.73 | | 119 | 180 | 10 | 2.5 | 1 | 97.5 | 0.42 | 1.61 | 2.39 | 1.57 | 13.1 | | 119 | 179.5 | 10.5 | 2.5 | 1 | 99.5 | 0.42 | 1.61 | 2.39 | 1.57 | 12.9 | | 123 | 209 | 12.5 | 3 | 1 | 96.5 | 0.35 | 1.96 | 2.91 | 1.91 | 21 | | 123 | 209 | 12.5 | 3 | 1 | 96.5 | 0.35 | 1.95 | 2.90 | 1.91 | 19.6 | | 119 | 208 | 18.5 | 2.5 | 1 | 117.5 | 0.35 | 1.96 | 2.90 | 1.91 | 30.2 | | 118.5 | 146 | 5 | 1.5 | 0.5 | 60.5 | 0.36 | 1.90 | 2.83 | 1.86 | 3.41 | | 122 | 169 | 3 | 2 | 0.6 | 66.5 | 0.40 | 1.68 | 2.50 | 1.64 | 5.2 | | 122 | 166 | 7 | 2 | 0.6 | 66.5 | 0.33 | 2.03 | 3.02 | 1.98 | 6.38 | | 122 | 168 | 12.5 | 2 | 0.6 | 87 | 0.26 | 2.55 | 3.80 | 2.50 | 11.2 | | 124 | 188 | 9 | 2.5 | 1 | 90 | 0.42 | 1.61 | 2.39 | 1.57 | 11.4 | | 124 | 190 | 10 | 2.5 | 1 | 102 | 0.42 | 1.61 | 2.39 | 1.57 | 15.5 | | 128 | 222 | 12.5 | 3 | 1 | 100 | 0.35 | 1.96 | 2.91 | 1.91 | 24.5 | | 128 | 222 | 12.5 | 3 | 1 | 97.5 | 0.35 | 1.95 | 2.90 | 1.91 | 22.1 | | 128 | 222 | 19.5 | 3 | 1 | 127 | 0.35 | 1.96 | 2.91 | 1.91 | 38.2 | | 128 | 222 | 19.5 | 3 | 1 | 124 | 0.35 | 1.95 | 2.90 | 1.91 | 35.6 | | 132 | 171 | 2.5 | 2 | 0.6 | 59 | 0.37 | 1.80 | 2.69 | 1.76 | 3.85 | | 132 | 170 | 6 | 2 | 0.6 | 66 | 0.37 | 1.80 | 2.69 | 1.76 | 4.41 | | 132 | 184 | 3.5 | 2 | 0.6 | 76.5 | 0.43 | 1.57 | 2.34 | 1.53 | 7.24 | | 132 | 188 | 8 | 2 | 0.6 | 76.5 | 0.37 | 1.80 | 2.69 | 1.76 | 8.96 | | 132 | 187 | 8 | 2 | 0.6 | 81.5 | 0.37 | 1.80 | 2.69 | 1.76 | 8.78 | | 132 | 190.5 | 8 | 2 | 1 | 87.5 | 0.34 | 1.96 | 2.92 | 1.92 | 12.6 | | 134 | 203 | 9.5 | 2.5 | 1 | 98 | 0.44 | 1.55 | 2.31 | 1.52 | 13.6 | | 134 | 204 | 11.5 | 2.5 | 1 | 112 | 0.44 | 1.55 | 2.31 | 1.52 | 18.9 | | 138 | 239 | 13.5 | 3 | 1 | 107 | 0.35 | 1.96 | 2.91 | 1.91 | 30.5 | | 138 | 239 | 13.5 | 3 | 1 | 106 | 0.35 | 1.95 | 2.90 | 1.91 | 29.4 | | 138 | 239 | 21.5 | 3 | 1 | 130 | 0.35 | 1.96 | 2.91 | 1.91 | 47 | | | | | | | | | | | | | # Double Row Tapered Roller Bearings (Outside Direction) #### NTN ## **Metric system sizes** #### *d* 125∼150mm | | | Boun | dary dimens | ions | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |-----|------------|-----------|----------------|---------------|----------------|------------|--------------|-----------------------|-------------------|----------------------| | | | | mm | | | kN | | kg | | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 125 | 210 | 110 | 88 | 3 | 1 | 570 | 1,080 | 58,000 | 110,000 | CRI-2555 | | | 200 | 52 | 46 | 2.5 | 0.6 | 224 | 365 | 22,900 | 37,500 | 413026 | | | 200 | 65 | 52 | 2.5 | 0.6 | 294 | 490 | 29,900 | 50,000 | 423026 | | | 210 | 64 | 57 | 2.5 | 0.6 | 315 | 485 | 32,000 | 49,500 | 413126 | | | 210 | 80 | 64 | 2.5 | 0.6 | 410 | 675 | 42,000 | 69,000 | 423126
CDL 0610 | | | 210 | 109 | 90 | 2.5 | 0.6 | 530 | 1,100 | 54,000 | 113,000 | CRI-2619 | | | 214 | 115
95 | 98
75 | 2.5 | 0.6
1 | 540
560 | 1,040 | 55,000 | 106,000 | CRI-2651 | | 130 | 230
230 | 95
98 | 75
78.5 | 3 | 1 | 560 | 840
1,010 | 57,000 | 86,000 | CRI-2614 | | | 230 | 100 | 76.5
80.5 | 4
3 | 1 | 640
560 | 840 | 65,500
57,000 | 103,000
86,000 | 430226XU
CRI-2655 | | | 230 | 145 | 115 | 3 | 1 | 895 | 1,460 | 91,000 | 149,000 | CRI-2616 | | | 230 | 145 | 117.5 | 4 | 1 | 905 | 1,630 | 92,500 | 166,000 | 432226XU | | | 230 | 149 | 120 | 3 | 1 | 905 | 1,630 | 92,500 | 166,000 | CRI-2654 | | | 280 | 137 | 107.5 | 5 | 1.5 | 1,110 | 1,660 | 113,000 | 169,000 | 430326XU | | | 280 | 205 | 163.5 | 4 | 1.5 | 1,530 | 2,470 | 156,000 | 252,000 | 432326 | | | 200 | 200 | 100.0 | | 1.0 | 1,000 | 2,170 | 100,000 | 202,000 | 102020 | | | 210 | 53 | 47 | 2.5 | 0.6 | 262 | 415 | 26,700 | 42,500 | 413028 | | | 210 | 66 | 53 | 2.5 | 0.6 | 300 | 535 | 30,500 | 54,500 | 423028 | | | 210 | 106 | 94 | 2.5 | 0.6 | 580 | 1,220 | 59,000 | 124,000 | CRI-2818 | | | 225 | 68 | 61 | 3 | 1 | 370 | 580 | 37,500 | 59,500 | 413128 | | | 225 | 84 | 68 | 3 | 1 | 390 | 650 | 40,000 | 66,000 | 423128 | | | 225 | 85 | 68 | 3 | 1 | 390 | 650 | 40,000 | 66,000 | CRI-2872 | | | 230 | 120 | 94 | 2.5 | 0.8 | 680 | 1,280 | 69,500 | 131,000 | CRI-2855 | | | 230 | 140 | 110 | 3 | 1 | 750 | 1,470 | 76,500 | 150,000 | CRI-2825 | | 140 | 240 | 132 | 106 | 3 | 1.5 | 755 | 1,480 | 77,000 | 150,000 | CRI-2869 | | | 250 | 102 | 82.5 | 3 | 1 | 640 | 970 | 65,500 | 99,000 | 430228X | | | 250 | 102 | 82.5 | 4 | 1 | 720 | 1,140 | 73,500 | 117,000 | 430228XU | | | 250 | 153 | 125.5 | 4 | 1 | 1,050 | 1,840 | 107,000 | 188,000 | 432228XU | | | 270 | 120 | 95 | 4 | 3 | 835 | 1,240 | 85,000 | 127,000 | CRI-2874 | | | 300 | 102 | 77 | 2.5 | 1 | 645 | 1,010 | 66,000 | 103,000 | CRI-2834 | | | 300 | 145 | 115.5 | 4 | 1.5 | 1,100 | 1,560 | 112,000 | 160,000 | 430328X | | | 300 | 145 | 115.5 | 5 | 1.5 | 1,260 | 1,900 | 129,000 | 194,000 | 430328XU | | | 300 | 223 | 177.5 | 4 | 1.5 | 1,690 | 2,740 | 173,000 | 279,000 | 432328 | | | 225 | 56 | 50 | 3 | 1 | 274 | 430 | 27,900 | 44,000 | 413030 | | 150 | 225 | 70 | 56 | 3 | 1 | 355 | 630 | 36,000 | 64,500 | 423030 | | 150 | 250 | 80 | 71 | 3 | 1 | 485 | 805 | 49,500 | 82,000 | 413130 | | | 250 | 100 | 80 | 3 | 1 | 600 | 1,040 | 61,500 | 106,000 | 423130 | | • | | | nsion for cham | | - | | , | - , | / | | | $\frac{F_{ m a}}{F_{ m r}}$ | ≤ e | $\frac{F_i}{F_i}$ | >e | |-----------------------------|------------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e, Y_2 and Y_0 see the table below. | A | butment ar | nd fillet din | nensions | | Load center | Constant | Axia | al load fac | tors | Mass | |------------|------------|---------------|-------------|--------------|-------------|----------|-------|-------------|------------|-----------| | | | mm | | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$ | $S_{ m b}$ | $r_{ m as}$ | $r_{ m las}$ | | | 7.7 | 7.7 | 7.7 | | | min | min | min | max | max | a | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | 139 | 197.5 | 11 | 2.5 | 1 | 101 | 0.42 | 1.62 | 2.42 | 1.59 | 14.5 | | 142 | 186 | 3 | 2 | 0.6 | 66 | 0.37 | 1.80 | 2.69 | 1.76 | 5.55 | | 142 | 189 | 6.5 | 2 | 0.6 | 71.5 | 0.37 | 1.80 | 2.69 | 1.76 | 6.62 | | 142 | 196 | 3.5 | 2 | 0.6 | 69 | 0.33 | 2.03 | 3.02 | 1.98 | 7.83 | | 142 | 198 | 8 | 2 | 0.6 | 79.5 | 0.37 | 1.80 | 2.69 | 1.76 | 9.77 | | 142 | 191.5 | 9.5 | 2 | 0.6 | 89 | 0.34 | 1.96 | 2.90 | 1.90 | 14.2 | | 142 | 198 | 8.5 | 2 | 0.6 | 111 | 0.46 | 1.47 | 2.20 | 1.40 | 15.5 | | 144 | 215.5 | 10 | 2.5 | 1 | 96 | 0.43 | 1.57 | 2.30 | 1.50 | 15 | | 148 | 218 | 9.5 | 3 | 1 | 102 | 0.44 | 1.55 | 2.31 | 1.52 | 15.9 | | 144 | 215.5 | 9.5 | 2.5 | 1 | 101 | 0.43 | 1.57 | 2.30 | 1.50 | 15.8 | | 144 | 220 | 15 | 2.5 | 1 | 117.5 | 0.40 | 1.68 | 2.50 | 1.60 | 23 | | 148 | 219 | 13.5 | 3 | 1 | 124 | 0.44 | 1.55 | 2.31 | 1.52 | 24.1 | | 144 | 220 | 14.5 | 2.5 | 1 | 128 | 0.44 | 1.55 | 2.30 | 1.50 | 24.6 | | 152 | 255 | 14.5 | 4 | 1.5 | 116 | 0.35 | 1.96 | 2.91 | 1.91 | 37.9 | | 148 | 264 | 20.5 | 3 | 1.5
| 143 | 0.35 | 1.95 | 2.90 | 1.90 | 56.6 | | 152 | 199 | 3 | 2 | 0.6 | 68.5 | 0.37 | 1.80 | 2.69 | 1.76 | 5.88 | | 152 | 197 | 6.5 | 2 | 0.6 | 75 | 0.37 | 1.84 | 2.74 | 1.80 | 7.11 | | 152 | 201.5 | 6 | 2 | 0.6 | 93 | 0.35 | 1.95 | 2.90 | 1.91 | 12.5 | | 154 | 210 | 3.5 | 2.5 | 1 | 73.5 | 0.33 | 2.03 | 3.02 | 1.98 | 9.18 | | 154 | 209 | 8 | 2.5 | 1 | 88 | 0.37 | 1.80 | 2.69 | 1.76 | 11.8 | | 154 | 211 | 8.5 | 2.5 | 1 | 88 | 0.37 | 1.80 | 2.69 | 1.76 | 11.8 | | 152 | 214 | 13 | 2 | 8.0 | 108 | 0.40 | 1.68 | 2.50 | 1.64 | 15.5 | | 154 | 216 | 15 | 2.5 | 1 | 106 | 0.32 | 2.12 | 3.15 | 2.07 | 20.5 | | 154 | 226.5 | 13 | 2.5 | 1.5 | 124.5 | 0.44 | 1.53 | 2.27 | 1.49 | 22.1 | | 158 | 237 | 9.5 | 3 | 1 | 106 | 0.43 | 1.57 | 2.34 | 1.53 | 18 | | 158 | 237 | 9.5 | 3 | 1 | 107 | 0.44 | 1.55 | 2.31 | 1.52 | 19.9 | | 158 | 238 | 13.5 | 3 | 1 | 131 | 0.44 | 1.55 | 2.31 | 1.52 | 30.1 | | 158 | 249 | 12.5 | 3 | 2.5 | 104 | 0.33 | 2.05 | 3.05 | 2.00 | 27.6 | | 152 | 264 | 12.5 | 2 | 1 | 129 | 0.55 | 1.24 | 1.84 | 1.21 | 32.5 | | 162 | 272 | 14.5 | 4 | 1.5 | 123 | 0.35 | 1.95 | 2.90 | 1.91 | 44.4 | | 162 | 273 | 14.5 | 4 | 1.5 | 123 | 0.35 | 1.96 | 2.91 | 1.91 | 46.6 | | 158 | 282 | 22.5 | 3 | 1.5 | 156 | 0.35 | 1.95 | 2.90 | 1.91 | 69 | | 164 | 213 | 3 | 2.5 | 1 | 73.5 | 0.37 | 1.80 | 2.69 | 1.76 | 6.66 | | 164 | 212 | 7 | 2.5 | 1 | 79.5 | 0.37 | 1.80 | 2.69 | 1.76 | 8.76 | | 164 | 231 | 4.5 | 2.5 | 1 | 82.5 | 0.33 | 2.03 | 3.02 | 1.98 | 14.3 | | 164 | 234 | 10 | 2.5 | 1 | 96.5 | 0.37 | 1.80 | 2.69 | 1.76 | 18 | | | | | | | | | | | | | # Double Row Tapered Roller Bearings (Outside Direction) #### NTN ## **Metric system sizes** #### *d* 150∼180mm | | | Bour | ndary dimer | nsions | | dynamic | Basic los | ad ratings
dynamic | static | Bearing
numbers | |-----|---|---|--|---|--|---|---|---|---|---| | | | | mm | | | kN | o.uo | kį | | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 15 | 250
250
260
270
270
320
320 | 115
137
150
109
164
154 | 95
112
115
87
130
120
120 | 2.5
2.5
4
4
4
5 | 1
1
1
1
1
1.5 | 660
865
945
770
1,200
1,410
1,170 | 1,230
1,590
1,820
1,210
2,140
2,140
1,750 | 67,500
88,500
96,000
78,500
122,000
144,000
119,000 | 126,000
162,000
185,000
123,000
218,000
218,000
178,000 | CRI-3015
CRI-3061
CRI-3063
430230U
432230XU
430330U
430330 | | 16 | 240
240
240
270
270
270
270
270
280
290
290
340
340 | 60
75
110
86
108
110
140
150
150
115
178
160 | 53
60
90
76
86
86
120
125
91
144
126 | 3
3
2.5
3
3
2.5
2.5
2.5
4
4
4
5
4 | 1
1
0.6
1
1
1
1
1
1
1
1
1.5 | 330
430
660
595
675
785
960
960
1,090
900
1,530
1,570
1,290 | 535
765
1,230
965
1,180
1,360
1,910
1,860
1,940
1,440
2,840
2,390
1,950 | 34,000
44,000
67,500
60,500
69,000
80,000
98,000
112,000
92,000
156,000
160,000 | 54,500
78,000
126,000
98,000
120,000
138,000
195,000
190,000
147,000
290,000
244,000
199,000 | 413032
423032
CRI-3256
413132E1
423132E1
CRI-3210
CRI-3225
CRI-3219
CRI-3258
430232U
43232U
430332XU
430332XU | | 16 | 290
350 | 150
146 | 125
108 | 5
7.5 | 1
1.5 | 1,030
1,220 | 1,820
1,980 | 105,000
124,000 | 186,000
202,000 | CRI-3309
CRI-3305 | | 170 | 250
260
260
280
280
280
280
280
310
310 | 85
67
84
88
110
134
150
125 | 65
60
67
78
88
106
130
97 | 2.5
3
3
3
3
2.5
5 | 1
1
1
1
1
1
1
1.5 | 425
365
490
550
725
855
980
1,050
1,710 | 815
620
865
900
1,270
1,790
1,880
1,690
3,200 | 43,500
37,000
50,000
56,000
74,000
87,500
100,000
107,000
174,000 | 83,000
63,500
88,000
92,000
130,000
182,000
192,000
173,000
325,000 | CRI-3420
413034
423034
413134E1
423134E1
CRI-3452
CRI-3410
430234U
432234XU | | 18 | 280
280
280
280
300 | 74
93
134.5
96 | 66
74
108
85 | 3
3
2.5
4 | 1
1
1
1.5 | 425
580
885
705 | 735
1,050
1,800
1,190 | 43,000
59,500
90,000
72,000 | 75,000
107,000
183,000
121,000 | 413036E1
423036E1
CRI-3623
413136E1 | | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | |---|----------|-----------------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e, Y_2 and Y_0 see the table below. | А | butment ar | | nensions | . | Load
center | center | | | | | |----------------|----------------|----------------|-----------------|------------------|----------------|--------|-------|-------|-------------|-----------| | 7 | D | mm | | | mm | | | | | kg | | $d_{ m a}$ min | $D_{ m b}$ min | $S_{ m b}$ min | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | 162 | 234 | 10 | 2 | 1 | 107.5 | 0.37 | 1.80 | 2.69 | 1.76 | 21.2 | | 162 | 238 | 12.5 | 2 | 1 | 119 | 0.41 | 1.66 | 2.47 | 1.62 | 27.7 | | 168 | 239.5 | 17.5 | 3 | 1 | 125 | 0.41 | 1.66 | 2.47 | 1.62 | 31.4 | | 168 | 255 | 11 | 3 | 1 | 114 | 0.44 | 1.55 | 2.31 | 1.52 | 24.4 | | 168 | 254 | 17 | 3 | 1 | 139 | 0.44 | 1.55 | 2.31 | 1.52 | 37.3 | | 172 | 292 | 17 | 4 | 1.5 | 132 | 0.35 | 1.96 | 2.91 | 1.91 | 55.4 | | 172 | 292 | 17 | 4 | 1.5 | 135 | 0.37 | 1.80 | 2.69 | 1.76 | 52.8 | | 174 | 227 | 3.5 | 2.5 | 1 | 79 | 0.37 | 1.80 | 2.69 | 1.76 | 8.29 | | 174 | 227 | 7.5 | 2.5 | 1 | 85.5 | 0.37 | 1.80 | 2.69 | 1.76 | 10.7 | | 172 | 231.5 | 10 | 2 | 0.6 | 107 | 0.37 | 1.80 | 2.69 | 1.76 | 15.6 | | 174 | 254 | 5 | 2.5 | 1 | 98.5 | 0.40 | 1.68 | 2.50 | 1.64 | 18.2 | | 174 | 250 | 11 | 2.5 | 1 | 106 | 0.37 | 1.80 | 2.69 | 1.76 | 22.8 | | 172 | 250.5 | 12 | 2 | 1 | 95 | 0.31 | 2.21 | 3.29 | 2.16 | 22.9 | | 172 | 251.5 | 10 | 2 | 1 | 113.5 | 0.32 | 2.12 | 3.15 | 2.07 | 31.8 | | 172 | 252 | 15 | 2 | 1 | 119.5 | 0.32 | 2.12 | 3.15 | 2.07 | 32.8 | | 178 | 264.5 | 12.5 | 3 | 1 | 119.5 | 0.32 | 2.12 | 3.15 | 2.07 | 34.8 | | 178 | 272 | 12 | 3 | 1 | 122 | 0.44 | 1.55 | 2.31 | 1.52 | 31.9 | | 178 | 275 | 17 | 3 | 1 | 150 | 0.44 | 1.55 | 2.31 | 1.52 | 46.9 | | 182 | 310 | 17 | 4 | 1.5 | 138 | 0.35 | 1.96 | 2.91 | 1.91 | 65.5 | | 182 | 311 | 17 | 4 | 1.5 | 141 | 0.37 | 1.80 | 2.69 | 1.76 | 62.4 | | 187 | 274 | 12.5 | 4 | 1 | 127.5 | 0.32 | 2.12 | 3.15 | 2.07 | 37.5 | | 201 | 308.5 | 19 | 6 | 1.5 | 124.5 | 0.34 | 2.00 | 2.98 | 1.96 | 61.2 | | 182 | 237.5 | 10 | 2 | 1 | 103 | 0.44 | 1.54 | 2.29 | 1.50 | 12.6 | | 184 | 242 | 3.5 | 2.5 | 1 | 86.5 | 0.37 | 1.80 | 2.69 | 1.76 | 11.6 | | 184 | 244 | 8.5 | 2.5 | 1 | 93.5 | 0.37 | 1.80 | 2.69 | 1.76 | 14.3 | | 184 | 260 | 5 | 2.5 | 1 | 104 | 0.40 | 1.68 | 2.50 | 1.64 | 19.5 | | 184 | 260 | 11 | 2.5 | 1 | 109 | 0.37 | 1.80 | 2.69 | 1.76 | 24.7 | | 184 | 250.5 | 14 | 2.5 | 1 | 132.5 | 0.44 | 1.52 | 2.26 | 1.49 | 32.8 | | 182 | 265 | 10 | 2 | 1 | 125.5 | 0.33 | 2.03 | 3.02 | 1.98 | 34.3 | | 192 | 290.5 | 14 | 4 | 1.5 | 132 | 0.44 | 1.55 | 2.31 | 1.52 | 38 | | 192 | 293 | 20 | 4 | 1.5 | 160 | 0.44 | 1.55 | 2.31 | 1.52 | 58.2 | | 194 | 260 | 4 | 2.5 | 1 | 94 | 0.37 | 1.80 | 2.69 | 1.76 | 15.9 | | 194 | 262 | 9.5 | 2.5 | 1 | 102 | 0.37 | 1.80 | 2.69 | 1.76 | 19 | | 192 | 266 | 13.5 | 2 | 1 | 122 | 0.37 | 1.80 | 2.69 | 1.76 | 27 | | 198 | 280 | 5.5 | 3 | 1.5 | 111 | 0.40 | 1.68 | 2.50 | 1.64 | 24.6 | | | | | | | | | | | | | # Double Row Tapered Roller Bearings (Outside Direction) #### NTN ## **Metric system sizes** #### *d* 180∼220mm | | | Bound | dary dimens | sions | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |-----|-----|-------|-------------|---------------|------------------|------------|-------------|-----------------------|-------------|--------------------| | | | | mm | | | kľ | N | kg | ıf | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 300 | 120 | 96 | 4 | 1.5 | 885 | 1,530 | 90,500 | 156,000 | 423136E1 | | | 300 | 164 | 134 | 3 | 1 | 1,150 | 2,270 | 118,000 | 231,000 | CRI-3625 | | 180 | 320 | 127 | 99 | 5 | 1.5 | 1,080 | 1,780 | 110,000 | 182,000 | 430236U | | | 320 | 192 | 152 | 5 | 1.5 | 1,760 | 3,350 | 180,000 | 345,000 | 432236U | | | 340 | 180 | 140 | 4 | 1.5 | 1,390 | 2,590 | 142,000 | 264,000 | CRI-3618 | | | 290 | 75 | 67 | 3 | 1 | 430 | 740 | 44,000 | 75,500 | 413038E1 | | | 290 | 94 | 75 | 3 | 1 | 615 | 1,110 | 63,000 | 113,000 | 423038E1 | | | 320 | 104 | 92 | 4 | 1.5 | 780 | 1,280 | 79,500 |
131,000 | 413138 | | 190 | 320 | 130 | 104 | 4 | 1.5 | 985 | 1,710 | 100,000 | 174,000 | 423138 | | | 340 | 133 | 105 | 5 | 1.5 | 1,230 | 2,010 | 125,000 | 205,000 | 430238U | | | 340 | 204 | 160 | 5 | 1.5 | 1,970 | 3,700 | 201,000 | 380,000 | 432238U | | | 340 | 204 | 160 | 4 | 1.5 | 1,710 | 3,350 | 175,000 | 340,000 | 432238 | | | 310 | 82 | 73 | 3 | 1 | 530 | 940 | 54,000 | 96,000 | 413040E1 | | | 310 | 103 | 82 | 3 | 1 | 720 | 1,320 | 73,000 | 135,000 | 423040E1 | | | 310 | 151 | 123 | 2.5 | 1 | 1,020 | 2,080 | 105,000 | 212,000 | CRI-4020 | | | 310 | 170 | 140 | 4 | 1 | 1,270 | 2,690 | 130,000 | 274,000 | CRI-4027 | | | 320 | 146 | 110 | 4 | 1.5 | 910 | 1,950 | 92,500 | 199,000 | CRI-4036 | | 200 | 330 | 180 | 140 | 4 | 1.5 | 1,330 | 2,610 | 136,000 | 266,000 | CRI-4030 | | 200 | 340 | 112 | 100 | 4 | 1.5 | 965 | 1,660 | 98,500 | 169,000 | 413140 | | | 340 | 140 | 112 | 4 | 1.5 | 1,090 | 1,910 | 111,000 | 195,000 | 423140 | | | 340 | 184 | 150 | 3 | 1.5 | 1,530 | 3,000 | 156,000 | 305,000 | CRI-4019 | | | 360 | 142 | 110 | 5 | 1.5 | 1,350 | 2,210 | 137,000 | 226,000 | 430240U | | | 360 | 218 | 174 | 5 | 1.5 | 2,260 | 4,250 | 230,000 | 435,000 | 432240U | | | 360 | 218 | 174 | 4 | 1.5 | 1,980 | 3,950 | 201,000 | 400,000 | 432240 | | 206 | 283 | 102 | 83 | 3 | 0.6 | 540 | 1,320 | 55,000 | 134,000 | CRI-4107 | | 210 | 355 | 116 | 103 | 3 | 1.5 | 880 | 1,500 | 89,500 | 153,000 | CRI-4202 | | | 300 | 110 | 88 | 2.5 | 1 | 660 | 1,550 | 67,500 | 158,000 | CRI-4410 | | | 340 | 90 | 80 | 4 | 1.5 | 595 | 1,060 | 61,000 | 108,000 | 413044E1 | | | 340 | 113 | 90 | 4 | 1.5 | 880 | 1,650 | 89,500 | 168,000 | 423044E1 | | 220 | 340 | 158 | 130 | 4 | 1 | 1,340 | 2,750 | 137,000 | 281,000 | CRI-4409 | | | 340 | 164 | 130 | 3 | 1 | 1,360 | 2,810 | 139,000 | 287,000 | CRI-4411 | | | 370 | 120 | 107 | 5 | 1.5 | 1,110 | 1,920 | 113,000 | 196,000 | 413144 | | | 370 | 150 | 120 | 5 | 1.5 | 1,220 | 2,260 | 125,000 | 230,000 | 423144 | | | 370 | 150 | 120 | 5 | 1.5 | 1,440 | 2,550 | 147,000 | 260,000 | CRI-4416 | | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | |-----------------------------|----------|-----------------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e, Y_2 and Y_0 see the table below. | А | sbutment ar | nd fillet din | nensions | | Load center | | | | | Mass | |------------|-------------|---------------|-------------|--------------|-------------|------|-------|-------|-------------|-----------| | | | mm | | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$ | $S_{ m b}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | min | min | min | max | max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | | | | _ | | | | | | | | | 198 | 279 | 12 | 3 | 1.5 | 119 | 0.37 | 1.80 | 2.69 | 1.76 | 31.4 | | 194 | 281 | 15 | 2.5 | 1 | 125.5 | 0.26 | 2.55 | 3.80 | 2.50 | 43.7 | | 202 | 297 | 14 | 4 | 1.5 | 139 | 0.45 | 1.50 | 2.23 | 1.47 | 39.4 | | 202 | 305 | 20 | 4 | 1.5 | 165 | 0.45 | 1.50 | 2.23 | 1.47 | 60.6 | | 198 | 302 | 20 | 3 | 1.5 | 142.5 | 0.32 | 2.12 | 3.15 | 2.07 | 68.5 | | 204 | 271 | 4 | 2.5 | 1 | 96 | 0.37 | 1.80 | 2.69 | 1.76 | 16.2 | | 204 | 272 | 9.5 | 2.5 | 1 | 104 | 0.37 | 1.80 | 2.69 | 1.76 | 19.6 | | 208 | 300 | 6 | 3 | 1.5 | 119 | 0.40 | 1.68 | 2.50 | 1.64 | 30.8 | | 208 | 299 | 13 | 3 | 1.5 | 126 | 0.37 | 1.80 | 2.69 | 1.76 | 38.6 | | 212 | 316 | 14 | 4 | 1.5 | 141 | 0.44 | 1.55 | 2.31 | 1.52 | 45.4 | | 212 | 323 | 22 | 4 | 1.5 | 174 | 0.44 | 1.55 | 2.31 | 1.52 | 73.3 | | 212 | 323 | 22 | 4 | 1.5 | 185 | 0.49 | 1.38 | 2.06 | 1.35 | 75.8 | | 214 | 288 | 4.5 | 2.5 | 1 | 101 | 0.37 | 1.80 | 2.69 | 1.76 | 20.6 | | 214 | 291 | 10.5 | 2.5 | 1 | 112 | 0.37 | 1.80 | 2.69 | 1.76 | 25.7 | | 212 | 296 | 14 | 2 | 1 | 141 | 0.37 | 1.80 | 2.69 | 1.76 | 38.2 | | 218 | 296 | 15 | 3 | 1 | 138 | 0.33 | 2.03 | 3.02 | 1.98 | 42.4 | | 218 | 299 | 18 | 3 | 1.5 | 160.5 | 0.52 | 1.31 | 1.95 | 1.28 | 40.1 | | 218 | 314 | 20 | 3 | 1.5 | 161.5 | 0.42 | 1.60 | 2.39 | 1.57 | 55.5 | | 218 | 320 | 6 | 3 | 1.5 | 125 | 0.40 | 1.68 | 2.50 | 1.64 | 38.6 | | 218 | 316 | 14 | 3 | 1.5 | 134 | 0.37 | 1.80 | 2.69 | 1.76 | 47.5 | | 214 | 324 | 17 | 2.5 | 1.5 | 149 | 0.32 | 2.12 | 3.15 | 2.07 | 67 | | 222 | 336 | 16 | 4 | 1.5 | 154 | 0.44 | 1.55 | 2.31 | 1.52 | 62.8 | | 222 | 340 | 22 | 4 | 1.5 | 180 | 0.41 | 1.66 | 2.47 | 1.62 | 95.2 | | 222 | 340 | 22 | 4 | 1.5 | 193 | 0.49 | 1.38 | 2.06 | 1.35 | 90.7 | | 220 | 275 | 9.5 | 2.5 | 0.6 | 134 | 0.52 | 1.31 | 1.95 | 1.28 | 16.9 | | 224 | 331 | 6.5 | 2.5 | 1.5 | 130.5 | 0.40 | 1.68 | 2.50 | 1.64 | 44 | | 232 | 289 | 11 | 2 | 1 | 121.5 | 0.39 | 1.74 | 2.59 | 1.70 | 21.1 | | 238 | 318 | 5 | 3 | 1.5 | 112 | 0.37 | 1.80 | 2.69 | 1.76 | 26.7 | | 238 | 319 | 11.5 | 3 | 1.5 | 125 | 0.37 | 1.80 | 2.69 | 1.76 | 33.3 | | 238 | 324 | 14 | 3 | 1 | 138.5 | 0.33 | 2.03 | 3.02 | 1.98 | 46.7 | | 234 | 323 | 17 | 2.5 | 1 | 145 | 0.35 | 1.95 | 2.90 | 1.91 | 48.5 | | 242 | 346 | 6.5 | 4 | 1.5 | 135 | 0.40 | 1.68 | 2.50 | 1.64 | 47.8 | | 242 | 341 | 15 | 4 | 1.5 | 154 | 0.40 | 1.68 | 2.50 | 1.64 | 59.6 | | 242 | 346.5 | 15 | 4 | 1.5 | 142 | 0.35 | 1.95 | 2.90 | 1.91 | 59.0 | | | | | | | | | | | | | # **Metric system sizes** ## *d* 220∼300mm | | | Bound | dary dimens | sions | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |-----|------------|------------|-------------|---------------|----------------|----------------|----------------|-----------------------|--------------------|----------------------| | | | | mm | | | kN | l | kg | ıf | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 400 | 158 | 122 | 4 | 1.5 | 1,400 | 2,440 | 143,000 | 249,000 | 430244 | | 220 | 420 | 130 | 100 | 5 | 2.5 | 1,160 | 1,820 | 119,000 | 185,000 | CRI-4407 | | | 380 | 175 | 115 | 4 | 2 | 1,540 | 2,890 | 157,000 | 295,000 | CRI-4612 | | 230 | 380
400 | 200
188 | 160
136 | 4
8 | 2
1.5 | 1,740
1,620 | 3,700
3,250 | 178,000
165,000 | 380,000
330,000 | CRI-4606
CRI-4605 | | 235 | 330 | 115 | 85 | 5 | 1.5 | 745 | 1,700 | 76,000 | 173,000 | CRI-4701 | | 200 | | | | | | | <u> </u> | <u> </u> | <u> </u> | | | | 320
360 | 110
92 | 90
82 | 2.5
4 | 1
1.5 | 795
655 | 1,890
1,160 | 81,000
66,500 | 193,000
118,000 | CRI-4813
413048E1 | | | 360 | 115 | 92 | 4 | 1.5 | 910 | 1,770 | 92,500 | 181,000 | 423048E1 | | | 360 | 164 | 130 | 3 | 1 | 1,420 | 3,050 | 145,000 | 310,000 | CRI-4806 | | 240 | 360 | 170 | 142 | 3 | 1 | 1,360 | 2,810 | 139,000 | 287,000 | CRI-4805 | | 240 | 400 | 128 | 114 | 5 | 1.5 | 1,230 | 2,130 | 126,000 | 217,000 | 413148 | | | 400 | 160 | 128 | 5 | 1.5 | 1,400 | 2,600 | 142,000 | 265,000 | 423148 | | | 400 | 209 | 168 | 4 | 1.5 | 2,140 | 4,350 | 218,000 | 445,000 | CRI-4807 | | | 440 | 165 | 127 | 4 | 1.5 | 1,680 | 2,960 | 171,000 | 300,000 | 430248 | | | 440 | 266 | 212 | 4 | 1.5 | 2,920 | 5,500 | 298,000 | 560,000 | 432248 | | 250 | 380 | 98 | 87 | 3 | 1.5 | 750 | 1,360 | 76,500 | 139,000 | CRI-5004 | | | 400 | 104 | 92 | 5 | 1.5 | 840 | 1,540 | 85,500 | 157,000 | 413052 | | | 400 | 130 | 104 | 5 | 1.5 | 1,150 | 2,190 | 117,000 | 223,000 | 423052 | | 260 | 400 | 185 | 146 | 4 | 1.5 | 1,720 | 3,650 | 175,000 | 370,000 | CRI-5218 | | 200 | 440 | 144 | 128 | 5 | 1.5 | 1,500 | 2,630 | 152,000 | 268,000 | 413152 | | | 440 | 172 | 145 | 4 | 2 | 1,960 | 3,750 | 200,000 | 380,000 | CRI-5224 | | | 440 | 180 | 144 | 5 | 1.5 | 1,960 | 3,750 | 200,000 | 380,000 | 423152 | | | 400 | 150 | 120 | 5 | 1.5 | 1,380 | 3,150 | 141,000 | 325,000 | CRI-5615 | | | 420 | 106 | 94 | 5 | 1.5 | 890 | 1,630 | 91,000 | 166,000 | 413056 | | 280 | 420 | 133 | 106 | 5 | 1.5 | 1,200 | 2,340 | 123,000 | 238,000 | 423056 | | | 460 | 146 | 130 | 6 | 2 | 1,640 | 2,900 | 167,000 | 296,000 | 413156 | | | 460 | 183 | 146 | 6 | 2 | 1,940 | 3,650 | 198,000 | 375,000 | 423156 | | 290 | 400 | 120 | 90 | 4 | 1.5 | 1,200 | 2,600 | 122,000 | 265,000 | CRI-5808 | | 290 | 430 | 150 | 135 | 4 | 1.5 | 1,350 | 3,200 | 138,000 | 325,000 | CRI-5810 | | 300 | 460 | 118 | 105 | 5 | 1.5 | 1,070 | 1,990 | 109,000 | 203,000 | 413060 | **1** Minimum allowable dimension for chamfer dimension r or r_1 . **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{i}}{F_{i}}$ | >e | |-----------------------------|----------|-----------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | A | \butment ar | nd fillet din | nensions | . | Load
center
mm | Constant | Axia | al load fac | tors | Mass
kg | |------------|---------------------------|---------------|-----------------|------------------|----------------------|----------|-------|-------------|-------------|-------------------| | $d_{ m a}$ | $D_{ m b}$ | $S_{\rm b}$ | r | v. | 111111 | | | | | кg | | min | <i>D</i> _b min | Min | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | 111111 | 111111 | 111111 | max | mux | CO | U | 11 | 12 | 10 | (арргох.) | | 238 | 368 | 18 | 3 | 1.5 | 178.5 | 0.49 | 1.38 | 2.06 | 1.40 | 77.5 | | 242 | 378 | 15 | 4 | 2 | 148 | 0.49 | 1.68 | 2.50 | 1.64 | 77.3 | | 242 | 370 | 13 | 7 | | 140 | 0.40 | 1.00 | 2.50 | 1.04 | 7 0.1 | | 248 | 359 | 30 | 3 | 2 | 154.5 | 0.40 | 1.68 | 2.50 | 1.64 | 67 | | 248 | 355 | 20 | 3 | 2 | 164 | 0.33 | 2.03 | 3.02 | 1.98 | 84.4 | | 266 | 367 | 26 | 6 | 1.5 | 181 | 0.44 | 1.54 | 2.29 | 1.50 | 88.5 | | | | | | | | **** | | | | | | 257 | 312.5 | 15 | 4 | 1.5 | 129.5 | 0.41 | 1.66 | 2.47 | 1.62 | 27.3 | | 252 | 314 | 10 | 2 | 1 | 139.5 | 0.46 | 1.47 | 2.19 | 1.44 | 21.6 | | 258 | 339 | 5 | 3 | 1.5 | 117 | 0.37 | 1.80 | 2.69 | 1.76 | 30.2 | | 258 | 339 | 11.5 | 3 | 1.5 | 131 | 0.37 | 1.80 | 2.69 | 1.76 | 36.5 | | 254 | 356 | 17 | 2.5 | 1 | 145 | 0.32 | 2.12 | 3.15 | 2.07 | 53 | | 254
 347 | 14 | 2.5 | 1 | 161 | 0.37 | 1.80 | 2.69 | 1.76 | 53.8 | | 262 | 375 | 7 | 4 | 1.5 | 144 | 0.40 | 1.68 | 2.50 | 1.64 | 58.9 | | 262 | 373 | 16 | 4 | 1.5 | 164 | 0.40 | 1.68 | 2.50 | 1.64 | 71.7 | | 258 | 376 | 20.5 | 3 | 1.5 | 167.5 | 0.32 | 2.12 | 3.15 | 2.07 | 96 | | 258 | 406 | 19 | 3 | 1.5 | 189 | 0.49 | 1.38 | 2.06 | 1.35 | 100.4 | | 258 | 421.5 | 27 | 3 | 1.5 | 226 | 0.43 | 1.57 | 2.34 | 1.53 | 164.8 | | | | | | | | | | | | | | 264 | 357 | 5.5 | 2.5 | 1.5 | 123.5 | 0.37 | 1.80 | 2.69 | 1.80 | 35.3 | | 282 | 372 | 6 | 4 | 1.5 | 131 | 0.37 | 1.80 | 2.69 | 1.76 | 41.5 | | 282 | 374 | 13 | 4 | 1.5 | 143 | 0.37 | 1.80 | 2.69 | 1.76 | 53 | | 278 | 376 | 19.5 | 3 | 1.5 | 154.5 | 0.29 | 2.32 | 3.45 | 2.26 | 79 | | 282 | 412 | 8 | 4 | 1.5 | 161 | 0.40 | 1.68 | 2.50 | 1.64 | 82.2 | | 278 | 416.5 | 13.5 | 3 | 1.5 | 175 | 0.40 | 1.68 | 2.50 | 1.64 | 99.0 | | 282 | 413 | 18 | 4 | 1.5 | 176 | 0.40 | 1.68 | 2.50 | 1.64 | 101 | | 302 | 383 | 15 | 4 | 1.5 | 161 | 0.39 | 1.70 | 2.59 | 1.70 | 53.8 | | 302 | 394 | 6 | 4 | 1.5 | 136 | 0.37 | 1.80 | 2.69 | 1.76 | 47.2 | | 302 | 397 | 13.5 | 4 | 1.5 | 148 | 0.37 | 1.80 | 2.69 | 1.76 | 57.3 | | 308 | 435 | 8 | 5 | 2 | 168 | 0.40 | 1.68 | 2.50 | 1.64 | 87.4 | | 308 | 433 | 18.5 | 5 | 2 | 177 | 0.40 | 1.68 | 2.50 | 1.64 | 109 | | 308 | 386 | 15 | 3 | 1.5 | 154 | 0.42 | 1.62 | 2.42 | 1.59 | 40 | | 308 | 407 | 7.5 | 3 | 1.5 | 162 | 0.39 | 1.74 | 2.59 | 1.70 | 72.7 | | 322 | 428 | 6.5 | 4 | 1.5 | 151 | 0.37 | 1.80 | 2.69 | 1.76 | 65.6 | # **Metric system sizes** #### *d* 300∼400mm | | | Bound | ary dimens | ions | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |-----|-----|-------|------------|---------------|------------------|------------|-------------|-----------------------|-------------|--------------------| | | | | mm | | | kN | | kg | | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 460 | 148 | 118 | 5 | 1.5 | 1,610 | 3,150 | 165,000 | 320,000 | 423060 | | | 500 | 160 | 142 | 6 | 2 | 2,010 | 3,600 | 205,000 | 370,000 | 413160 | | 300 | 500 | 200 | 160 | 6 | 2 | 2,100 | 4,050 | 214,000 | 415,000 | 423160 | | | 540 | 208 | 158 | 5 | 2.5 | 2,440 | 4,450 | 249,000 | 450,000 | CRI-6010 | | | 480 | 121 | 108 | 5 | 1.5 | 1,190 | 2,250 | 121,000 | 229,000 | 413064 | | | 480 | 151 | 121 | 5 | 1.5 | 1,580 | 3,100 | 162,000 | 315,000 | 423064 | | 320 | 540 | 176 | 157 | 6 | 2 | 2,240 | 4,100 | 228,000 | 415,000 | 413164 | | | 540 | 220 | 176 | 6 | 2 | 2,500 | 4,900 | 255,000 | 500,000 | 423164 | | | 550 | 240 | 180 | 5 | 2.5 | 3,300 | 6,500 | 340,000 | 665,000 | ☆CRI-6410 | | 330 | 500 | 190 | 150 | 6 | 1.5 | 2,480 | 5,550 | 252,000 | 565,000 | CRI-6603 | | | 460 | 160 | 128 | 3 | 1 | 1,630 | 4,250 | 167,000 | 430,000 | CRI-6808 | | | 500 | 249 | 203 | 5 | 1.5 | 2,690 | 6,200 | 274,000 | 630,000 | CRI-6812 | | 340 | 520 | 133 | 118 | 6 | 2 | 1,480 | 2,870 | 150,000 | 293,000 | 413068 | | 340 | 520 | 165 | 133 | 6 | 2 | 1,890 | 3,750 | 193,000 | 380,000 | 423068 | | | 580 | 190 | 169 | 6 | 2 | 2,690 | 4,900 | 274,000 | 500,000 | 413168 | | | 580 | 238 | 190 | 6 | 2 | 3,350 | 6,500 | 345,000 | 660,000 | 423168 | | | 540 | 134 | 120 | 6 | 2 | 1,470 | 2,810 | 150,000 | 287,000 | 413072 | | 360 | 540 | 169 | 134 | 6 | 2 | 2,050 | 4,200 | 209,000 | 430,000 | 423072 | | 300 | 600 | 192 | 171 | 6 | 2 | 2,720 | 5,050 | 277,000 | 515,000 | 413172 | | | 600 | 240 | 192 | 6 | 2 | 3,200 | 6,500 | 325,000 | 660,000 | 423172 | | | 508 | 139.7 | 88.9 | 6.4 | 1.5 | 920 | 2,270 | 94,000 | 232,000 | CRI-7619 | | | 560 | 135 | 122 | 6 | 2 | 1,690 | 3,350 | 172,000 | 340,000 | 413076 | | 380 | 560 | 171 | 135 | 6 | 2 | 2,080 | 4,350 | 213,000 | 445,000 | 423076 | | 300 | 620 | 194 | 173 | 6 | 2 | 2,840 | 5,250 | 289,000 | 535,000 | 413176 | | | 620 | 241 | 170 | 5 | 2 | 3,700 | 7,400 | 380,000 | 755,000 | CRI-7614 | | | 620 | 243 | 194 | 6 | 2 | 3,350 | 6,700 | 340,000 | 685,000 | 423176 | | 390 | 600 | 185 | 130 | 4 | 2 | 2,680 | 5,550 | 273,000 | 565,000 | ☆CRI-7803 | | | 540 | 140 | 100 | 6.4 | 1.5 | 1,620 | 3,800 | 165,000 | 390,000 | CRI-8005 | | | 600 | 148 | 132 | 6 | 2 | 1,860 | 3,700 | 190,000 | 375,000 | 413080 | | 400 | 600 | 185 | 148 | 6 | 2 | 2,530 | 5,450 | 258,000 | 555,000 | 423080 | | | 650 | 200 | 178 | 6 | 3 | 3,000 | 5,800 | 305,000 | 590,000 | 413180 | | | 650 | 250 | 200 | 6 | 3 | 3,750 | 7,850 | 385,000 | 800,000 | 423180 | ● Minimum allowable dimension for chamfer dimension r or r_i . Remarks: 1. Bearing numbers marked "☆" designate bearing with hollow rollers and pin type cages. B-134 # **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_s}{F_s}$ | >e | |-----------------------------|----------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | А | butment an | d fillet din | nensions | • | Load center | Constant | Axia | al load fac | tors | Mass | |------------|------------|--------------|-------------|--------------|-------------|--------------|-------|-------------|-------------|-----------| | | | mm | | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$ | $S_{ m b}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | min | min | min | max | max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | | | | | | | | | | | | | 322 | 434 | 15 | 4 | 1.5 | 163 | 0.37 | 1.80 | 2.69 | 1.76 | 80.2 | | 328 | 471 | 9 | 5 | 2 | 182 | 0.40 | 1.68 | 2.50 | 1.64 | 115 | | 328 | 467 | 20 | 5 | 2 | 202 | 0.40 | 1.68 | 2.50 | 1.64 | 144 | | 322 | 498 | 25 | 4 | 2 | 238 | 0.49 | 1.38 | 2.06 | 1.35 | 184 | | 342 | 449 | 6.5 | 4 | 1.5 | 157 | 0.37 | 1.80 | 2.69 | 1.76 | 70.9 | | 342 | 455 | 15 | 4 | 1.5 | 170 | 0.37 | 1.80 | 2.69 | 1.76 | 85.4 | | 348 | 505 | 9.5 | 5 | 2 | 197 | 0.40 | 1.68 | 2.50 | 1.64 | 150 | | 348 | 504.5 | 22 | 5 | 2 | 217 | 0.40 | 1.68 | 2.50 | 1.64 | 186 | | 342 | 514 | 30 | 4 | 2 | 233 | 0.40 | 1.68 | 2.50 | 1.64 | 223 | | | | | | | | | | | | | | 358 | 477 | 20 | 5 | 1.5 | 195 | 0.39 | 1.74 | 2.59 | 1.70 | 117 | | 354 | 441 | 16 | 2.5 | 1 | 161.5 | 0.32 | 2.12 | 3.15 | 2.07 | 70 | | 362 | 481 | 23 | 4 | 1.5 | 218.5 | 0.33 | 2.03 | 3.02 | 1.98 | 154 | | 368 | 488 | 7.5 | 5 | 2 | 170 | 0.37 | 1.80 | 2.69 | 1.76 | 89.2 | | 368 | 489 | 16 | 5 | 2 | 184 | 0.37 | 1.80 | 2.69 | 1.76 | 113 | | 368 | 548 | 10.5 | 5 | 2 | 213 | 0.40 | 1.68 | 2.50 | 1.64 | 188 | | 368 | 542 | 24 | 5 | 2 | 237 | 0.40 | 1.68 | 2.50 | 1.64 | 235 | | 200 | F07 | 7 | - | 0 | 176 | 0.07 | 1.00 | 0.60 | 1.76 | 00.0 | | 388 | 507 | | 5 | 2
2 | 176 | 0.37 | 1.80 | 2.69 | 1.76 | 98.2 | | 388 | 509 | 17.5 | 5 | 2 | 192 | 0.37 | 1.80 | 2.69 | 1.76 | 120 | | 388 | 561
562 | 10.5
24 | 5
5 | 2 | 219
240 | 0.40
0.40 | 1.68 | 2.50 | 1.64 | 199 | | 388 | 563 | 24 | <u> </u> | | 240 | 0.40 | 1.68 | 2.50 | 1.64 | 248 | | 408 | 483 | 25.5 | 5 | 1.5 | 221 | 0.53 | 1.27 | 1.89 | 1.24 | 69.5 | | 408 | 528 | 6.5 | 5 | 2 | 183 | 0.37 | 1.80 | 2.69 | 1.76 | 95.9 | | 408 | 529 | 18 | 5 | 2 | 196 | 0.37 | 1.80 | 2.69 | 1.76 | 126 | | 408 | 583 | 10.5 | 5 | 2 | 225 | 0.40 | 1.68 | 2.50 | 1.64 | 210 | | 402 | 582 | 35.5 | 4 | 2 | 263 | 0.46 | 1.47 | 2.19 | 1.44 | 252 | | 408 | 578 | 24.5 | 5 | 2 | 249 | 0.40 | 1.68 | 2.50 | 1.64 | 262 | | 400 | 504 | 07.5 | 0 | 0 | 010.5 | 0.40 | 4.70 | 0.50 | 1.00 | 475 | | 408 | 564 | 27.5 | 3 | 2 | 216.5 | 0.40 | 1.70 | 2.50 | 1.66 | 175 | | 428 | 519.5 | 20 | 5 | 1.5 | 216 | 0.48 | 1.41 | 2.09 | 1.37 | 80.6 | | 428 | 564 | 8 | 5 | 2 | 194 | 0.37 | 1.80 | 2.69 | 1.76 | 105 | | 428 | 564 | 18.5 | 5 | 2 | 210 | 0.37 | 1.80 | 2.69 | 1.76 | 163 | | 428 | 610 | 11 | 5 | 2.5 | 232 | 0.40 | 1.68 | 2.50 | 1.64 | 236 | | 428 | 610 | 25 | 5 | 2.5 | 256 | 0.40 | 1.68 | 2.50 | 1.64 | 294 | | | | | | | | | | | | | #### NTN # **Metric system sizes** #### *d* 420∼560mm | | | Bound | lary dimens | sions | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |-----|--|--|--|------------------------------------|---------------------------|--|---|--|--|---| | | | | mm | | | kl | N | | gf | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 420 | 620
620
700
700
700 | 150
188
224
274
280 | 134
150
200
200
224 | 6
6
6
6 | 2
2
3
2.5
3 | 2,110
2,650
3,700
4,850
4,800 | 4,250
5,900
7,200
9,850
9,700 | 215,000
270,000
375,000
495,000
490,000 | 435,000
600,000
735,000
1,000,000
990,000 | 413084
423084
413184
☆CRI-8403
423184 | | 440 | 650
650
720
720 | 157
196
226
283 | 140
157
201
226 | 6
6
6 | 3
3
3
3 | 2,470
2,600
4,000
5,000 | 5,150
5,450
7,800
10,300 | 252,000
266,000
410,000
510,000 | 525,000
560,000
795,000
1,050,000 | 413088
423088
413188
423188 | | 460 | 680
680
760
760 | 163
204
240
300 | 145
163
214
240 | 6
6
7.5
7.5 | 3
3
4
4 | 2,600
3,100
4,550
4,900 | 5,350
6,750
9,150
10,300 | 265,000
315,000
465,000
500,000 | 550,000
685,000
930,000
1,050,000 | 413092
423092
413192
423192 | | 480 | 700
700
790
790 | 165
206
248
310 | 147
165
221
248 | 6
6
7.5
7.5 | 3
3
4
4 | 2,490
3,050
4,800
5,300 | 5,000
6,700
9,600
11,100 | 254,000
310,000
490,000
540,000 | 510,000
685,000
975,000
1,130,000 |
413096
423096
413196
423196 | | 500 | 670
720
720
830
830 | 180
167
209
264
330 | 130
149
167
235
264 | 5
6
6
7.5
7.5 | 2
3
3
4
4 | 2,400
2,610
3,050
5,200
6,400 | 6,100
5,400
6,900
10,500
14,000 | 245,000
266,000
315,000
530,000
650,000 | 625,000
550,000
700,000
1,070,000
1,420,000 | CRI-10004
4130/500
4230/500
4131/500
☆4231/500G2 | | 530 | 780
780
870
870 | 185
231
272
340 | 163
185
239
272 | 6
6
7.5
7.5 | 3
3
4
4 | 2,910
4,050
6,000
7,750 | 5,900
9,050
12,200
16,700 | 297,000
415,000
615,000
790,000 | 600,000
920,000
1,240,000
1,710,000 | 4130/530
4230/530
☆4131/530G2
☆4231/530AG2 | | 560 | 735
740
820
820
920
920 | 225
190
195
244
280
350 | 180
140
173
195
246
280 | 6.4
6.4
6
6
7.5
7.5 | 1.5
1.5
3
3
4 | 3,150
2,360
3,600
4,750
5,900
7,600 | 8,800
6,250
7,850
11,000
12,100
17,400 | 325,000
241,000
370,000
485,000
600,000
775,000 | 895,000
640,000
800,000
1,120,000
1,230,000
1,780,000 | CRI-11206
CRI-11211
☆CRI-11214
☆CRI-11213
4131/560
☆4231/560G2 | **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_s}{F_s}$ | >e | |---|----------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | A | Abutment ar | nd fillet din | nensions | 5 | Load center | Constant | Axia | al load fac | tors | Mass | |------------|--------------|---------------|--------------|--------------|-------------|----------|--------------|--------------|--------------|------------| | | | mm | | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$. | $S_{ m b}$. | $r_{\rm as}$ | $r_{ m las}$ | | | V | V | W | , , | | min | min | min | max | max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | 448 | 586 | 8 | 5 | 2 | 200 | 0.37 | 1.80 | 2.69 | 1.76 | 135 | | 448 | 583 | 19 | 5 | 2 | 220 | 0.37 | 1.80 | 2.69 | 1.76 | 172 | | 448 | 655 | 12 | 5 | 2.5 | 258 | 0.40 | 1.68 | 2.50 | 1.64 | 317 | | 448 | 649 | 37 | 5 | 2 | 245 | 0.32 | 2.12 | 3.15 | 2.07 | 387 | | 448 | 659 | 28 | 5 | 2.5 | 287 | 0.40 | 1.68 | 2.50 | 1.64 | 394 | | | | | | | | | | | | | | 468 | 618 | 8.5 | 5 | 2.5 | 208 | 0.37 | 1.80 | 2.69 | 1.76 | 160 | | 468 | 614 | 19.5 | 5 | 2.5 | 229 | 0.37 | 1.80 | 2.69 | 1.76 | 198 | | 468 | 675 | 12.5 | 5 | 2.5 | 263 | 0.40 | 1.68 | 2.50 | 1.64 | 330 | | 468 | 678 | 28.5 | 5 | 2.5 | 288 | 0.40 | 1.68 | 2.50 | 1.64 | 412 | | 488 | 646 | 9 | 5 | 2.5 | 217 | 0.37 | 1.80 | 2.69 | 1.76 | 179 | | 488 | 644 | 20.5 | 5 | 2.5 | 239 | 0.37 | 1.80 | 2.69 | 1.76 | 225 | | 496 | 714 | 13 | 6 | 3 | 276 | 0.40 | 1.68 | 2.50 | 1.64 | 395 | | 496 | 712 | 30 | 6 | 3 | 305 | 0.40 | 1.68 | 2.50 | 1.64 | 493 | | | | | | | | | | | | | | 508 | 665 | 9 | 5 | 2.5 | 223 | 0.37 | 1.80 | 2.69 | 1.76 | 189 | | 508 | 664 | 20.5 | 5 | 2.5 | 246 | 0.37 | 1.80 | 2.69 | 1.76 | 236 | | 516 | 743 | 13.5 | 6 | 3 | 281 | 0.40 | 1.68 | 2.50 | 1.64 | 442 | | 516 | 738 | 31 | 6 | 3 | 329 | 0.40 | 1.68 | 2.50 | 1.64 | 548 | | 522 | 637 | 25 | 4 | 2 | 242 | 0.40 | 1.68 | 2.50 | 1.64 | 175 | | 528 | 686 | 9 | 5 | 2.5 | 230 | 0.37 | 1.80 | 2.69 | 1.76 | 202 | | 528 | 683 | 21 | 5 | 2.5 | 250 | 0.37 | 1.80 | 2.69 | 1.76 | 247 | | 536 | 780 | 14.5 | 6 | 3 | 296 | 0.40 | 1.68 | 2.50 | 1.64 | 528 | | 536 | 773 | 33 | 6 | 3 | 331 | 0.40 | 1.68 | 2.50 | 1.64 | 678 | | EEO | 740 | 11 | E | 0.5 | 250 | 0.07 | 1.00 | 0.60 | 1.76 | 065 | | 558
550 | 740
720 5 | 11 | 5 | 2.5 | 250 | 0.37 | 1.80 | 2.69 | 1.76 | 265 | | 558
566 | 738.5 | 23
16 5 | 5 | 2.5
3 | 276
303 | 0.37 | 1.80 | 2.69 | 1.76 | 331 | | 566 | 820
822.5 | 16.5
34 | 6
6 | 3 | 303 | 0.38 | 1.77
1.74 | 2.64
2.59 | 1.73
1.70 | 620
774 | | 566 | 022.3 | 34 | 0 | 3 | 340 | 0.39 | 1.74 | 2.59 | 1.70 | 774 | | 588 | 709 | 22.5 | 5 | 1.5 | 257 | 0.35 | 1.95 | 2.90 | 1.91 | 232 | | 588 | 705.5 | 25 | 5 | 1.5 | 231 | 0.34 | 1.98 | 2.94 | 1.93 | 198 | | 588 | 777 | 11 | 5 | 2.5 | 277 | 0.39 | 1.74 | 2.59 | 1.70 | 340 | | 588 | 774 | 24.5 | 5 | 2.5 | 272 | 0.33 | 2.03 | 3.02 | 1.98 | 415 | | 596 | 865 | 17 | 6 | 3 | 326 | 0.40 | 1.68 | 2.50 | 1.64 | 1,310 | | 596 | 865 | 35 | 6 | 3 | 362 | 0.40 | 1.68 | 2.50 | 1.64 | 894 | | | | | | | | | | | | | ## NTN # **Metric system sizes** # *d* 570∼1,115mm | d 570 | ~1,115mı | m | | | | | | | | | |-------|------------------------------|--------------------------|--------------------------|----------------------|--------------------|-----------------------------------|------------------------------------|--|--|--| | | | Bound | mm | sions | | dynamic
k | Basic Io
static
N | pad ratings
dynamic
k | static
gf | Bearing
numbers | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 570 | 815 | 345 | 265 | 6 | 3 | 6,300 | 16,600 | 640,000 | 1,690,000 | CRI-11401 | | 590 | 780 | 255 | 178 | 5 | 2.5 | 3,900 | 10,500 | 400,000 | 1,070,000 | CRI-11801 | | 600 | 870
980
980 | 200
300
388 | 176
264
300 | 6
7.5
7.5 | 3
4
4 | 3,900
7,400
8,600 | 8,550
15,400
18,400 | 400,000
755,000
875,000 | 870,000
1,570,000
1,870,000 | 4130/600
☆4131/600G2
☆4231/600G2 | | 670 | 830
880
1,090
1,090 | 180
185
336
392 | 145
130
295
336 | 4
4
7.5
7.5 | 1.5
2
4
4 | 3,050
3,500
9,250
10,500 | 9,150
9,100
19,700
24,800 | 310,000
360,000
945,000
1,070,000 | 935,000
930,000
2,010,000
2,530,000 | ☆CRI-13402
☆CRI-13401
☆4131/670G2
☆4231/670G2 | | 710 | 1,030
1,030
1,030 | 236
236
295 | 208
208
236 | 7.5
7.5
7.5 | 4
4
4 | 5,900
5,750
6,900 | 13,900
14,000
16,100 | 600,000
590,000
700,000 | 1,420,000
1,430,000
1,640,000 | ☆4130/710G2
☆CRI-14207
☆CRI-14209 | | 800 | 1,150 | 350 | 256 | 7.5 | 4 | 9,350 | 24,200 | 955,000 | 2,470,000 | ☆CRI-16001 | | 1,040 | 1,290 | 350 | 270 | 6 | 2.5 | 8,850 | 30,000 | 900,000 | 3,050,000 | ☆CRI-20802 | | 1,115 | 1,460 | 300 | 220 | 5 | 2.5 | 8,200 | 24,000 | 835,000 | 2,450,000 | ☆CRI-22303 | | | | | | | | | | | | | **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_s}{F_s}$ | >e | |-----------------------------|----------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | | Abutment an | d fillet din | nensions | ; | Load
center | Constant | Axia | al load fac | tors | Mass | |------------|--------------|--------------|-------------|--------------|----------------|--------------|--------------|--------------|------------------|------------| | | | mm | | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$ | $S_{ m b}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | min | min | min | max | max | a | e | Y_1 | Y_2 | Y_{o} | (approx.) | | 598 | 781 | 40 | 5 | 2.5 | 318 | 0.35 | 1.95 | 2.90 | 1.91 | 512 | | 612 | 754 | 38.5 | 4 | 2 | 288 | 0.39 | 1.74 | 2.59 | 1.70 | 291 | | 628 | 828 | 12 | 5 | 2.5 | 277 | 0.37 | 1.80 | 2.69 | 1.76 | 348 | | 636 | 925 | 18 | 6 | 3 | 350 | 0.40 | 1.68 | 2.50 | 1.64 | 858 | | 636 | 923 | 44 | 6 | 3 | 380 | 0.38 | 1.77 | 2.64 | 1.73 | 1,050 | | 688
688 | 809
845.5 | 17.5
27.5 | 3
3 | 1.5
2 | 283
317 | 0.40
0.45 | 1.68
1.51 | 2.50
2.25 | 1.64
1.48 | 201
277 | | 706 | 1,033 | 20.5 | 6 | 3 | 397 | 0.40 | 1.68 | 2.50 | 1.64 | 1,180 | | 706 | 1,021 | 28 | 6 | 3 | 397 | 0.37 | 1.80 | 2.69 | 1.76 | 1,410 | | 746
746 | 974
974 | 14
14 | 6
6 | 3
3 | 327
324 | 0.37
0.36 | 1.80
1.87 | 2.69
2.79 | 1.76
1.83 | 640
654 | | 746 | 982 | 29.5 | 6 | 3 | 362 | 0.39 | 1.73 | 2.58 | 1.69 | 810 | | 836 | 1,092.5 | 47 | 6 | 3 | 400 | 0.37 | 1.80 | 2.69 | 1.76 | 1,119 | | 1,068 | 1,260 | 40 | 5 | 2 | 472.3 | 0.40 | 1.68 | 2.50 | 1.64 | 975 | | 1,137 | 1,396.5 | 40 | 4 | 2 | 554 | 0.47 | 1.43 | 2.12 | 1.40 | 1,255 | ## NTN # Inch system sizes ## *d* 139.700 ∼204.788mm | | Boun | dary dimens | sions | dynamic | Basic load
static | ratings
dynamic | static | Bearing numbers | |---------|---------|-------------|---------|------------|----------------------|-----------------------|-------------|------------------------| | | | mm | | • | :N | dynamic
k <u>(</u> | | | | d | D | B_1 | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 139.700 | 307.975 | 200.025 | 155.575 | 1,740 | 2,780 | 177,000 | 283,000 | T-HH234031/HH234011D+A | | 152.400 | 307.975 | 200.025 | 146.050 | 1,510 | 2,620 | 154,000 | 267,000 | T-EE450601/451215D+A | | | 307.975 | 200.025 | 155.575 | 1,740 | 2,780 | 177,000 | 283,000 | T-HH234048/HM234011D+A | | 160.325 | 288.925 | 142.875 | 111.125 | 1,160 | 2,140 | 119,000 | 218,000 | T-HM237532/HM237510D+A | | 165.100 | 288.925 | 142.875 | 111.125 | 940 | 1,900 | 96,000 | 194,000 | T-94649/94114D+A | | | 288.925 | 142.875 | 111.125 | 1,160 | 2,140 | 119,000 | 218,000 | T-HM237535/HM237510D+A | | 174.625 | 288.925 | 142.875 | 111.125 | 940 | 1,900 | 96,000 | 194,000 | T-94687/94114D+A | | | 288.925 | 142.875 | 111.125 | 1,160 | 2,140 | 119,000 | 218,000 | T-HM237542/HM237510D+A | | 177.800 | 288.925 | 142.875 | 111.125 | 940 | 1,900 | 96,000 | 194,000 | T-94700/94114D+A | | | 288.925 | 142.875 | 111.125 | 1,160 | 2,140 | 119,000 | 218,000 | T-HM237545/HM237510D+A | | | 320.675 | 185.738 | 138.112 | 1,300 | 2,480 | 132,000 | 253,000 |
EE222070/222127D+A | | | 320.675 | 185.738 | 138.112 | 1,590 | 2,790 | 162,000 | 285,000 | T-H239640/H239612D+A | | 187.325 | 282.575 | 107.950 | 79.375 | 625 | 1,230 | 63,500 | 126,000 | T-87737/87112D+A | | | 320.675 | 185.738 | 138.112 | 1,590 | 2,790 | 162,000 | 285,000 | T-H239649/H239612D+A | | 190.500 | 282.575 | 107.950 | 79.375 | 625 | 1,230 | 63,500 | 126,000 | T-87750/87112D+A | | | 317.500 | 146.050 | 111.125 | 1,060 | 2,310 | 108,000 | 236,000 | T-93750/93127D+A | | | 368.300 | 193.675 | 136.525 | 1,670 | 3,200 | 170,000 | 330,000 | T-EE420751/421451D+A | | 193.675 | 282.575 | 107.950 | 79.375 | 625 | 1,230 | 63,500 | 126,000 | T-87762/87112D+A | | 200.025 | 292.100 | 125.415 | 101.600 | 915 | 2,070 | 93,000 | 211,000 | T-M241543/M241510D+A | | | 317.500 | 146.050 | 111.125 | 1,060 | 2,310 | 108,000 | 236,000 | T-93787/93727D+A | | | 384.175 | 238.125 | 193.675 | 2,500 | 5,450 | 255,000 | 555,000 | T-H247535/H247510D+A | | 203.200 | 276.225 | 90.485 | 73.025 | 585 | 1,380 | 60,000 | 141,000 | LM241149/LM241110D+A | | | 282.575 | 101.600 | 82.550 | 620 | 1,570 | 63,000 | 160,000 | T-67983/67920D+A | | | 292.100 | 125.415 | 101.600 | 915 | 2,070 | 93,000 | 211,000 | T-M241547/M241510D+A | | | 317.500 | 146.050 | 111.125 | 1,060 | 2,310 | 108,000 | 236,000 | T-93800/93127D+A | | | 368.300 | 193.675 | 136.525 | 1,670 | 3,200 | 170,000 | 330,000 | T-EE420801/421451D+A | | | 406.400 | 196.850 | 127.000 | 1,650 | 2,950 | 168,000 | 300,000 | EE114080/114161D+A | | 204.788 | 292.100 | 125.415 | 101.600 | 915 | 2,070 | 93,000 | 211,000 | T-M241549/M241510D+A | Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max. **Equivalent bearing load** dynamic $P_r = XF_r + YF_s$ static Por=Fr+YoFa | Abutm | ent and fille | et dimens | ions | Load
center | Constant | Axia | al load fac | tors | Mass | |------------|------------------|-------------|--------------|----------------|----------|-------|-------------|------------|-----------| | | mm | | | mm | | | | | kg | | $d_{ m a}$ | D_{b} | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | min | max | max | max | a | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | | | | | | | | | | | | 180 | 285 | 9.7 | 2.3 | 149.5 | 0.33 | 2.07 | 3.08 | 2.02 | 65.9 | | 189 | 275 | 9.7 | 2.3 | 143.5 | 0.33 | 2.07 | 3.08 | 2.02 | 62.6 | | 191 | 285 | 9.7 | 2.3 | 149.5 | 0.33 | 2.07 | 3.08 | 2.02 | 62.6 | | 192 | 271 | 7 | 1.5 | 119.5 | 0.32 | 2.12 | 3.15 | 2.07 | 36.1 | | 197 | 272 | 7 | 1.5 | 141 | 0.47 | 1.44 | 2.15 | 1.41 | 35.1 | | 195 | 271 | 7 | 1.5 | 119.5 | 0.32 | 2.12 | 3.15 | 2.07 | 35.1 | | 204 | 272 | 7 | 1.5 | 141 | 0.47 | 1.44 | 2.15 | 1.41 | 33.1 | | 202 | 271 | 7 | 1.5 | 119.5 | 0.32 | 2.12 | 3.15 | 2.07 | 33.1 | | | | | | | | | | | | | 207 | 272 | 7 | 1.5 | 141 | 0.47 | 1.44 | 2.15 | 1.41 | 32.4 | | 205 | 271 | 7 | 1.5 | 119.5 | 0.32 | 2.12 | 3.15 | 2.07 | 32.4 | | 204 | 298 | 3.5 | 1.5 | 152.5 | 0.40 | 1.68 | 2.50 | 1.64 | 57.8 | | 202 | 301 | 3.5 | 1.5 | 141 | 0.32 | 2.12 | 3.15 | 2.07 | 57.8 | | | | | | | | | | | | | 207 | 267 | 3.5 | 1.5 | 115.5 | 0.42 | 1.62 | 2.42 | 1.59 | 21.1 | | 214 | 301 | 5.5 | 1.5 | 141 | 0.32 | 2.12 | 3.15 | 2.07 | 55 | | 209 | 267 | 3.5 | 1.5 | 115.5 | 0.42 | 1.62 | 2.42 | 1.59 | 20.6 | | 218 | 300 | 4.3 | 1.5 | 162 | 0.52 | 1.29 | 1.92 | 1.26 | 41.2 | | 227 | 334.4 | 6.4 | 1.5 | 163 | 0.40 | 1.68 | 2.50 | 1.64 | 84.1 | | 211 | 267 | 3.5 | 1.5 | 115.5 | 0.42 | 1.62 | 2.42 | 1.59 | 20 | | 219 | 279 | 3.5 | 1.5 | 116 | 0.33 | 2.03 | 3.02 | 1.98 | 24.8 | | 225 | 300 | 4.3 | 1.5 | 162 | 0.52 | 1.29 | 1.92 | 1.26 | 38.8 | | 241 | 362 | 6.4 | 1.5 | 182 | 0.33 | 2.03 | 3.02 | 1.98 | 112 | | 220 | 267 | 3.5 | 0.8 | 95 | 0.32 | 2.12 | 3.15 | 2.07 | 13.8 | | 222 | 275 | 3.5 | 0.8 | 133.5 | 0.51 | 1.33 | 1.97 | 1.30 | 17.1 | | 221 | 279 | 3.5 | 1.5 | 116 | 0.33 | 2.03 | 3.02 | 1.98 | 24.1 | | 227 | 300 | 4.3 | 1.5 | 162 | 0.52 | 1.29 | 1.92 | 1.26 | 37.1 | | 230 | 334.4 | 3.3 | 1.5 | 163 | 0.40 | 1.68 | 2.50 | 1.64 | 79.9 | | 246 | 374 | 6.4 | 3.3 | 252.5 | 0.80 | 0.85 | 1.26 | 0.83 | 107 | | 223 | 279 | 3.5 | 1.5 | 116 | 0.33 | 2.03 | 3.02 | 1.98 | 23.8 | # Inch system sizes ## d 206.375~241.300mm | | Boun | dary dimens | ions | dynamic | Basic load
static | ratings
dynamic | static | Bearing numbers | |---------|---|---|--|---|---|--|---|---| | | | mm | | , | kN | kç | | | | d | D | B_1 | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 206.375 | 282.575
336.550 | 101.600
211.138 | 82.550
169.862 | 620
1,900 | 1,570
4,050 | 63,000
194,000 | 160,000
415,000 | T-67985/67920D+A
T-H242649/H242610D+A | | 209.550 | 282.575
317.500 | 101.600
146.050 | 82.550
111.125 | 620
1,060 | 1,570
2,310 | 63,000
108,000 | 160,000
236,000 | T-67989/67920D+A
T-93825/93127D+A | | 212.725 | 285.750 | 98.425 | 76.200 | 650 | 1,640 | 66,500 | 167,000 | T-LM742745/LM742710D+A | | 215.900 | 285.750
287.338 | 98.425
69.850 | 76.200
50.800 | 650
355 | 1,640
810 | 66,500
36,000 | 167,000
82,500 | T-LM742749/LM742710D+A
543085/543115D+A | | 220.662 | 314.325 | 131.762 | 106.362 | 1,070 | 2,450 | 109,000 | 250,000 | T-M244249/M244210D+A | | 228.460 | 431.800 | 196.850 | 111.125 | 1,470 | 2,480 | 150,000 | 253,000 | EE113091/113171D+A | | 228.600 | 327.025
355.600
355.600
355.600
358.775
400.050
488.950 | 114.300
152.400
152.400
152.400
152.400
187.325
254.000 | 82.550
111.125
111.125
114.300
117.475
136.525
152.400 | 815
1,100
1,230
1,230
1,390
1,620
2,700 | 1,900
2,540
2,510
2,490
3,300
3,250
4,550 | 83,000
112,000
125,000
126,000
142,000
165,000
275,000 | 194,000
259,000
256,000
254,000
335,000
330,000
460,000 | T-8573/8520D+A T-96900/96140D+A T-EE130902/131401D+A HM746646/HM746610D+A T-M249732/M249710D+A EE430900/431576D+A ☆T-HH949549/HH949510DG2+A | | 231.775 | 358.775 | 152.400 | 117.475 | 1,390 | 3,300 | 142,000 | 335,000 | T-M249734/M249710D+A | | 234.950 | 311.150
327.025
355.600
384.175 | 98.425
114.300
152.400
238.125 | 73.025
82.550
111.125
193.675 | 695
815
1,100
2,500 | 1,640
1,900
2,540
5,450 | 71,000
83,000
112,000
255,000 | 167,000
194,000
259,000
555,000 | LM446349/LM446310D+A
T-8575/8520D+A
T-96925/96140D+A
T-H247549/H247510D+A | | 237.330 | 358.775 | 152.400 | 117.475 | 1,390 | 3,300 | 142,000 | 335,000 | T-M249736/M249710D+A | | 241.300 | 327.025
349.148
368.300
393.700
406.400
444.500 | 114.300
127.000
120.650
157.162
215.900
209.550 | 82.550
101.600
85.725
109.538
184.150
158.750 | 815
940
790
1,340
2,460
2,380 | 1,900
2,010
1,630
2,800
4,750
4,250 | 83,000
96,000
80,500
137,000
251,000
243,000 | 194,000
205,000
166,000
286,000
485,000
430,000 | T-8578/8520D+A EE127095/127136D+A EE170950/171450D+A T-EE275095/275156D+A T-H249148/H249111D+A ☆T-EE923095/923176DG2+A | **Equivalent bearing load** dynamic $P_r = XF_r + YF_s$ static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | Abutm | nent and fill | | ions | Load
center | Constant | Axia | al load fac | tors | Mass | |----------------|----------------|-----------------|------------------|----------------|----------|-------|-------------|------------|-----------| | d | mm | | 0.0 | mm | | | | | kg | | $d_{ m a}$ min | $D_{ m b}$ max | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | Y_{0} | (approx.) | | | max | max | mux | a | | 11 | - 2 | 1 0 | (αρριολ.) | | 224 | 275 | 3.5 | 0.8 | 133.5 | 0.51 | 1.33 | 1.97 | 1.30 | 16.5 | | 231 | 318 | 3.3 | 1.5 | 160 | 0.33 | 2.03 | 3.02 | 1.98 | 65.2 | | | | | | | | | | | | | 227 | 275 | 3.5 | 0.8 | 133.5 | 0.51 | 1.33 | 1.97 | 1.30 | 16 | | 233 | 300 | 4.3 | 1.5 | 161 | 0.52 | 1.29 | 1.92 | 1.26 | 36.3 | | | 070 | 0.5 | 0.0 | 100 5 | 0.40 | 4.40 | 0.00 | 4.07 | 45.7 | | 230 | 279 | 3.5 | 0.8 | 126.5 | 0.48 | 1.40 | 2.09 | 1.37 | 15.7 | | 233 | 279 | 3.5 | 0.8 | 126.5 | 0.48 | 1.40 | 2.09 | 1.37 | 15.1 | | 232 | 276 | 3.5 | 0.8 | 94.5 | 0.38 | 1.77 | 2.64 | 1.73 | 11 | | | | | | | | | | | | | 245 | 300 | 6.4 | 1.5 | 122.5 | 0.33 | 2.03 | 3.02 | 1.98 | 28.9 | | | | 0.4 | | 070 | 0.00 | ٥ == | | | 440 | | 274 | 397 | 6.4 | 3.3 | 276 | 0.88 | 0.77 | 1.14 | 0.75 | 116 | | 255 | 313 | 6.4 | 1.5 | 129.5 | 0.41 | 1.66 | 2.47 | 1.62 | 27.3 | | 260 | 334 | 7 | 1.5 | 185 | 0.59 | 1.14 | 1.70 | 1.12 | 49.4 | | 257 | 330 | 6.8 | 1.5 | 132.5 | 0.33 | 2.04 | 3.04 | 2.00 | 49.4 | | 258 | 339 | 6.4 | 1.5 | 164 | 0.47 | 1.43 | 2.12 | 1.40 | 49.4 | | 256 | 343 | 3.5 | 1.5 | 138.5 | 0.33 | 2.03 | 3.02 | 1.98 | 50.9 | | 271 | 367 | 10.5 | 1.5 | 181.5 | 0.44 | 1.54 | 2.29 | 1.50 | 88.3 | | 297 | 456 | 6.4 | 1.5 | 333.5 | 0.94 | 0.72 | 1.07 | 0.70 | 207 | | | | | | | | | | | | | 263 | 343 | 6.4 | 1.5 | 138.5 | 0.33 | 2.03 | 3.02 | 1.98 | 50 | | 252 | 301 | 3.5 | 0.8 | 111.5 | 0.36 | 1.86 | 2.77 | 1.82 | 17.9 | | 252 | 313 | 6.4 | 1.5 | 129.5 | 0.30 | 1.66 | 2.77 | 1.62 | 25.9 | | 265 | 334 | 7 | 1.5 | 185 | 0.59 | 1.14 | 1.70 | 1.12 | 47.5 | | 269 | 362 | ,
6.4 | 1.5 | 181.5 | 0.33 | 2.03 | 3.02 | 1.12 | | | | 302 | 0.4 | 1.5 | 101.5 | 0.33 | 2.03 | 3.02 | 1.90 | 96.2 | | 267 | 343 | 6.4 | 1.5 | 138.5 |
0.33 | 2.03 | 3.02 | 1.98 | 48.2 | | | | | | | | | | | | | 264 | 313 | 6.4 | 1.5 | 129.5 | 0.41 | 1.66 | 2.47 | 1.62 | 24.3 | | 267 | 329 | 6.4 | 1.5 | 133 | 0.35 | 1.91 | 2.85 | 1.87 | 35.4 | | 269 | 337 | 6.4 | 1.5 | 132.5 | 0.36 | 1.85 | 2.76 | 1.81 | 40.8 | | 278 | 378.1 | 6.4 | 1.5 | 162 | 0.40 | 1.68 | 2.50 | 1.64 | 66.5 | | 273 | 385 | 6.4 | 1.5 | 177.5 | 0.33 | 2.03 | 3.02 | 1.98 | 101 | | 277 | 407 | 6.4 | 1.5 | 170.5 | 0.34 | 2.00 | 2.98 | 1.96 | 128 | | | | | | | | | | | | ## NTN # Inch system sizes ## d 244.475~280.192mm | | Boun | dary dimens | ions | dynamic | Basic load
static | ratings
dynamic | static | Bearing numbers | |---------|--|---|--|--|--|---|---|--| | | | mm | | , | kN | • | gf | | | d | D | B_1 | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 244.475 | 381.000 | 171.450 | 127.000 | 1,300 | 2,880 | 132,000 | 294,000 | EE126097/126151D+A | | 247.650 | 368.300
406.400 | 120.650
247.650 | 85.725
203.200 | 790
2,830 | 1,630
6,000 | 80,500
289,000 | 166,000
615,000 | EE170975/171451D+A
HH249949/HH249910D+A | | 249.250 | 381.000 | 171.450 | 127.000 | 1,300 | 2,880 | 132,000 | 294,000 | EE126098/126151D+A | | 254.000 | 323.850
358.775
365.125
393.700
422.275
533.400 | 63.500
152.400
130.175
157.162
178.592
276.225 | 50.800
117.475
98.425
109.538
139.700
165.100 | 216
1,390
1,050
1,340
2,000
2,880 | 635
3,300
2,380
2,800
3,600
5,200 | 22,000
142,000
107,000
137,000
204,000
293,000 | 64,500
335,000
243,000
286,000
365,000
530,000 | 29875/29820D+A
T-M249749/M249710D+A
T-EE134100/134144D+A
T-EE275100/275156D+A
T-HM252343/HM252310D+A
HH953749/HH953710D+A | | 260.350 | 365.125
400.050
419.100
422.275
488.950 | 130.175
155.575
184.150
178.592
254.000 | 98.425
107.950
136.525
139.700
196.850 | 1,050
1,220
1,580
2,000
3,000 | 2,380
2,460
3,250
3,600
5,950 | 107,000
124,000
161,000
204,000
310,000 | 243,000
251,000
330,000
365,000
605,000 | T-EE134102/134144D+A
EE221026/221576D+A
EE435102/435165D+A
T-HM252348/HM252310D+A
EE295102/295192D+A | | 263.525 | 355.600 | 127.000 | 101.600 | 1,070 | 2,670 | 110,000 | 272,000 | T-LM451345/LM451310D+A | | 266.700 | 323.850
355.600
393.700 | 63.500
127.000
157.162 | 50.800
101.600
109.538 | 216
1,070
1,340 | 635
2,670
2,800 | 22,000
110,000
137,000 | 64,500
272,000
286,000 | 29880/29820D+A
T-LM451349/LM451310D+A
T-EE275105/275156D+A | | 269.875 | 381.000 | 158.750 | 123.825 | 1,520 | 3,600 | 155,000 | 365,000 | T-M252349/M252310D+A | | 273.050 | 393.700 | 157.162 | 109.538 | 1,340 | 2,800 | 137,000 | 286,000 | T-EE275108/275156D+A | | 279.400 | 374.650
469.900
488.950 | 104.775
200.025
254.000 | 79.375
149.225
196.850 | 810
2,030
3,000 | 2,020
4,350
5,950 | 82,500
207,000
310,000 | 206,000
445,000
605,000 | L555233/L555210D+A
EE722110/722186D+A
EE295110/295192D+A | | 279.982 | 380.898 | 139.700 | 107.950 | 1,140 | 3,100 | 116,000 | 315,000 | T-LM654642/LM654610D+A | | 280.192 | 406.400 | 149.225 | 117.475 | 1,310 | 3,100 | 133,000 | 315,000 | EE128111/128160D+A | Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max. **Equivalent bearing load** dynamic $P_r = XF_r + YF_s$ static Por=Fr+YoFa | Abutm | ent and fill | et dimensi | ions | Load
center | Constant | Axia | tors | Mass | | |------------|--------------|-------------|--------------|----------------|----------|-------|-------|------------|-----------| | | mm | | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$ | $r_{ m as}$ | $r_{ m las}$ | | | T7 | T7 | 77 | | | min | max | max | max | a | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | 275 | 358 | 6.4 | 1.5 | 186.5 | 0.52 | 1.31 | 1.95 | 1.28 | 64 | | 274 | 337 | 6.4 | 1.5 | 132.5 | 0.36 | 1.85 | 2.76 | 1.81 | 39.2 | | 284 | 383 | 6.4 | 1.5 | 189.5 | 0.33 | 2.03 | 3.02 | 1.98 | 112 | | 279 | 358 | 6.4 | 1.5 | 186.5 | 0.52 | 1.31 | 1.95 | 1.28 | 62.2 | | 267 | 312 | 1.5 | 8.0 | 105 | 0.35 | 1.95 | 2.90 | 1.91 | 11.2 | | 274 | 343 | 3.5 | 1.5 | 138.5 | 0.33 | 2.03 | 3.02 | 1.98 | 42.8 | | 281 | 347 | 6.4 | 1.5 | 140 | 0.37 | 1.80 | 2.69 | 1.76 | 39.2 | | 287 | 378 | 6.4 | 1.5 | 162.5 | 0.40 | 1.68 | 2.50 | 1.64 | 62.2 | | 287 | 400 | 6.8 | 1.5 | 160 | 0.33 | 2.03 | 3.02 | 1.98 | 88.9 | | 328 | 496 | 6.4 | 1.5 | 365.5 | 0.94 | 0.71 | 1.06 | 0.70 | 266 | | 286 | 347 | 6.4 | 1.5 | 140 | 0.37 | 1.80 | 2.69 | 1.76 | 37.3 | | 296 | 372 | 9.7 | 1.5 | 159 | 0.39 | 1.71 | 2.54 | 1.67 | 62.7 | | 295 | 395 | 6.4 | 1.5 | 225.5 | 0.61 | 1.11 | 1.66 | 1.09 | 86.8 | | 292 | 400 | 6.8 | 1.5 | 160 | 0.33 | 2.03 | 3.02 | 1.98 | 86.3 | | 299 | 451 | 6.4 | 1.5 | 196.5 | 0.31 | 2.16 | 3.22 | 2.12 | 190 | | 283 | 343 | 3.5 | 1.5 | 136.5 | 0.36 | 1.87 | 2.79 | 1.83 | 31.7 | | 277 | 312 | 1.5 | 8.0 | 105 | 0.35 | 1.95 | 2.90 | 1.91 | 9.37 | | 285 | 343 | 3.5 | 1.5 | 136.5 | 0.36 | 1.87 | 2.79 | 1.83 | 30.7 | | 296 | 378 | 6.4 | 1.5 | 162.5 | 0.40 | 1.68 | 2.50 | 1.64 | 57.6 | | 296 | 364 | 6.4 | 1.5 | 146.5 | 0.33 | 2.03 | 3.02 | 1.98 | 52.3 | | 301 | 378 | 6.4 | 1.5 | 162.5 | 0.40 | 1.68 | 2.50 | 1.64 | 55.3 | | 300 | 362 | 3.5 | 1.5 | 138.5 | 0.40 | 1.68 | 2.50 | 1.64 | 28.5 | | 321 | 433 | 9.7 | 1.5 | 187.5 | 0.38 | 1.78 | 2.65 | 1.74 | 125 | | 303 | 451 | 1.3 | 1.5 | 196.5 | 0.31 | 2.16 | 3.22 | 2.12 | 179 | | 302 | 368 | 3.5 | 1.5 | 163 | 0.43 | 1.56 | 2.33 | 1.53 | 40.7 | | 309 | 384 | 6.8 | 1.5 | 158 | 0.39 | 1.75 | 2.61 | 1.71 | 56.5 | #### NTN # Inch system sizes #### d 285.750~355.600mm | | Boun | dary dimens | ions | dynamic | Basic load | ratings
dynamic | static | Bearing numbers | |-----------|--------------------|--------------------|--------------------|----------------|----------------|--------------------|--------------------|---| | | | mm | | | κN | | gf | | | d | D | B_1 | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 358.775 | 76.200 | 53.975 | 450 | 1,080 | 46,000 | 110,000 | 545112/545142DA+A | | 285.750 | 380.898
501.650 | 139.700
203.200 | 107.950
120.650 | 1,140
1,960 | 3,100
3,700 | 116,000
200,000 | 315,000
375,000 | T-LM654649/LM654610D+A
EE147112/147198D+A | | 288.925 | 406,400 | 165.100 | 130.175 | 1,740 | 4,150 | 177,000 | 425,000 | M255449/M255410DA+A | | 200.020 | | | | , | <u> </u> | <u> </u> | <u> </u> | | | 292.100 | 374.650
469.900 | 104.775
200.025 | 79.375
149.225 | 810
2,030 | 2,020
4,350 | 82,500
207,000 | 206,000
445,000 | L555249/L555210D+A
EE722115/722186D+A | | 298.450 | 444.500 | 146.050 | 98.425 | 1,080 | 2,300 | 110,000 | 234,000 | EE291175/291751D+A | | 299.974 | 495.300 | 301.625 | 247.650 | 4,200 | 9,800 | 425,000 | 1,000,000 | ☆HH258248/HH258210DG2+A | | 300.038 | 422.275 | 174.625 | 136.525 | 1,950 | 4,800 | 198,000 | 490,000 | ☆T-HM256849/HM256810DG2+A | | | 393.700 | 107.950 | 82.550 | 835 | 2,070 | 85,500 | 211,000 | L357049/L357010D+A | | 304.800 | 438.048
444.500 | 165.100
146.050 | 120.650
98.425 | 1,380
1,080 | 3,200
2,300 | 141,000
110,000 | 325,000
234,000 | T-EE129120X/129120D+A
EE291201/291751D+A | | | 495.300 | 196.850 | 146.050 | 2,120 | 4,700 | 216,000 | 480,000 | EE724120/724196D+A | | | 444.500 | 146.050 | 98.425 | 1,080 | 2,300 | 110,000 | 234,000 | EE291250/291751D+A | | 317.500 | 447.675
622.300 | 180.975
304.800 | 146.050
174.625 | 1,990
3,250 | 4,800
6,250 | 203,000
330,000 | 485,000
640,000 | T-HM259049/HM259010D+A ☆H961649/H961610DG2+A | | 330.200 | 482.600 | 133.350 | 88.900 | 1,200 | 2,870 | 122,000 | 293,000 | T-EE161300/161901D+A | | 330.200 | 482.600 | 177.800 | 127.000 | 1,640 | 3,950 | 167,000 | 400,000 | EE526130/526191D+A | | 333.375 | 469.900 | 190.500 | 152.400 | 2,320 | 5,500 | 237,000 | 565,000 | HM261049/HM261010DA+A | | 342.900 | 457.098 | 142.875 | 104.775 | 1,210 | 3,300 | 124,000 | 335,000 | LM961548/LM961511D+A | | 042.500 | 533.400 | 165.100 | 114.300 | 1,830 | 3,450 | 187,000 | 355,000 | EE971354/972102D+A | | 346.075 | 482.600 | 133.350 | 88.900 | 1,200 | 2,870 | 122,000 | 293,000 | T-EE161363/161901D+A | | 3 10101 0 | 488.950 | 200.025 | 158.750 | 2,540 | 6,400 | 259,000 | 650,000 | ☆T-HM262749/HM262710DG2+A | | 349.250 | 514.350 | 193.675 | 152.400 | 2,040 | 4,550 | 209,000 | 465,000 | EE333137/333203D+A | | 355.600 | 444.500
482.600 | 136.525
133.350 | 111.125
88.900 | 1,120
1,200 | 3,500
2,870 | 114,000
122,000 | 355,000
293,000 | T-L163149/L163110D+A
T-EE161400/161901D+A | Remarks: 1. The above chamfer of inner and outer ring are bigger than r_{as} max or r_{las} max. 2. Bearing numbers marked "☆" designate bearing with hollow rollers and pin type cages. **Equivalent bearing load** dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | |---|----------|-----------------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | static Por=Fr+YoFa | Abu | tment and fill | et dimens | ions | Load
center | Constant | Axia | Il load fact | tors | Mass | |------------|----------------|-------------
--------------|----------------|--------------|-------|--------------|------------|-----------| | | mm | 1 | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | min | max | max | max | a | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | 200 | 045 | 0.5 | 1.5 | 111 | 0.40 | 1.00 | 0.05 | 1.04 | 157 | | 302
306 | 345
368 | 3.5 | 1.5
1.5 | 144 | 0.49
0.43 | 1.38 | 2.05 | 1.34 | 15.7 | | | | 3.5 | | 163 | | 1.56 | 2.33 | 1.53 | 38.7 | | 329 | 468 | 6.4 | 3.3 | 307 | 0.84 | 0.81 | 1.20 | 0.79 | 151 | | 316 | 388 | 6.4 | 1.5 | 157 | 0.34 | 2.00 | 2.98 | 1.96 | 59 | | 309 | 362 | 3.5 | 1.5 | 138.5 | 0.40 | 1.68 | 2.50 | 1.64 | 25.2 | | 330 | 433 | 9.7 | 1.5 | 187.5 | 0.38 | 1.78 | 2.65 | 1.74 | 118 | | | | | | | | | | | | | 332 | 414 | 8 | 1.5 | 164 | 0.38 | 1.78 | 2.65 | 1.74 | 69.3 | | 342 | 467 | 6.4 | 1.5 | 231 | 0.33 | 2.03 | 3.02 | 1.98 | 205 | | | | | | | | | | | | | 328 | 403 | 6.4 | 1.5 | 163.5 | 0.34 | 2.00 | 2.99 | 1.96 | 67.4 | | 329 | 380 | 6.4 | 1.5 | 133 | 0.36 | 1.87 | 2.79 | 1.83 | 29.3 | | 334 | 411 | 6.4 | 1.5 | 179.5 | 0.42 | 1.62 | 2.42 | 1.59 | 71.4 | | 337 | 414 | 8 | 1.5 | 164 | 0.38 | 1.78 | 2.65 | 1.74 | 66.8 | | 359 | 459 | 16 | 1.5 | 195 | 0.40 | 1.68 | 2.50 | 1.64 | 131 | | | | | | | | | | | | | 346 | 414 | 8 | 1.5 | 164 | 0.38 | 1.78 | 2.65 | 1.74 | 61.8 | | 341 | 428 | 3.5 | 1.5 | 162 | 0.33 | 2.02 | 3.00 | 1.97 | 78.8 | | 410 | 582 | 14.3 | 3.3 | 430 | 0.95 | 0.71 | 1.06 | 0.70 | 382 | | 007 | 455 | - | 4.5 | 200 5 | 0.50 | 1.05 | 0.04 | 4.00 | 70.0 | | 367 | 455 | 7 | 1.5 | 200.5 | 0.50 | 1.35 | 2.01 | 1.32 | 72.2 | | 360 | 454 | 6.4 | 1.5 | 183.5 | 0.39 | 1.72 | 2.56 | 1.68 | 96.3 | | 363 | 449 | 6.4 | 1.5 | 179.5 | 0.33 | 2.02 | 3.00 | 1.97 | 91.3 | | 367 | 443.1 | 3.3 | 1.5 | 253.5 | 0.71 | 0.95 | 1.41 | 0.93 | 57.1 | | 373 | 496 | 4.8 | 1.5 | 170 | 0.33 | 2.03 | 3.02 | 1.98 | 120 | | | | | | | | | | | | | 379 | 455 | 7 | 1.5 | 200.5 | 0.50 | 1.35 | 2.01 | 1.32 | 66 | | 377 | 467 | 6.4 | 1.5 | 187.5 | 0.33 | 2.02 | 3.00 | 1.97 | 104 | | 382 | 478 | 6.4 | 1.5 | 197.5 | 0.36 | 1.85 | 2.76 | 1.81 | 121 | | 374 | 430 | 3.5 | 1.5 | 151 | 0.31 | 2.20 | 3.27 | 2.15 | 42.5 | | 386 | 455 | 7 | 1.5 | 200.5 | 0.50 | 1.35 | 2.01 | 1.32 | 62.1 | | 000 | 100 | • | 1.0 | 200.0 | 0.00 | 1.00 | 2.01 | 1.02 | 02.1 | # Inch system sizes ## d 355.600~482.600mm | | Boun | dary dimens | ions | dynamic | Basic load
static | ratings
dynamic | static | Bearing numbers | |---------|-------------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------------|-------------------------------|---| | | | mm | | | N | • | rgf | | | d | D | B_1 | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 355.600 | 501.650
514.350 | 155.575
193.675 | 107.950
152.400 | 1,550
2,040 | 3,650
4,550 | 158,000
209,000 | 375,000
465,000 | T-EE231400/231976D+A
EE333140/333203D+A | | 368.249 | 523.875 | 214.312 | 169.862 | 2,610 | 6,550 | 266,000 | 665,000 | ☆HM265049/HM265010DG2+A | | 371.475 | 501.650 | 155.575 | 107.950 | 1,550 | 3,650 | 158,000 | 375,000 | T-EE231462/231976D+A | | 381.000 | 508.000
546.100
590.550 | 139.700
222.250
244.475 | 88.900
177.800
193.675 | 920
2,950
3,650 | 2,270
7,350
9,450 | 94,000
300,000
375,000 | 232,000
750,000
965,000 | EE192150/192201D+A
T-HM266446/HM266410D+A
☆T-M268730/M268710DG2+A | | 384.175 | 441.325
546.100
546.100 | 68.262
222.250
222.250 | 52.388
177.800
177.800 | 360
2,950
3,150 | 1,060
7,350
8,050 | 36,500
300,000
320,000 | 108,000
750,000
820,000 | LL365340/LL365310D+A
T-HM266448/HM266410D+A
☆T-HM266449/HM266410DG2+A | | 385.762 | 514.350 | 177.800 | 139.700 | 2,120 | 5,550 | 216,000 | 565,000 | LM665949/LM665910D+A | | 396.875 | 539.750
546.100 | 142.875
158.750 | 101.600
117.475 | 1,330
1,330 | 3,300
3,300 | 136,000
136,000 | 335,000
335,000 | EE234156/234213D+A
EE234156/234216D+A | | 406.400 | 539.750
609.600 | 142.875
187.325 | 101.600
123.825 | 1,330
2,110 | 3,300
4,650 | 136,000
215,000 | 335,000
475,000 | EE234160/234213D+A
EE911600/912401D+A | | 415.925 | 590.550 | 244.475 | 193.675 | 3,650 | 9,450 | 375,000 | 965,000 | ☆T-M268749/M268710DG2+A | | 431.800 | 571.500
603.250
673.100 | 155.575
159.639
192.639 | 111.125
104.775
127.000 | 1,880
1,670
2,560 | 4,950
4,100
5,350 | 191,000
171,000
261,000 | 505,000
420,000
545,000 | T-LM869448/LM869410D+A
EE241701/242377D+A
EE571703/572651D+A | | 447.675 | 635.000 | 257.175 | 206.375 | 4,150 | 11,100 | 425,000 | 1,130,000 | ☆M270749/M270710DAG2+A | | 457.200 | 596.900
730.148 | 165.100
254.000 | 120.650
177.800 | 1,670
4,350 | 4,700
8,750 | 170,000
445,000 | 480,000
895,000 | EE244180/244236D+A
EE671801/672875D+A | | 479.425 | 679.450 | 276.225 | 222.250 | 4,900 | 13,000 | 500,000 | 1,320,000 | ☆T-M272749/M272710DG2+A | | 482.600 | 615.950
634.873 | 184.150
177.800 | 146.050
142.875 | 2,320
2,000 | 6,700
6,150 | 237,000
204,000 | 685,000
630,000 | ☆LM272249/LM272210DG2+A
EE243190/243251D+A | Remarks: 1. The above chamfer of inner and outer ring are bigger than r_{as} max or r_{las} max. 2. Bearing numbers marked "☆" designate bearing with hollow rollers and pin type cages. **Equivalent bearing load** dynamic $P_r = XF_r + YF_s$ static Por=Fr+YoFa | Abu | Abutment and fillet dimensions | | | Load
center | Constant | Axia | tors | Mass | | |----------------|--------------------------------|-----------------|------------------|----------------|--------------|--------------|--------------|--------------|------------| | | mm | | | mm | | | | | kg | | $d_{ m a}$ min | $D_{ m b}$ | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | $Y_{ m o}$ | (approv.) | | min | max | max | max | -a | -e | 11 | 12 | 10 | (approx.) | | 388 | 481 | 6.4 | 1.5 | 195 | 0.44 | 1.53 | 2.28 | 1.50 | 85.2 | | 387 | 478 | 6.4 | 1.5 | 197.5 | 0.36 | 1.85 | 2.76 | 1.81 | 117 | | | | | | | | | | | | | 400 | 499 | 6.4 | 1.5 | 198.5 | 0.33 | 2.03 | 3.02 | 1.98 | 142 | | 400 | 481 | 6.4 | 1.5 | 195 | 0.44 | 1.53 | 2.28 | 1.50 | 77.3 | | 410 | 400 | C 4 | 4.5 | 001 | 0.50 | 1.07 | 1.00 | 1.04 | 00 | | 410 | 482 | 6.4 | 1.5 | 221 | 0.53 | 1.27 | 1.89 | 1.24 | 69 | | 415
425 | 519
561 | 6.4
6.4 | 1.5
1.5 | 208
226 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 149
247 | | 425 | 301 | 0.4 | 1.5 | 220 | 0.33 | 2.03 | 3.02 | 1.90 | 247 | | 399 | 433 | 3.5 | 0.8 | 128.5 | 0.34 | 1.99 | 2.96 | 1.94 | 14.1 | | 417 | 519 | 6.4 | 1.5 | 208 | 0.33 | 2.03 | 3.02 | 1.98 | 146 | | 417 | 520 | 6.4 | 1.5 | 208 | 0.33 | 2.03 | 3.02 | 1.98 | 146 | | 415 | 495 | 6.4 | 1.5 | 210.5 | 0.42 | 1.61 | 2.40 | 1.58 | 90 | | 428 | 516 | 6.4 | 1.5 | 214.5 | 0.47 | 1.43 | 2.12 | 1.40 | 83.6 | | 428 | 516 | 6.4 | 1.5 | 230.5 | 0.47 | 1.43 | 2.12 | 1.40 | 97.7 | | | | | | | | | | | | | 435 | 518 | 6.4 | 1.5 | 214.5 | 0.47 | 1.43 | 2.12 | 1.40 | 78.8 | | 443 | 570 | 6.8 | 1.5 | 209 | 0.38 | 1.76 | 2.62 | 1.72 | 169 | | 451 | 561 | 6.4 | 1.5 | 226 | 0.33 | 2.03 | 3.02 | 1.98 | 188 | | 457 | 549 | 3.3 | 1.5 | 255.5 | 0.55 | 1.24 | 1.84 | 1.21 | 95.3 | | 446 | 561 | 6.4 | 1.5 | 252.5 | 0.53 | 1.28 | 1.91 | 1.25 | 124 | | 472 | 630 | 6.4 | 1.5 | 235.5 | 0.40 | 1.68 | 2.50 | 1.64 | 225 | | 484 | 606 | 6.4 | 1.5 | 240 | 0.33 | 2.03 | 3.02 | 1.98 | 228 | | 494 | 570 | 9.7 | 1.5 | 219 | 0.40 | 1.67 | 2.49 | 1.63 | 106 | | 507 | 681 | 9.7 | 1.5 | 266 | 0.39 | 1.72 | 2.56 | 1.68 | 360 | | | | | | | | | | | | | 516 | 648 | 6.4 | 1.5 | 258.5 | 0.33 | 2.03 | 3.02 | 1.98 | 310 | | 513 | 597 | 6.4 | 1.5 | 206.5 | 0.33 | 2.03 | 3.02 | 1.98 | 118 | | 516 | 609 | 6.4 | 1.5 | 215 | 0.34 | 1.98 | 2.94 | 1.93 | 148 | | | | | | | | | | | | #### NTN # Inch system sizes ## d 488.950~1,270.000mm | | Boundary dimensions | | | dynamic | Basic load
static | ratings
dynamic | static | Bearing numbers | |-----------|-------------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------------|-------------------------------|--| | | | mm | | | κN | | gf | | | d | D | B_1 | C | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 488.950 | 634.873
660.400 | 180.975
206.375 | 136.525
158.750 | 2,500
3,150 | 6,950
8,050 | 255,000
320,000 | 710,000
820,000 | LM772748/LM772710DA+A
☆T-EE640192/640261DG2+A | | 489.026 | 634.873 | 177.800 | 142.875 | 2,000 | 6,150 | 204,000 | 630,000 | EE243192/243251D+A | | 498.475 | 634.873 | 177.800 | 142.875 | 2,000 | 6,150 | 204,000 | 630,000 | EE243196/243251D+A | | 508.000 | 838.200 | 304.800 | 222.250 | 5,450 | 12,800 | 555,000 | 1,310,000 | EE426200/426331D+A | | 533.400 | 812.800 | 269.875 | 187.325 | 4,450 | 10,400 | 455,000 | 1,060,000 | EE626210/626321D+A | | 536.575 | 761.873 | 311.150 | 247.650 | 5,900 | 15,200 | 600,000 | 1,550,000 | ☆M276449/M276410DG2+A | | 549.275 | 692.150 | 174.625 | 136.525 | 2,320 | 6,950 | 236,000 | 710,000 | L476549/L476510D+A | | 558.800 | 736.600
736.600
736.600 | 165.100
187.328
225.425 | 114.300
138.112
177.800 | 2,050
2,500
3,150 | 5,400
6,750
8,800 | 209,000
255,000
325,000 | 550,000
690,000
895,000 | EE542220/542291D+A
EE843220/843291D+A
LM377449/LM377410D+A | | 571.500 | 812.800 | 333.375 | 263.525 | 6,950 | 18,300 | 710,000 | 1,870,000 | ☆M278749/M278710DAG2+A | | 609.600 | 787.400
812.800 | 206.375
190.500 | 158.750
146.050 | 3,750
2,860 | 10,100
7,850 | 380,000
292,000 | 1,030,000
800,000 | ☆EE649240/649311DG2+A
EE743240/743321D+A | |
660.400 | 812.800 | 203.200 | 158.750 | 3,250 | 10,300 | 330,000 | 1,060,000 | L281148/L281110DA+A | | 711.200 | 914.400 | 190.500 | 139.700 | 3,100 | 8,950 | 315,000 | 910,000 | ☆EE755280/755361DG2+A | | 723.900 | 914.400 | 187.325 | 139.700 | 3,100 | 8,950 | 315,000 | 910,000 | ☆EE755285/755361DG2+A | | 977.900 | 1,130.300 | 139.700 | 101.600 | 2,050 | 7,200 | 209,000 | 735,000 | LL687949/LL687910D+A | | 1,270.000 | 1,435.100 | 146.050 | 101.600 | 2,730 | 10,100 | 278,000 | 1,030,000 | LL889049/LL889010D+A | | | | | | | | | | | **Equivalent bearing load** dynamic $P_r = XF_r + YF_s$ static Por=Fr+YoFa | Abuti | ment and fill | et dimensi | ons | Load
center | Constant | Axia | al load fact | tors | Mass | |------------|---------------|-------------|--------------|----------------|----------|--------------|--------------|--------------|-----------| | | mm | | | mm | | | | | kg | | $d_{ m a}$ | $D_{ m b}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | min | max | max | max | a | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | 500 | 040 | 0.4 | 4.5 | 000 | 0.47 | 4 40 | 0.40 | 4 40 | 400 | | 522
522 | 613
627 | 6.4
6.4 | 1.5
1.5 | 262
216 | 0.47 | 1.43
2.20 | 2.12
3.27 | 1.40
2.15 | 130 | | | 027 | 0.4 | 1.5 | 210 | 0.31 | 2.20 | 3.21 | 2.10 | 178 | | 522 | 609 | 6.4 | 1.5 | 215 | 0.34 | 1.98 | 2.94 | 1.93 | 140 | | 528 | 609 | 6.4 | 1.5 | 215 | 0.34 | 1.98 | 2.94 | 1.93 | 129 | | 564 | 768 | 9.7 | 3.3 | 357 | 0.48 | 1.41 | 2.09 | 1.37 | 592 | | 585 | 762 | 9.7 | 3.3 | 322.5 | 0.44 | 1.52 | 2.26 | 1.49 | 444 | | 576 | 726 | 6.4 | 1.5 | 290 | 0.33 | 2.03 | 3.02 | 1.98 | 398 | | 579 | 666 | 6.4 | 1.5 | 239 | 0.38 | 1.79 | 2.67 | 1.75 | 135 | | 594 | 705 | 6.4 | 3.3 | 298 | 0.51 | 1.32 | 1.96 | 1.29 | 166 | | 591 | 708 | 6.4 | 1.5 | 231 | 0.34 | 1.98 | 2.94 | 1.93 | 189 | | 594 | 708 | 6.4 | 1.5 | 256.5 | 0.35 | 1.95 | 2.90 | 1.91 | 227 | | 615 | 774 | 6.4 | 1.5 | 308 | 0.33 | 2.03 | 3.02 | 1.98 | 487 | | 642 | 764 | 6.4 | 1.5 | 254 | 0.33 | 2.03 | 3.02 | 1.98 | 235 | | 645 | 765 | 6.4 | 3.3 | 254 | 0.33 | 2.06 | 3.06 | 2.01 | 241 | | | | | | | | | | | | | 693 | 789 | 6.4 | 1.5 | 667.5 | 0.37 | 1.80 | 2.69 | 1.76 | 199 | | 750 | 876 | 6.4 | 3.3 | 295.5 | 0.38 | 1.77 | 2.64 | 1.73 | 275 | | 756 | 876 | 5.5 | 3.3 | 295.5 | 0.38 | 1.77 | 2.64 | 1.73 | 256 | | 1,010 | 1,100 | 6.4 | 3.3 | 376 | 0.44 | 1.54 | 2.30 | 1.51 | 196 | | 1,305 | 1,400 | 6.4 | 3.3 | 586.5 | 0.58 | 1.17 | 1.75 | 1.15 | 285 | # **Metric system sizes** #### *d* 100∼180mm | | | Boundary | dimension | s | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing numbers | |---------|---------|----------|-----------|---------------|----------------|------------|-------------|-----------------------|-------------|-----------------| | | | ı | mm | | | kN | | kg | | | | d | D | В | C_1 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 100 | 250 | 116 | 116 | 4 | 4 | 790 | 1,050 | 80,500 | 107,000 | CRD-2051 | | 105 | 170 | 90 | 90 | 2.5 | 2.5 | 420 | 860 | 42,500 | 87,500 | CRD-2151 | | 110 | 180 | 56 | 56 | 2 | 2.5 | 298 | 485 | 30,500 | 49,500 | 323122 | | | 190 | 102 | 98 | 3 | 1.5 | 515 | 950 | 52,500 | 96,500 | CRD-2252 | | | 200 | 82 | 82 | 2.5 | 1 | 555 | 865 | 56,500 | 88,500 | CRD-2254 | | 120 | 170 | 120 | 120 | 2 | 2 | 415 | 890 | 42,500 | 91,000 | CRD-2421 | | | 180 | 46 | 46 | 2 | 2.5 | 230 | 375 | 23,500 | 38,000 | 323024 | | | 200 | 62 | 62 | 2 | 2.5 | 370 | 610 | 38,000 | 62,500 | 323124 | | | 215 | 113 | 113 | 2.5 | 2.5 | 735 | 1,300 | 75,000 | 133,000 | CRD-2420 | | | 280 | 150 | 140 | 3 | 3 | 1,130 | 1,840 | 115,000 | 187,000 | CRD-2422 | | 130 | 190 | 120 | 120 | 1.5 | 1.5 | 415 | 840 | 42,000 | 85,500 | CRD-2652 | | | 195 | 120 | 120 | 2.5 | 1.5 | 475 | 1,040 | 48,500 | 106,000 | CRD-2654 | | | 200 | 52 | 52 | 2 | 2.5 | 294 | 490 | 29,900 | 50,000 | 323026 | | | 210 | 64 | 64 | 2 | 2.5 | 410 | 675 | 42,000 | 69,000 | 323126 | | 140 | 210 | 53 | 53 | 2 | 2.5 | 300 | 535 | 30,500 | 54,500 | 323028 | | | 225 | 68 | 68 | 2.5 | 3 | 390 | 650 | 40,000 | 66,000 | 323128 | | 150 | 225 | 56 | 56 | 2.5 | 3 | 355 | 630 | 36,000 | 64,500 | 323030 | | | 250 | 80 | 80 | 2.5 | 3 | 600 | 1,040 | 61,500 | 106,000 | 323130 | | | 250 | 110 | 110 | 2.5 | 2.5 | 855 | 1,590 | 87,500 | 162,000 | CRD-3052 | | 160 | 240 | 60 | 60 | 2.5 | 3 | 430 | 765 | 44,000 | 78,000 | 323032 | | | 240 | 110 | 110 | 2.5 | 2.5 | 750 | 1,560 | 76,500 | 159,000 | CRD-3254 | | | 260 | 130 | 130 | 3 | 1.5 | 880 | 1,740 | 89,500 | 178,000 | CRD-3253 | | | 270 | 86 | 86 | 2.5 | 3 | 675 | 1,180 | 69,000 | 120,000 | 323132E1 | | | 270 | 116 | 116 | 2.5 | 2.5 | 835 | 1,640 | 85,500 | 167,000 | CRD-3208 | | 170 | 260 | 67 | 67 | 2.5 | 3 | 490 | 865 | 50,000 | 88,000 | 323034 | | | 280 | 76 | 76 | 2.5 | 2.5 | 550 | 900 | 56,000 | 92,000 | CRD-3413 | | | 280 | 88 | 88 | 2.5 | 3 | 725 | 1,270 | 74,000 | 130,000 | 323134E1 | | 177.000 | 248.000 | 90.488 | 90.488 | 3.3 | 1.57 | 515 | 1,180 | 52,500 | 120,000 | * CRD-3502 | | 180 | 280 | 74 | 74 | 2.5 | 3 | 580 | 1,050 | 59,500 | 107,000 | 323036E1 | **1** Minimum allowable dimension for chamfer dimension r or r. **2** "-" means the load center is out side the inner ring. Remarks: 1. The marked "*" bearings are inch system sizes. **Equivalent bearing load** dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤ e | $\frac{F_i}{F_i}$ | ;>e | |---|------------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static Por=Fr+YoFa | | Abutmen | t and fillet | dimensi | ons | | Load [®] center | Constant | Axia | l load fac | tors | Mass | |------------|---------|--------------|------------|-------------|--------------|--------------------------|----------|-------|------------|------------------|-----------| | $d_{ m a}$ | D | mm | $S_{ m a}$ | $r_{ m as}$ | $r_{ m las}$ | mm | | | | | kg | | max | max | a
min | min | max | max | a | e | Y_1 | Y_2 | Y_{o} | (approx.) | | 135 | 232 | 200 | 4.5 | 3 | 3 | - 14.5 | 0.40 | 1.68 | 2.50 | 1.64 | 30 | | 124.5 | 158 | 148.5 | 2.5 | 2 | 2 | - 22.5 | 0.29 | 2.35 | 3.50 | 2.30 | 7.92 | | 124 | 170 | 160 | 8 | 2 | 2 | 1 | 0.33 | 2.03 | 3.02 | 1.98 | 5.6 | | 128.5 | 176 | 160 | 5 | 2.5 | 1.5 | – 16 | 0.42 | 1.62 | 2.42 | 1.59 | 12.1 | | 128.5 | 188 | 170.5 | 4 | 2 | 1 | -2 | 0.42 | 1.61 | 2.39 | 1.57 | 11.3 | | 130.5 | 160 | 149 | 0.4 | 2 | 2 | - 49 | 0.25 | 2.69 | 4.00 | 2.63 | 8.57 | | 134 | 170 | 164 | 8 | 2 | 2 | 12 | 0.37 | 1.80 | 2.69 | 1.76 | 4.08 | | 134 | 190 | 175 | 8 | 2 | 2 | 6.5 | 0.37 | 1.80 | 2.69 | 1.76 | 7.82 | | 141 | 203 | 180.5 | 4.3 | 2 | 2 | - 22 | 0.35 | 1.95 | 2.90 | 1.91 | 17.7 | | 172 | 266 | 237 | 7.3 | 2.5 | 2.5 | – 28.5 | 0.33 | 2.03 | 3.02 | 1.98 | 47.3 | | 144 | 181.5 | 171 | 2 | 1.5 | 1.5 | - 43.5 | 0.33 | 2.03 | 3.02 | 1.98 | 11.4 | | 142.5 | 183 | 166 | 2.7 | 2 | 1.5 | – 26.5 | 0.47 | 1.43 | 2.12 | 1.40 | 12.5 | | 144 | 190 | 184 | 8 | 2 | 2 | 13.5 | 0.37 | 1.80 | 2.69 | 1.76 | 5.92 | | 144 | 200 | 185 | 8 | 2 | 2 | 7.5 | 0.37 | 1.80 | 2.69 | 1.76 | 8.58 | | 155 | 200 | 190 | 8 | 2 | 2 | 10 | 0.37 | 1.84 | 2.74 | 1.80 | 6.4 | | 156 | 213 | 200 | 10 | 2 | 2.5 | 8 | 0.37 | 1.80 | 2.69 | 1.76 | 10.7 | | 165 | 213 | 205 | 10 | 2 | 2.5 | 15.5 | 0.37 | 1.80 | 2.69 | 1.76 | 7.76 | | 168 | 238 | 220 | 10 | 2 | 2.5 | 6.5 | 0.37 | 1.80 | 2.69 | 1.76 | 15.7 | | 169 | 238 | 213 | 4.4 | 2 | 2 | 1 | 0.46 | 1.47 | 2.19 | 1.44 | 21.7 | | 175 | 228 | 215 | 10 | 2 | 2.5 | 17.5 | 0.37 | 1.80 | 2.69 | 1.76 | 9.46 | | 175.5 | 228 | 211 | 2.1 | 2 | 2 | - 14.5 | 0.33 | 2.03 | 3.02 | 1.98 | 17.3 | | 175 | 246 | 213 | 3.5 | 2.5 | 1.5 | 15 | 0.62 | 1.09 | 1.62 | 1.06 | 26.9 | | 178 | 258 | 240 | 10 | 2 | 2.5 | 8 | 0.37 | 1.80 | 2.69 | 1.76 | 20 | | 184.5 | 258 | 227 | 4.2 | 2 | 2 | - 4.5 | 0.40 | 1.68 | 2.50 | 1.64 | 27.1 | | 185 | 248 | 235 | 10 | 2 | 2.5 | 18 | 0.37 | 1.80 | 2.69 | 1.76 | 12.8 | | 195 | 264 | 245 | 4.5 | 2 | 2 | 18 | 0.40 | 1.68 | 2.50 | 1.64 | 18.5 | | 188 | 268 | 250 | 10 | 2 | 2.5 | 8.5 | 0.37 | 1.80 | 2.69 | 1.76 | 21.5 | | 189 | 234 | 218 | 3.4 | 3.3 | 1.5 | 15.5 | 0.44 | 1.52 | 2.26 | 1.49 | 13.45 | | 198 | 268 | 250 | 10 | 2 | 2.5 | 17 | 0.37 | 1.80 | 2.69 | 1.76 | 16.5 | #### NTN # **Metric system sizes** #### d 180∼280mm | | | Boundary | dimension | s | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing numbers | |---------|---------------------------------|--------------------------------|--------------------------------|-------------------------|-------------------------|---|---|--|---|---| | | | | mm | | | kN | Static | kgf | Statio | | | d | D | В | C_1 | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 180 | 300
330 | 96
190 | 96
190 | 3
5 | 4
1.5 | 885
1,710 | 1,530
3,250 | 90,500
175,000 | 156,000
330,000 | 323136E1
CRD-3615 | | 190 | 290
320 | 75
104 | 75
104 | 2.5
3 | 3
4 | 615
985 | 1,110
1,710 | 63,000
100,000 | 113,000
174,000 | 323038E1
323138 | | 195 | 305 | 120 | 120 | 2.5 | 3 | 1,130 | 2,200 | 115,000 | 225,000 | CRD-3906 | | 200 | 310
340
340
340
420 | 82
112
140
150
235 | 82
112
140
150
235 | 2.5
3
3
3
5 | 3
4
3
1.5
2 | 720
1,090
1,490
1,290
3,000 | 1,320
1,910
2,780
2,490
5,350 | 73,000
111,000
152,000
131,000
305,000 | 135,000
195,000
283,000
254,000
545,000 | 323040E1
323140
CRD-4019
CRD-4015
☆CRD-4020 | | 220 | 320
340
370 | 76.2
90
120 | 76.2
90
120 | 2.5
3
4 | 2.5
4
5 | 630
880
1,220 | 1,220
1,650
2,260 | 64,500
89,500
125,000 |
125,000
168,000
230,000 | CRD-4405
323044E1
323144 | | 240 | 360
395
400
400
400 | 92
124
128
160
160 | 92
124
128
160
160 | 3
4
4
4
4 | 4
4
5
4
4 | 910
1,400
1,400
1,770
1,770 | 1,770
2,630
2,600
3,550
3,550 | 92,500
143,000
142,000
181,000 | 181,000
268,000
265,000
360,000
36,000 | 323048E1
CRD-4804
323148
CRD-4805
CRD-4811 | | 241.300 | 355.524 | 109.538 | 109.538 | 3.3 | 1.57 | 940 | 2,010 | 96,000 | 205,000 | * CRD-4803 | | 259.5 | 481 | 250 | 250 | 5 | 2 | 3,250 | 6,650 | 330,000 | 680,000 | CRD-5215 | | 260 | 400
400
440 | 104
150
144 | 104
150
144 | 4
4
4 | 5
4
5 | 1,150
1,470
1,960 | 2,190
3,200
3,750 | 117,000
150,000
200,000 | 223,000
325,000
380,000 | 323052
CRD-5212
323152 | | 260.350 | 419.100 | 180.000 | 158.750 | 3.3 | 1.57 | 1,580 | 3,250 | 161,000 | 330,000 | * CRD-5217 | | 270 | 395 | 94 | 94 | 3 | 4 | 1,090 | 2,290 | 111,000 | 233,000 | CRD-5403 | | 280 | 420
460 | 106
146 | 106
146 | 4
5 | 5
6 | 1,200
1,940 | 2,340
3,650 | 123,000
198,000 | 238,000
375,000 | 323056
323156 | **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $\frac{F_s}{F_1}$ | :>e | |-------------------------------|------------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static Por=Fr+YoFa | | Abutme | nt and fille | dimensi | ons | | Load [©]
center
mm | Constant | Axia | l load fac | tors | Mass
kg | |-------------------------------------|---------------------------------|-----------------------------------|-------------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | $d_{ m a}$ | I |) _a | S_{a} | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | max | max | min | min | max | max | a | e | Y_1 | Y_2 | Y_{o} | (approx.) | | 200
197.5 | 286
238 | 265
264 | 12
3.5 | 2.5
4 | 3
1.5 | 8
- 5.5 | 0.37
0.58 | 1.80
1.17 | 2.69
1.75 | 1.76
1.15 | 27.2
71.6 | | 208
212 | 278
306 | 260
285 | 12
12 | 2
2.5 | 2.5
3 | 17.5
8.5 | 0.37
0.37 | 1.80
1.80 | 2.69
2.69 | 1.76
1.76 | 17.9
34 | | 215 | 293 | 267 | 5.4 | 2 | 2.5 | – 1 | 0.37 | 1.80 | 2.69 | 1.76 | 32.5 | | 218
222
226.5
224
248.5 | 298
326
326
326
398 | 280
300
290
277.5
341 | 12
12
7.8
3.1
6.3 | 2
2.5
2.5
2.5
4 | 2.5
3
2.5
1.5
2 | 19
8.5
- 1.5
- 2.5
- 48.5 | 0.37
0.37
0.40
0.42
0.37 | 1.80
1.80
1.68
1.60
1.80 | 2.69
2.69
2.50
2.39
2.69 | 1.76
1.76
1.64
1.57
1.76 | 21.7
41.7
52.1
55.9
158 | | 244
242
248 | 308
326
352 | 288
310
325 | 5.5
12
14 | 2
2.5
3 | 2
3
4 | 28.5
21.5
14 | 0.39
0.37
0.40 | 1.74
1.80
1.68 | 2.59
2.69
2.50 | 1.70
1.76
1.64 | 20.3
29.8
52.2 | | 262
276
268
275
275 | 346
377
382
382
382 | 330
345
355
343
342 | 14
6.6
14
7.5
7.5 | 2.5
3
3
3
3 | 3
3
4
3
3 | 23.5
20.5
17
- 1
- 1 | 0.37
0.40
0.40
0.40
0.40 | 1.80
1.68
1.68
1.68
1.68 | 2.69
2.50
2.50
2.50
2.50 | 1.76
1.64
1.64
1.64
1.64 | 32.6
60.2
64.6
80.7
80.7 | | 265 | 341 | 311.5 | 3.5 | 3.3 | 1.5 | 11 | 0.35 | 1.91 | 2.85 | 1.87 | 36.8 | | 297 | 459 | 385 | 3.5 | 4 | 2 | - 7 | 0.49 | 1.38 | 2.06 | 1.35 | 202 | | 285
289
290 | 382
382
422 | 365
345
385 | 14
3.4
16 | 3
3
3 | 4
3
4 | 25
15
16.5 | 0.37
0.43
0.40 | 1.80
1.57
1.68 | 2.69
2.34
2.50 | 1.76
1.53
1.64 | 47.3
68.3
90 | | 287 | 405 | 355 | 7.5 | 3.3 | 1.5 | 49.5 | 0.61 | 1.11 | 1.66 | 1.09 | 95.7 | | 300 | 381 | 353 | 7.1 | 2.5 | 3 | 27 | 0.35 | 1.95 | 2.90 | 1.91 | 38.5 | | 305
315 | 402
438 | 385
400 | 16
16 | 3
4 | 4
5 | 29.5
16 | 0.37
0.40 | 1.80
1.68 | 2.69
2.50 | 1.76
1.64 | 51.2
95.8 | #### NTN # **Metric system sizes** #### *d* 300∼420mm | | | Boundary | dimension | s | | dynamic | Basic los | ad ratings
dynamic | static | Bearing numbers | |---------|---------|----------|-----------|---------------|----------------|------------|-------------|-----------------------|-------------|-----------------| | | | ı | mm | | | kN | | kg | | | | d | D | В | C_1 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 300 | 460 | 118 | 118 | 4 | 5 | 1,610 | 3,150 | 165,000 | 320,000 | 323060 | | | 500 | 160 | 160 | 5 | 6 | 2,100 | 4,050 | 214,000 | 415,000 | 323160 | | 304.648 | 438.048 | 128.575 | 138.112 | 4.83 | 3.3 | 1,480 | 3,450 | 151,000 | 350,000 | * CRD-6132 | | 320 | 480 | 121 | 121 | 4 | 5 | 1,580 | 3,100 | 162,000 | 315,000 | 323064 | | | 510.8 | 220 | 220 | 4 | 4 | 3,100 | 6,850 | 320,000 | 700,000 | CRD-6409 | | | 540 | 176 | 176 | 5 | 6 | 2,500 | 4,900 | 255,000 | 500,000 | 323164 | | | 580 | 240 | 240 | 5 | 3 | 3,700 | 7,800 | 380,000 | 795,000 | ☆CRD-6415 | | | 620 | 280 | 280 | 5 | 5 | 5,250 | 10,300 | 535,000 | 1,050,000 | ☆CRD-6420 | | 340 | 470 | 110 | 110 | 3 | 3 | 1,320 | 3,050 | 134,000 | 310,000 | CRD-6804 | | | 520 | 133 | 133 | 5 | 6 | 1,890 | 3,750 | 193,000 | 380,000 | 323068 | | | 580 | 190 | 190 | 5 | 6 | 3,350 | 6,500 | 345,000 | 660,000 | 323168 | | 350 | 480 | 110 | 110 | 4 | 4 | 1,400 | 3,150 | 143,000 | 320,000 | CRD-7015 | | | 590 | 192 | 192 | 5 | 5 | 3,200 | 6,100 | 330,000 | 620,000 | CRD-7011 | | 360 | 540 | 134 | 134 | 5 | 6 | 2,050 | 4,200 | 209,000 | 430,000 | 323072 | | | 600 | 192 | 192 | 5 | 6 | 3,200 | 6,500 | 325,000 | 660,000 | 323172 | | | 680 | 320 | 330 | 6 | 6 | 6,500 | 13,900 | 665,000 | 1,410,000 | ☆CRD-7207 | | 379 | 681.5 | 307 | 307 | 6 | 6 | 6,450 | 14,300 | 660,000 | 1,460,000 | ☆CRD-7615 | | | 681.5 | 307 | 307 | 6 | 6 | 6,450 | 14,300 | 660,000 | 1,460,000 | ☆CRD-7621 | | 380 | 560 | 135 | 135 | 5 | 6 | 2,080 | 4,350 | 213,000 | 445,000 | 323076 | | | 620 | 194 | 194 | 5 | 6 | 3,350 | 6,700 | 340,000 | 685,000 | 323176 | | 385 | 530 | 180 | 180 | 4 | 2 | 2,370 | 5,750 | 241,000 | 590,000 | CRD-7701 | | 400 | 590 | 142 | 142 | 5 | 5 | 2,400 | 5,050 | 245,000 | 515,000 | ☆CRD-8008 | | | 590 | 142 | 142 | 5 | 5 | 2,080 | 4,150 | 212,000 | 425,000 | ☆CRD-8012 | | | 600 | 148 | 148 | 5 | 6 | 2,530 | 5,450 | 258,000 | 555,000 | 323080 | | | 650 | 200 | 200 | 6 | 6 | 3,750 | 7,850 | 385,000 | 800,000 | 323180 | | | 650 | 250 | 250 | 6 | 6 | 4,900 | 10,500 | 500,000 | 1,070,000 | ☆CRD-8017 | | | 730 | 340 | 340 | 7.5 | 7.5 | 7,400 | 15,900 | 755,000 | 1,620,000 | ☆CRD-8029 | | | 780 | 380 | 380 | 7.5 | 7.5 | 8,800 | 17,700 | 900,000 | 1,800,000 | ☆CRD-8040 | | 420 | 520 | 90 | 90 | 4 | 1.5 | 1,020 | 2,700 | 105,000 | 275,000 | CRD-8402 | **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $\frac{F_s}{F_1}$ | :>e | |-------------------------------|------------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static Por=Fr+YoFa | | Abutmen | t and fillet | dimensi | ons | | Load [®] center | Constant | Axia | l load fac | tors | Mass
kg | |------------|---------|--------------|------------------|-------------|--------------|--------------------------|----------|-------|------------|-------------|-------------------| | $d_{ m a}$ | D | | S_{a} | $r_{ m as}$ | $r_{ m las}$ | 11111 | | | | | Ng | | max | max | a
min | min | max | max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | | | | | | | | | | | | , , , | | 330 | 442 | 425 | 16 | 3 | 4 | 31 | 0.37 | 1.80 | 2.69 | 1.76 | 70.7 | | 335 | 478 | 440 | 16 | 4 | 5 | 18 | 0.40 | 1.68 | 2.50 | 1.64 | 126 | | | | | | | | | | | | | | | 327 | 416 | 379.5 | 5.2 | 4.8 | 3.3 | 73 | 0.60 | 1.12 | 1.67 | 1.10 | 62.8 | | | | | | | | | | | | | | | 350 | 462 | 440 | 16 | 3 | 4 | 34 | 0.37 | 1.80 | 2.69 | 1.76 | 76.3 | | 358 | 493 | 442.5 | 2.5 | 3 | 3 | - 23 | 0.35 | 1.95 | 2.90 | 1.91 | 173 | | 355 | 518 | 480 | 18 | 4 | 5 | 18.5 | 0.40 | 1.68 | 2.50 | 1.64 | 164 | | 379 | 558 | 480 | 5.5 | 2.5 | 4 | 3 | 0.43 | 1.57 | 2.34 | 1.53 | 288 | | 360 | 598 | 544 | 19.5 | 4 | 4 | - 16.5 | 0.43 | 1.57 | 2.34 | 1.53 | 390 | | | | | | | | | | | | | | | 369 | 456 | 424 | 6.5 | 2.5 | 2.5 | 49.5 | 0.40 | 1.68 | 2.50 | 1.64 | 57.8 | | 370 | 498 | 480 | 18 | 4 | 5 | 36 | 0.37 | 1.80 | 2.69 | 1.76 | 101 | | 380 | 558 | 515 | 18 | 4 | 5 | 35.5 | 0.40 | 1.68 | 2.50 | 1.64 | 207 | | | | | | | | | | | | | | | 376.5 | 462 | 436 | 5.4 | 3 | 3 | 57.5 | 0.42 | 1.62 | 2.42 | 1.59 | 58.7 | | 407 | 568 | 515 | 3.5 | 4 | 4 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 218 | | | | | | | | | | | | | | | 395 | 518 | 495 | 18 | 4 | 5 | 41 | 0.37 | 1.80 | 2.69 | 1.76 | 107 | | 400 | 578 | 535 | 18 | 4 | 5 | 25.5 | 0.40 | 1.68 | 2.50 | 1.64 | 218 | | 431 | 652 | 552 | 16.5 | 5 | 5 | - 12 | 0.47 | 1.43 | 2.12 | 1.40 | 570 | | | | | | | | | • | | | | | | 456 | 653.5 | 575 | 19.5 | 5 | 5 | - 18.5 | 0.40 | 1.68 | 2.50 | 1.64 | 525 | | 456 | 653.5 | 575 | 15.5 | 5 | 5 | - 18.5 | 0.40 | 1.68 | 2.50 | 1.64 | 525 | | | | | | | | | | | | | | | 418 | 538 | 504 | 18 | 4 | 5 | 44.5 | 0.37 | 1.80 | 2.69 | 1.76 | 110 | | 428 | 598 | 537.5 | 20 | 4 | 5 | 29 | 0.40 | 1.68 | 2.50 | 1.64 | 231 | | | | | | | | | | | | | | | 407.5 | 512 | 476 | 7.5 | 2 | 3 | 26 | 0.43 | 1.57 | 2.34 | 1.53 | 116 | | | | | | | | | | | | | | | 440.5 | 568 | 533 | 8.5 | 4 | 4 | 28.5 | 0.33 | 2.03 | 3.02 | 1.98 | 134 | | 440.5 | 568 | 533 | 8.5 | 4 | 4 | 36.5 | 0.33 | 2.03 | 3.02 |
1.98 | 134 | | 440 | 578 | 550 | 18 | 4 | 5 | 45 | 0.37 | 1.80 | 2.69 | 1.76 | 146 | | 445 | 622 | 580 | 20 | 5 | 5 | 32.5 | 0.40 | 1.68 | 2.50 | 1.64 | 259 | | 457.5 | 622 | 565 | 11.5 | 5 | 5 | – 1 | 0.39 | 1.74 | 2.59 | 1.70 | 325 | | 470 | 694 | 604 | 20.5 | 6 | 6 | - 32 | 0.40 | 1.68 | 2.50 | 1.64 | 672 | | 477.5 | 744 | 639 | 16.6 | 6 | 6 | – 47 | 0.40 | 1.68 | 2.50 | 1.64 | 895 | | .,,,, | , r= | | 10.0 | | 5 | 11 | 0.40 | 1.00 | 2.00 | 1.0- | | | 441 | 502 | 486 | 6.5 | 1.5 | 3 | 99.5 | 0.47 | 1.43 | 2.12 | 1.40 | 41.9 | | | | | 0.0 | | 9 | 50.0 | 0.17 | 0 | | 0 | | #### NTN # **Metric system sizes** #### d 420~630mm | | | Boundary | dimension | s | | dynamic | Basic Io | oad ratings
dynamic | static | Bearing numbers | |---------|--------------------------|--------------------------|--------------------------|----------------------|------------------------|----------------------------------|------------------------------------|--|--|---| | | | | mm | | | k | | | gf | | | d | D | В | C_1 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 420 | 620
700
735 | 150
224
406 | 150
224
406 | 5
6
7.5 | 6
6
7.5 | 2,650
4,800
8,600 | 5,900
9,700
20,400 | 270,000
490,000
880,000 | 600,000
990,000
2,080,000 | 323084
323184
☆CRD-8405 | | 440 | 650
720
730 | 157
226
290 | 157
226
290 | 6
6
6 | 6
6
6 | 2,600
5,000
6,400 | 5,450
10,300
13,900 | 266,000
510,000
650,000 | 560,000
1,050,000
1,420,000 | 323088
323188
☆CRD-8822 | | 450 | 720 | 300 | 300 | 7.5 | 4 | 5,550 | 12,600 | 565,000 | 1,290,000 | ☆CRD-9011 | | 458 | 830.5 | 377 | 377 | 7.5 | 7.5 | 9,250 | 20,100 | 940,000 | 2,050,000 | ☆CRD-9203 | | 460 | 680
760
860 | 163
240
420 | 163
240
420 | 6
7.5
6 | 6
7.5
6 | 3,050
4,900
10,500 | 6,600
10,300
22,700 | 310,000
500,000
1,070,000 | 670,000
1,050,000
2,320,000 | 323092
323192
☆CRD-9204 | | 480 | 700
790 | 165
248 | 165
248 | 6
7.5 | 6
7.5 | 3,050
5,300 | 6,700
11,100 | 310,000
540,000 | 685,000
1,130,000 | 323096
323196 | | 481.228 | 615.950 | 158.750 | 158.750 | 6.4 | 3.3 | 2,240 | 6,450 | 228,000 | 660,000 | ☆ * CRD-9605 | | 482.600 | 615.950
615.950 | 158.750
163.750 | 158.750
158.750 | 6.4
6.4 | 3.3
3.3 | 2,240
2,430 | 6,450
7,100 | 228,000
248,000 | 660,000
725,000 | ☆ * CRD-9709
☆ * CRD-9708 | | 500 | 670
720
820
830 | 150
167
256
264 | 150
167
256
264 | 5
6
9.5
7.5 | 2.5
6
9.5
7.5 | 2,400
3,100
5,250
6,400 | 6,100
6,900
11,900
14,000 | 245,000
315,000
535,000
650,000 | 625,000
700,000
1,210,000
1,420,000 | CRD-10005
3230/500
CRD-10008
☆3231/500G2 | | 560 | 820 | 195 | 195 | 6 | 6 | 4,550 | 10,300 | 465,000 | 1,050,000 | ☆CRD-11207 | | 585.788 | 771.525 | 230.188 | 230.188 | 6.4 | 3.3 | 4,300 | 12,900 | 440,000 | 1,310,000 | ☆ * CRD-11701 | | 600 | 760
870 | 115
380 | 115
400 | 4
7.5 | 4
4 | 1,740
8,500 | 4,400
24,100 | 178,000
865,000 | 450,000
2,460,000 | CRD-12005
☆CRD-12006 | | 630 | 920 | 212 | 212 | 7.5 | 7.5 | 5,350 | 12,800 | 545,000 | 1,310,000 | ☆3230/630G2 | **Equivalent bearing load** dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤ e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | |---|------------|-----------------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | static Por=Fr+YoFa | | Abutmen | t and fillet | dimensi | ons | | Load [®] Constant Axial load factors center | | | | | Mass | |----------------|---------------|--------------|----------------|-----------------|------------------|--|------|-------|-------|---------|-----------| | d | \mathcal{D} | mm | C | 0.0 | 0.0 | mm | | | | | kg | | $d_{ m a}$ max | D max | a
min | $S_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | Y_{0} | (approx.) | | IIIax | IIIax | 111111 | 111111 | IIIax | IIIax | α | e | 11 | 12 | 10 | (αρρίολ.) | | 460 | 598 | 570 | 20 | 4 | 5 | 48.5 | 0.37 | 1.80 | 2.69 | 1.76 | 154 | | 465 | 672 | 625 | 25 | 5 | 5 | 60 | 0.40 | 1.68 | 2.50 | 1.64 | 346 | | 489.5 | 699 | 609 | 6.2 | 6 | 6 | - 67 | 0.37 | 1.80 | 2.69 | 1.76 | 780 | | | | | | | | | | | | | | | 480 | 622 | 600 | 20 | 5 | 5 | 53.5 | 0.37 | 1.80 | 2.69 | 1.76 | 177 | | 485 | 692 | 645 | 25 | 5 | 5 | 44 | 0.40 | 1.68 | 2.50 | 1.64 | 361 | | 503.5 | 702 | 632 | 10 | 5 | 5 | - 24.5 | 0.33 | 2.03 | 3.02 | 1.98 | 513 | | | | | | | | | | | | | | | 500.5 | 684 | 619.5 | 15.5 | 3 | 6 | - 8 | 0.43 | 1.57 | 2.34 | 1.53 | 483 | | 507 | 704.5 | COO F | 10.5 | | | 00 | 0.40 | 1.00 | 0.50 | 1.04 | 000 | | 537 | 794.5 | 690.5 | 19.5 | 6 | 6 | - 29 | 0.40 | 1.68 | 2.50 | 1.64 | 890 | | 500 | 652 | 620 | 25 | 5 | 5 | 56.5 | 0.37 | 1.80 | 2.69 | 1.76 | 201 | | 525 | 724 | 660 | 25 | 6 | 6 | 34.5 | 0.40 | 1.68 | 2.50 | 1.64 | 431 | | 547 | 832 | 709.5 | 19.5 | 5 | 5 | – 43 | 0.40 | 1.68 | 2.50 | 1.64 | 1,120 | | | | | | | | | | | | | , - | | 520 | 672 | 640 | 25 | 5 | 5 | 63 | 0.37 | 1.80 | 2.69 | 1.76 | 211 | | 547.5 | 754 | 688.5 | 30 | 6 | 6 | 36 | 0.40 | 1.68 | 2.50 | 1.64 | 478 | | | | | | | | | | | | | | | 500 | 577 | 557 | 6.5 | 3.3 | 6.4 | 133.5 | 0.61 | 1.11 | 1.66 | 1.09 | 108 | | === | | | | | - · · | 400 = | 2.24 | | 4.00 | 4.00 | 400 | | 500 | 577 | 557 | 6.5 | 3.3 | 6.4 | 133.5 | 0.61 | 1.11 | 1.66 | 1.09 | 108 | | 504 | 585 | 567.5 | 6.5 | 3.3 | 6.4 | 35.5 | 0.33 | 2.03 | 3.02 | 1.98 | 121 | | 536 | 648 | 609 | 7.5 | 2 | 4 | 75.5 | 0.40 | 1.68 | 2.50 | 1.64 | 148 | | 540 | 692 | 655 | 25 | 5 | 5 | 61.5 | 0.37 | 1.80 | 2.69 | 1.76 | 221 | | 583.5 | 776 | 709 | 7.5 | 8 | 8 | 44 | 0.40 | 1.68 | 2.50 | 1.64 | 535 | | 550 | 794 | 740 | 30 | 6 | 6 | 37.5 | 0.40 | 1.68 | 2.50 | 1.64 | 570 | | | 701 | 7 10 | | | | 07.0 | 0.10 | 1.00 | 2.00 | 1.01 | 070 | | 620 | 792 | 738 | 11 | 5 | 5 | 54.5 | 0.35 | 1.92 | 2.86 | 1.88 | 347 | | 622.5 | 743.5 | 698 | 10.5 | 3.3 | 6.4 | 31.5 | 0.35 | 1.95 | 2.90 | 1.91 | 285 | | 022.0 | 7-0.0 | 030 | 10.5 | 0.0 | 0.7 | 01.0 | 0.00 | 1.55 | 2.50 | 1.01 | 200 | | 639 | 742 | 708 | 5 | 3 | 3 | 110.5 | 0.37 | 1.80 | 2.69 | 1.76 | 120 | | 641 | 834 | 747 | 7.5 | 3 | 6 | 5.5 | 0.47 | 1.43 | 2.12 | 1.40 | 758 | | | | | | | | | | | | | | | 399 | 884 | 825.5 | 8.5 | 6 | 6 | 93.5 | 0.40 | 1.68 | 2.50 | 1.64 | 479 | ## NTN Bearing numbers ## **Metric system sizes** ## d 660.4~1,400mm **Boundary dimensions** | | | r | nm | | | dynamic
kl | static
N | dynamic
kç | static
gf | 3 | |---------|---------|--------|---------|---------------|----------------|---------------|-------------|---------------|--------------|--------------| | d | D | В | C_1 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 660.400 | 762.000 | 98.425 | 101.600 | 3 | 2.5 | 1,250 | 4,250 | 128,000 | 435,000 | * CRD-13209 | | 700 | 890 | 150 | 160 | 5 | 5 | 2,850 | 8,600 | 291,000 | 880,000 | CRD-14003 | | 710 | 1,150 | 345 | 345 | 12 | 12 | 10,900 | 25,300 | 1,120,000 | 2,580,000 | ☆3231/710BG2 | | 850 | 1,250 | 370 | 370 | 7.5 | 7.5 | 11,800 | 31,500 | 1,210,000 | 3,250,000 | ☆CRD-17003 | | 1,400 | 1,600 | 180 | 180 | 5 | 2.5 | 4,400 | 16,300 | 445,000 | 1,670,000 | CRD-28003 | **Basic load ratings** Equivalent bearing load dynamic $P_r = XF_r + YF_a$ static Por=Fr+YoFa | | | Abutme | ent and fille | t dimens | ions | | Load [©]
center | Constant | Axia | l load fac | tors | Mass | |---|------------|--------|---------------|------------------|-------------|--------------|-----------------------------|----------|-------|------------|-------------|-----------| | | | | mm | | | | mm | | | | | kg | | | $d_{ m a}$ | | $D_{\rm a}$ | S_{a} | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | | max | max | min | min | max | max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | | 684 | 748 | 724 | 4.5 | 2 | 2.5 | 198.5 | 0.53 | 1.27 | 1.89 | 1.24 | 71.1 | | | 746 | 868 | 817 | 6.5 | 4 | 4 | - 5.5 | 0.45 | 1.50 | 2.24 | 1.47 | 224 | | | 828 | 1,098 | 1,012 | 1.5 | 10 | 10 | 23 | 0.32 | 2.12 | 3.15 | 2.07 | 1,464 | | | 942 | 1,214 | 1,104 | 13.5 | 6 | 6 | 81.5 | 0.40 | 1.68 | 2.50 | 1.64 | 1,562 | | Ī | 1,437.5 | 1,578 | 1,524 | 11.5 | 2 | 4 | 445.5 | 0.55 | 1.24 | 1.84 | 1.21 | 534 | # Inch system sizes ## d 152.400~276.225mm | | Во | undary dimension | ons | dynamic | Basic lo
static | ad ratings
dynamic | | | |---------|--------------------|--------------------|--------------------|----------------|--------------------|-----------------------|--------------------|--| | | | mm | | dynamic
k | | • | gf | | | d | D | В | C_1 | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 152.400 | 307.975 | 171.450 | 161.924 | 1,510 | 2,620 | 154,000 | 267,000 | | | 177.800 | 288.925
288.925 | 123.825
123.825 | 123.825
123.825 | 940
1,160 | 1,900
2,140 | 96,000
119,000 | 194,000
218,000 | | | 187.325 | 319.964 | 161.925 | 168.276 | 1,590 | 2,790 | 162,000 | 285,000 | | | 190.500 | 365.049 | 152.400 | 158.750 | 1,670 | 3,200 | 171,000 | 330,000 | | | 203.200 | 317.500
365.049 | 123.825
152.400 | 123.825
158.750 | 1,060
1,670 | 2,310
3,200 | 108,000
171,000 | 236,000
330,000 | | | 206.375 | 336.550 | 184.150 | 180.976 | 1,900 | 4,050 | 194,000 | 415,000 | | | 215.900 | 285.750 | 85.725 | 85.725 | 650 | 1,640 | 66,500 | 167,000 | | | 219.075 | 358.775 | 200.025 | 196.850 | 2,130 | 4,550 | 217,000 | 465,000 | | | 220.662 | 314.325 | 115.888 | 115.886 | 1,070 | 2,450 | 109,000 | 250,000 | | | 228.600 | 400.050 |
139.700 | 139.700 | 1,500 | 2,870 | 153,000 | 293,000 | | | 241.478 | 349.148 | 107.950 | 107.950 | 940 | 2,010 | 96,000 | 205,000 | | | 244.475 | 327.025
381.000 | 92.075
146.050 | 92.075
146.050 | 835
1,300 | 2,050
2,880 | 85,000
132,000 | 209,000
294,000 | | | 247.650 | 406.400 | 219.075 | 215.900 | 2,830 | 6,000 | 289,000 | 615,000 | | | 254.000 | 358.775
368.300 | 130.175
92.862 | 130.175
92.710 | 1,390
790 | 3,300
1,630 | 142,000
80,500 | 335,000
166,000 | | | 260.350 | 400.050 | 114.300 | 119.060 | 1,220 | 2,460 | 124,000 | 251,000 | | | 266.700 | 355.600 | 109.538 | 107.950 | 1,070 | 2,670 | 110,000 | 272,000 | | | 269.875 | 381.000 | 136.525 | 136.525 | 1,520 | 3,600 | 155,000 | 365,000 | | | 276.225 | 393.700 | 130.175 | 130.175 | 1,340 | 2,800 | 137,000 | 286,000 | | Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max. **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | | |-------------------------------|------------|-----------------------------------|-------|--|--|--|--|--| | X | Y | X | Y | | | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | Bearing numbers | | | tment an
dimensio | | Load [©] center | Constant | Axia | I load fac | tors | Mass | |---|-------------------|----------------------|----------------------|------------------|--------------------------|--------------|--------------|--------------|--------------|--------------| | | $d_{ m a}$ | D_{a} | mm | an. | mm | | | | | kg | | | $lpha_{ m a}$ min | D_{a} min | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | T-450900D/451212+A | 187.5 | 269 | 9.7 | 6.8 | -40.5 | 0.33 | 2.07 | 3.08 | 2.02 | 60.5 | | T-94706D/94113+A
T-HM237546D/HM237510+A | 195
194 | 259
266 | 1.5
1.5 | 3.3
3.3 | 1.5
–20 | 0.47
0.32 | 1.44
2.12 | 2.15
3.15 | 1.41
2.07 | 31.6
31.6 | | T-H239649D/H239610+A | 209 | 293 | 3.3 | 4.8 | -35 | 0.32 | 2.12 | 3.15 | 2.07 | 53.7 | | T-EE420750D/421437+A | 221 | 329 | 3.3 | 3.3 | - 5.5 | 0.40 | 1.68 | 2.50 | 1.64 | 72.8 | | T-93800D/93125+A
T-EE420800D/421437+A | 222
230 | 286
329 | 1.5
3.3 | 3.3
3.3 | 19
-5.5 | 0.52
0.40 | 1.29
1.68 | 1.92
2.50 | 1.26
1.64 | 36.3
69.0 | | T-H242649D/H242610+A | 227 | 306 | 1.5 | 3.3 | -35 | 0.33 | 2.03 | 3.02 | 1.98 | 64.1 | | T-LM742749D/LM742710+A | 229 | 266 | 2.3 | 3.3 | 35 | 0.48 | 1.40 | 2.09 | 1.37 | 14.8 | | H244849D/H244810A+A | 242 | 323 | 1.5 | 6.4 | -42 | 0.33 | 2.03 | 3.02 | 1.98 | 79.5 | | T-M244249D/M244210+A | 235 | 293 | 1.5 | 3.3 | -97 | 0.33 | 2.03 | 3.02 | 1.98 | 28.6 | | EE529091D/529157+A | 256 | 367 | 3.3 | 3.3 | -8 | 0.31 | 2.18 | 3.24 | 2.13 | 74.2 | | EE127097D/127135+A | 258 | 325 | 1.5 | 3.3 | 12.5 | 0.35 | 1.91 | 2.85 | 1.87 | 33.8 | | LM247748D/LM247710A+A
EE126096D/126150+A | 257
269 | 310
343 | 1.5
3.3 | 3.3
4.8 | 12.5
28.5 | 0.32
0.52 | 2.09
1.31 | 3.11
1.95 | 2.04
1.28 | 21.4
61.4 | | HH249949D/HH249910+A | 278 | 366 | 3.3 | 6.4 | -42 | 0.33 | 2.03 | 3.02 | 1.98 | 112 | | T-M249748D/M249710+A
EE170975D/171450+A | 273
269 | 335
340 | 3.3
1.5 | 3.3
3.3 | -1
20 | 0.33
0.36 | 2.03
1.85 | 3.02
2.76 | 1.98
1.81 | 41.2
32.5 | | EE221025D/221575+A | 290 | 366 | 6.4 | 6.4 | 24.5 | 0.39 | 1.71 | 2.54 | 1.67 | 52.0 | | T-LM451349D/LM451310+A | 281 | 335 | 1.5 | 3.3 | 16 | 0.36 | 1.87 | 2.79 | 1.83 | 29.9 | | T-M252349D/M252310+A | 290 | 356 | 3.3 | 3.3 | 0.5 | 0.33 | 2.03 | 3.02 | 1.98 | 48.6 | | T-EE275109D/275155+A | 294 | 366 | 1.5 | 6.4 | 22.5 | 0.40 | 1.68 | 2.50 | 1.64 | 50.5 | ## NTN ## Inch system sizes #### d 279.400~384.175mm | | Во | undary dimension | ons | dynamic | Basic Io | ad ratings
dynamic | static | |---------|---|---|---|---|---|---|---| | | | mm | | • | :N | dynamic | kgf | | d | D | В | C_1 | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 279.400 | 393.700
457.200 | 127.000
244.475 | 127.000
244.475 | 1,130
3,550 | 2,670
7,900 | 115,000
365,000 | 272,000
805,000 | | 285.750 | 380.898 | 117.475 | 117.475 | 1,140 | 3,100 | 116,000 | 315,000 | | 288.925 | 406.400 | 144.462 | 144.463 | 1,740 | 4,150 | 177,000 | 425,000 | | 300.038 | 422.275 | 150.812 | 150.813 | 1,950 | 4,800 | 198,000 | 490,000 | | 304.648 | 438.048 | 131.762 | 131.762 | 1,440 | 3,250 | 147,000 | 330,000 | | 304.800 | 419.100
444.500 | 130.175
107.950 | 130.175
111.126 | 1,400
1,080 | 3,400
2,300 | 142,000
110,000 | 350,000
234,000 | | 304.902 | 412.648 | 128.588 | 128.588 | 1,500 | 3,700 | 153,000 | 380,000 | | 305.000 | 438.048 | 134.145 | 138.112 | 1,530 | 3,450 | 156,000 | 350,000 | | 317.500 | 422.275
447.675 | 128.588
158.750 | 128.587
158.750 | 1,320
1,990 | 3,500
4,800 | 135,000
203,000 | 360,000
485,000 | | 333.375 | 469.900 | 166.688 | 166.688 | 2,320 | 5,500 | 237,000 | 565,000 | | 343.052 | 457.098 | 122.238 | 122.238 | 1,380 | 3,450 | 141,000 | 350,000 | | 346.075 | 488.950 | 174.625 | 174.625 | 2,490 | 6,150 | 254,000 | 630,000 | | 347.662 | 469.900 | 138.112 | 138.112 | 1,860 | 4,550 | 190,000 | 465,000 | | 355.600 | 444.500
457.200
482.600
488.950
501.650 | 114.300
120.650
128.588
153.988
111.125 | 112.712
120.650
133.350
153.988
127.000 | 1,120
1,440
1,630
2,030
1,550 | 3,500
3,900
3,850
5,000
3,650 | 114,000
147,000
166,000
207,000
158,000 | 355,000
400,000
390,000
510,000
375,000 | | 368.300 | 523.875 | 185.738 | 185.738 | 2,610 | 6,550 | 266,000 | 665,000 | | 384.175 | 546.100 | 193.675 | 193.675 | 3,150 | 8,050 | 320,000 | 820,000 | **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{ m a}}{F_{ m r}}$ | ≦ e | $\frac{F_{i}}{F_{i}}$ | >e | |-----------------------------|------------|-----------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | Bearing numbers | | | tment an
dimensio | | Load [®] center | Constant | Axia | I load fac | tors | Mass | |--|----------------|----------------|----------------------|------------------|--------------------------|--------------|--------------|--------------|--------------|--------------| | | | D | mm | | mm | | | | | kg | | | $d_{ m a}$ min | $D_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | Y_{0} | (approx.) | | | | | | | | | • | | | Value - 7 | | EE135111D/135155+A | 297 | 368 | 1.5 | 6.4 | 24 | 0.40 | 1.68 | 2.50 | 1.64 | 48.1 | | HH255149D/HH255110+A | 309 | 412 | 1.5 | 6.4 | -4 9 | 0.33 | 2.03 | 3.02 | 1.98 | 158 | | T-LM654648D/LM654610+A | 302 | 356 | 1.5 | 3.3 | 36 | 0.43 | 1.56 | 2.33 | 1.53 | 36.7 | | M255449D/M255410A+A | 310 | 379 | 3.3 | 3.3 | 3 | 0.34 | 2.00 | 2.98 | 1.96 | 58.1 | | ☆T-HM256849D/HM256810G2+A | 322 | 394 | 3.3 | 3.3 | 66 | 0.34 | 2.00 | 2.99 | 1.96 | 65.6 | | EE329119D/329172+A | 327 | 410 | 3.3 | 3.3 | 11.5 | 0.33 | 2.04 | 3.04 | 2.00 | 64.3 | | M257149D/M257110+A | 322 | 392 | 1.5 | 6.4 | 12.5 | 0.33 | 2.03 | 3.02 | 1.98 | 53.1 | | EE291200D/291750+A | 337 | 416 | 7.9 | 1.5 | 34 | 0.38 | 1.78 | 2.65 | 1.74 | 55.7 | | M257248D/M257210+A | 325 | 388 | 3.3 | 3.3 | 9.5 | 0.32 | 2.12 | 3.15 | 2.07 | 49 | | M757449D/M757410+A | 328 | 407 | 3.3 | 4.8 | 44 | 0.47 | 1.43 | 2.12 | 1.40 | 65.3 | | LM258648D/LM258610+A | 334 | 398 | 1.5 | 3.3 | 9 | 0.32 | 2.10 | 3.13 | 2.06 | 49.1 | | T-HM259049D/HM259010+A | 340 | 418 | 3.3 | 3.3 | 3 | 0.33 | 2.02 | 3.00 | 1.97 | 77.9 | | HM261049D/HM261010A+A | 357 | 439 | 3.3 | 3.3 | 3.5 | 0.33 | 2.02 | 3.00 | 1.97 | 90.1 | | LM761649D/LM761610+A | 361 | 432 | 1.5 | 3.3 | 63 | 0.47 | 1.43 | 2.12 | 1.40 | 55 | | ☆T-HM262749D/HM262710G2+A | 371 | 456 | 3.3 | 3.3 | 2 | 0.33 | 2.02 | 3.00 | 1.97 | 103 | | M262449D/M262410+A | 369 | 443 | 3.3 | 3.3 | 14.5 | 0.33 | 2.03 | 3.02 | 1.98 | 68 | | T-L163149D/L163110+A | 370 | 422 | 1.5 | 3.3 | 22.5 | 0.31 | 2.20 | 3.27 | 2.15 | 40.1 | | LM263149D/LM263110+A | 372 | 434 | 1.5 | 3.3 | 23 | 0.32 | 2.12 | 3.15 | 2.07 | 49.1 | | LM763449D/LM763410+A | 375 | 453 | 1.5 | 3.3 | 62.5 | 0.47 | 1.43 | 2.14 | 1.40 | 67.4 | | M263349D/M263310+A
T-EE231401D/231975+A | 374
382 | 459
472 | 1.5
3.3 | 3.3
3.3 | 11.5
62 | 0.33
0.44 | 2.03
1.53 | 3.02
2.28 | 1.98
1.50 | 85.4
68.5 | | 1-EE231401D/2319/3+A | 30∠ | 412 | ა.ა | ٥.٥ | 02 | 0.44 | 1.00 | 2.20 | 1.30 | 00.0 | | ☆HM265049D/HM265010G2+A | 394 | 487 | 3.3 | 6.4 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 130 | | ☆T-HM266449D/HM266410G2+A | 411 | 507 | 3.3 | 6.4 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 153 | #### NTN # Inch system sizes #### d 393.700~584.200mm | | Во | undary dimensio | ons | dynamic | Basic loa | ad ratings
dynamic | static | |---------|--------------------|--------------------|--------------------|----------------|------------------|-----------------------|------------------------| | | | mm | | | «N | aya | kgf | | d | D | В | C_1 | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 393.700 | 546.100 | 138.112 | 138.112 | 1,870 | 5,100 | 191,000 | 520,000 | | 406.400 | 546.100
590.550 | 138.112
193.675 | 138.112
193.674 | 1,870
2,820 | 5,100
6,800 | 191,000
287,000 | 520,000
690,000 | | 409.575 | 546.100 | 161.925 | 161.925 | 2,390 | 6,350 | 243,000 | 645,000 | |
415.925 | 590.550 | 209.550 | 209.550 | 3,650 | 9,450 | 375,000 | 965,000 | | 431.800 | 571.500
571.500 | 133.350
161.925 | 136.526
161.925 | 1,880
2,160 | 4,950
5,900 | 191,000
221,000 | 505,000
600,000 | | 447.675 | 635.000 | 223.838 | 223.838 | 4,150 | 11,100 | 425,000 | 1,130,000 | | 457.200 | 596.900
596.900 | 133.350
133.350 | 136.525
136.525 | 2,070
2,070 | 5,200
5,200 | 211,000
211,000 | 530,000
530,000 | | 479.425 | 679.450 | 238.125 | 238.125 | 4,900 | 13,000 | 500,000 | 1,320,000 | | 482.600 | 615.950
647.700 | 158.750
201.612 | 158.750
201.612 | 2,320
3,700 | 6,700
10,100 | 237,000
380,000 | 685,000
1,030,000 | | 489.026 | 634.873 | 153.988 | 153.988 | 2,500 | 6,950 | 255,000 | 710,000 | | 501.650 | 711.200 | 250.825 | 250.825 | 5,050 | 13,700 | 515,000 | 1,390,000 | | 514.350 | 673.100 | 203.200 | 203.200 | 3,450 | 10,200 | 355,000 | 1,040,000 | | 519.112 | 736.600 | 258.762 | 258.762 | 5,300 | 14,400 | 540,000 | 1,470,000 | | 536.575 | 761.873
761.873 | 269.875
269.875 | 269.875
269.875 | 5,900
5,900 | 15,200
15,200 | 600,000
600,000 | 1,550,000
1,550,000 | | 558.800 | 736.600
736.600 | 155.575
196.850 | 155.575
196.850 | 2,500
3,550 | 6,750
10,300 | 255,000
365,000 | 690,000
1,050,000 | | 571.500 | 812.800 | 285.750 | 285.750 | 6,950 | 18,300 | 710,000 | 1,870,000 | | 584.200 | 762.000 | 188.912 | 193.675 | 3,850 | 11,200 | 390,000 | 1,140,000 | Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max. 2. Bearing numbers marked ""\(\frac{1}{2} \)" designate bearing with hollow rollers and pin type cages. **Equivalent bearing load** dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | |-------------------------------|------------|-----------------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | Bearing numbers | | | Abutment and fillet dimensions | | | Constant | Axial load factors | | | Mass | |-------------------------|----------------|----------------|--------------------------------|------------------|------|----------|--------------------|-------|---------|-----------| | | , | . | mm | | mm | | | | | kg | | | $d_{ m a}$ min | $D_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | Y_{0} | (approx.) | | | | | | | | | | | | , , , | | LM767745D/LM767710+A | 418 | 510 | 1.5 | 6.4 | 78 | 0.48 | 1.42 | 2.11 | 1.38 | 97.4 | | LM767749D/LM767710+A | 427 | 510 | 1.5 | 6.4 | 78 | 0.48 | 1.42 | 2.11 | 1.38 | 90.5 | | EE833160XD/833232+A | 435 | 549 | 3.3 | 6.4 | 5.5 | 0.33 | 2.07 | 3.09 | 2.03 | 175 | | ☆M667947D/M667910G2+A | 431 | 510 | 1.5 | 6.4 | 47 | 0.42 | 1.61 | 2.40 | 1.58 | 104 | | ☆T-M268749D/M268710G2+A | 444 | 549 | 3.3 | 6.4 | 0.5 | 0.33 | 2.03 | 3.02 | 1.98 | 181 | | T-LM869449D/LM869410+A | 453 | 537 | 1.5 | 3.3 | 113 | 0.55 | 1.24 | 1.84 | 1.21 | 92.1 | | LM769349D/LM769310+A | 453 | 534 | 1.5 | 6.4 | 62.5 | 0.44 | 1.52 | 2.26 | 1.49 | 112 | | ☆M270749D/M270710AG2+A | 478 | 591 | 3.3 | 6.4 | 0.5 | 0.33 | 2.03 | 3.02 | 1.98 | 224 | | ☆L770847D/L770810AG2+A | 478 | 567 | 1.5 | 3.3 | 97 | 0.47 | 1.43 | 2.12 | 1.40 | 96.7 | | L770849D/L770810+A | 478 | 567 | 1.5 | 3.3 | 97 | 0.47 | 1.43 | 2.12 | 1.40 | 96.7 | | ☆T-M272749D/M272710G2+A | 510 | 633 | 3.3 | 6.4 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 293 | | ☆LM272249D/LM272210G2+A | 504 | 585 | 3.3 | 6.4 | 35.5 | 0.33 | 2.03 | 3.02 | 1.98 | 115 | | ☆M272647D/M272610G2+A | 510 | 609 | 3.3 | 6.4 | 18 | 0.33 | 2.03 | 3.02 | 1.98 | 185 | | LM772749D/LM772710A+A | 516 | 600 | 3.3 | 3.3 | 95 | 0.47 | 1.43 | 2.12 | 1.40 | 124 | | ☆M274149D/M274110G2+A | 534 | 663 | 3.3 | 6.4 | -1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 314 | | LM274449D/LM274410+A | 540 | 636 | 3.3 | 6.4 | 23 | 0.33 | 2.03 | 3.02 | 1.98 | 189 | | ☆M275349D/M275310G2+A | 552 | 684 | 3.3 | 6.4 | -1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 348 | | ☆M276448D/M276410G2+A | 564 | 711 | 3.3 | 6.4 | 1 | 0.33 | 2.03 | 3.02 | 1.98 | 389 | | ☆M276449D/M276410G2+A | 564 | 711 | 3.3 | 6.4 | 1 | 0.33 | 2.03 | 3.02 | 1.98 | 389 | | EE843220D/843290+A | 585 | 699 | 3.3 | 6.4 | 64.5 | 0.34 | 1.98 | 2.94 | 1.93 | 177 | | ☆LM377449D/LM377410G2+A | 588 | 696 | 3.3 | 6.4 | 43 | 0.35 | 1.95 | 2.9.0 | 1.91 | 223 | | ☆M278749D/M278710AG2+A | 609 | 756 | 3.3 | 6.4 | 0 | 0.33 | 2.03 | 3.02 | 1.98 | 470 | | ☆LM778549D/LM778510G2+A | 615 | 717 | 3.3 | 6.4 | 108 | 0.47 | 1.43 | 2.14 | 1.40 | 223 | # Double Row Tapered Roller Bearings (Inside Direction) ### Inch system sizes #### d 595.312~939.800mm | | Во | undary dimension | ons | | | ad ratings | | |---------|------------------------|--------------------|--------------------|------------------|------------------|------------------------|------------------------| | | | mm | | dynamic
kl | static | dynamic | static | | | | 111111 | | KI | V | | kgf | | d | D | B | C_1 | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 595.312 | 844.550 | 296.862 | 296.862 | 7,350 | 20,200 | 750,000 | 2,060,000 | | 609.600 | 787.400
863.600 | 171.450
317.500 | 171.450
317.500 | 3,500
7,900 | 9,950
21,100 | 360,000
805,000 | 1,020,000
2,150,000 | | 635.000 | 901.700 | 317.500 | 317.500 | 8,300 | 22,100 | 845,000 | 2,250,000 | | 657.225 | 933.450 | 328.612 | 328.612 | 8,950 | 24,000 | 910,000 | 2,450,000 | | 660.400 | 812.800 | 176.212 | 176.212 | 3,600 | 11,600 | 370,000 | 1,180,000 | | 679.450 | 901.700 | 265.112 | 265.112 | 6,500 | 19,000 | 665,000 | 1,940,000 | | 685.800 | 876.300 | 168.275 | 171.450 | 3,550 | 10,900 | 360,000 | 1,110,000 | | 708.025 | 930.275 | 273.050 | 273.050 | 6,750 | 20,400 | 690,000 | 2,080,000 | | 711.200 | 914.400 | 149.225 | 149.225 | 3,100 | 8,950 | 315,000 | 910,000 | | 749.300 | 990.600 | 293.000 | 293.000 | 7,400 | 22,700 | 750,000 | 2,310,000 | | 762.000 | 1,066.800
1,079.500 | 352.425
381.000 | 365.125
381.000 | 10,300
11,100 | 29,300
32,000 | 1,050,000
1,130,000 | 2,990,000
3,250,000 | | 863.600 | 1,130.300
1,219.200 | 323.850
425.450 | 323.850
438.150 | 9,200
14,000 | 29,600
41,500 | 935,000
1,430,000 | 3,000,000
4,200,000 | | 938.212 | 1,270.000 | 400.050 | 400.050 | 13,100 | 40,000 | 1,340,000 | 4,100,000 | | 939.800 | 1,333.500 | 349.250 | 463.550 | 16,900 | 48,500 | 1,720,000 | 4,950,000 | | | | | | | | | | **Equivalent bearing load** dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $\frac{F_s}{F_1}$ | >e | |-------------------------------|------------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | Bearing numbers | | | tment an | | Load [®] center | Constant | Axia | ıl load fac | tors | Mass | |--|----------------|----------------|---------------------------|------------------|--------------------------|--------------|--------------|--------------|--------------|--------------| | | | | mm | | mm | | | | | kg | | | $d_{ m a}$ min | $D_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | a | e | Y_1 | Y_2 | Y_{0} | (approx.) | | | 111111 | 111111 | IIIAX | IIIdx | u | U | 11 | 12 | 10 | (αρριοκ.) | | ☆M280049D/M280010G2+A | 633 | 786 | 3.3 | 6.4 | 1 | 0.33 | 2.03 | 3.02 | 1.98 | 525 | | ☆T-EE649241D/649310G2+A | 636 | 747 | 3.3 | 6.4 | 79 | 0.37 | 1.82 | 2.71 | 1.78 | 210 | | ☆M280349D/M280310G2+A | 648 | 807 | 3.3 | 6.4 | -4.5 | 0.33 | 2.03 | 3.02 | 1.98 | 585 | | ☆M281049D/M281010G2+A | 675 | 843 | 3.3 | 6.4 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 641 | | ☆M281649D/M281610G2+A | 699 | 870 | 3.3 | 6.4 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 711 | | ☆L281149D/L281110G2+A | 684 | 777 | 3.3 | 6.4 | 89 | 0.37 | 1.80 | 2.69 | 1.76 | 195 | | ☆LM281849D/LM281810G2+A | 714 | 852 | 3.3 | 6.4 | 31.5 | 0.33 | 2.03 | 3.02 | 1.98 | 459 | | ☆EE655271D/655345G2+A | 717 | 831 | 3.3 | 6.4 | 129 | 0.42 | 1.61 | 2.4.0 | 1.58 | 247 | | ☆LM282549D/LM282510G2+A | 741 | 879 | 3.3 | 6.4 | 33 | 0.33 | 2.03 | 3.02 | 1.98 | 490 | | ☆EE755281D/755360G2+A | 744 | 873 | 3.3 | 6.4 | 127 | 0.38 | 1.77 | 2.64 | 1.73 | 243 | | ☆LM283649D/LM283610G2+A | 786 | 936 | 3.3 | 6.4 | 34.5 | 0.33 | 2.03 | 3.02 | 1.98 | 606 | | ☆M284148D/M284111G2+A
☆M284249D/M284210G2+A | 819
810 | 996
1,005 | special
chamfer
4.8 | 12.7
12.7 | 14
0 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 968
1,097 | | ☆LM286249D/LM286210G2+A
☆EE547341D/547480G2+A | 906
918 | 1,065
1,135 | 4.8
4.8 | 12.7
12.7 | 49.5
1.5 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 848
1,552 | | ☆LM287649D/LM287610G2+A | 990 | 1,190 | 4.8 | 12.7 | 30.5 | 0.33 | 2.03 | 3.02 | 1.98 | 1,444 | | ☆LM287849D/LM287810G2+A | 999 | 1,240 | 4.8 | 12.7 | 3.5 | 0.33 | 2.03 | 3.02 | 1.98 | 1,540 | # Double Row Steep Slope Tapered Roller Bearings (Outside Direction) #### *d* 100∼533.400mm | | Bour | dary dimens | ions | | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | |---------|------------|-------------|--------------|---------------|----------------|------------|----------------|-----------------------|--------------------|----------------------| | | | mm | | | | k | N | k | gf | | | d | D | B_1 | C | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 100 | 215 | 115 | 74 | 3 | 1 | 510 | 680 | 52,000 | 69,500 | CRI-2054 | | 105 | 240 | 110 | 75 | 3 | 1 | 585 | 790 | 60,000 | 80,500 | CRI-2105 | | 110 | 240
240 | 118
119 | 81
74 | 3
3 | 1
1 | 585
585 | 790
790 | 60,000
60,000 | 80,500
80,500 | CRI-2262
CRI-2252 | | 115 | 230 | 116 | 84 | 3 | 1.5 | 680 | 1,100 | 69,000 | 112,000 | CRI-2301 | | 125 | 230 | 116 | 84 | 3 | 2 | 735 | 1,240 | 75,000 | 127,000 | CRI-2554 | | 128 |
229 | 116 | 74 | 3 | 1 | 525 | 830 | 53,500 | 84,500 | CRI-2663 | | 130 | 280
299 | 137
137 | 93.5
87.5 | 4
4 | 1.5
1.5 | 835
895 | 1,170
1,420 | 85,500
91,500 | 120,000
145,000 | CRI-2618
CRI-2624 | | 140 | 260 | 120 | 84 | 3 | 1.5 | 735 | 1,210 | 75,000 | 123,000 | CRI-2826 | | 155 | 330 | 180 | 120 | 5 | 1.5 | 1,350 | 2,210 | 137,000 | 226,000 | CRI-3101 | | 230 | 380 | 175 | 115 | 4 | 1.5 | 1,410 | 2,970 | 144,000 | 305,000 | CRI-4613 | | 260 | 530 | 275 | 163.9 | 6 | 2.5 | 2,880 | 5,200 | 293,000 | 530,000 | CRI-5215 | | 305 | 560 | 223 | 130 | 5 | 2.5 | 2,530 | 4,700 | 258,000 | 480,000 | ☆CRI-6108 | | 317.500 | 558.800 | 254.000 | 162.000 | 5 | 2 | 3,000 | 5,900 | 310,000 | 600,000 | ☆ * CRI-6412 | | 370 | 680 | 280 | 188 | 7.5 | 4 | 4,300 | 8,400 | 440,000 | 855,000 | ☆CRI-7402 | | 533.400 | 736.600 | 225.425 | 177.800 | 6.4 | 1.5 | 3,300 | 9,250 | 340,000 | 940,000 | ☆ * CRI-10702 | Equivalent bearing load dynamic $P_r = XF_r + YF_a$ $\begin{array}{c|c} F_a \\ F_r \\ \hline X & Y & X & Y \\ \hline 1 & Y_1 & 0.67 & Y_2 \end{array}$ static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | Ak | outment an | d fillet din | nensions | | Load
center | Constant | Axi | al load fact | tors | Mass | |----------------|----------------|----------------|-----------------|------------------|----------------|----------|-------|--------------|---------|-----------| | | _ | mm | | | mm | | | | | kg | | $d_{ m a}$ min | $D_{ m b}$ min | $S_{ m b}$ min | $r_{ m as}$ max | $r_{ m las}$ max | α | e | Y_1 | Y_2 | Y_{0} | (approx.) | | IIIIII | 111111 | 111111 | IIIdX | IIIdX | и | 6 | 11 | 12 | 10 | (арргох.) | | 114 | 202 | 20.5 | 2.5 | 1 | 54 | 0.81 | 0.83 | 1.23 | 0.81 | 18.2 | | 119 | 227.5 | 17.5 | 2.5 | 1 | 146 | 0.81 | 0.83 | 1.23 | 0.81 | 23.6 | | 124 | 228 | 18.5 | 2.5 | 1 | 153 | 0.81 | 0.83 | 1.23 | 0.81 | 22 | | 124 | 223.5 | 22.5 | 2.5 | 1 | 152 | 0.81 | 0.83 | 1.23 | 0.81 | 25 | | 129 | 221 | 16 | 2.5 | 1.5 | 143.5 | 0.74 | 0.92 | 1.36 | 0.90 | 21.2 | | 139 | 221 | 16 | 2.5 | 2 | 143.5 | 0.74 | 0.92 | 1.36 | 0.90 | 19.9 | | 142 | 220.5 | 21 | 2.5 | 1 | 192.5 | 1.10 | 0.61 | 0.91 | 0.60 | 17.8 | | 148 | 268.5 | 21.5 | 3 | 1.5 | 176.5 | 0.81 | 0.83 | 1.23 | 0.81 | 34.5 | | 148 | 270 | 24.5 | 3 | 1.5 | 184.5 | 0.83 | 0.81 | 1.21 | 0.79 | 45.8 | | 154 | 245 | 18 | 2.5 | 1.5 | 155.5 | 0.74 | 0.92 | 1.36 | 0.90 | 26.6 | | 177 | 313 | 30 | 4 | 1.5 | 219 | 0.81 | 0.83 | 1.24 | 0.82 | 66 | | 248 | 363.5 | 30 | 3 | 1.5 | 241 | 0.80 | 0.85 | 1.26 | 0.83 | 73.9 | | 288 | 494 | 55.5 | 5 | 2 | 364.5 | 0.94 | 0.71 | 1.06 | 0.70 | 248 | | 327 | 530 | 46.5 | 4 | 2 | 414 | 1.09 | 0.62 | 0.92 | 0.61 | 227 | | 339.5 | 531.5 | 46 | 4 | 2 | 351 | 0.81 | 0.84 | 1.25 | 0.82 | 248 | | 406 | 633 | 46 | 6 | 3 | 370.5 | 0.70 | 0.97 | 1.44 | 0.94 | 420 | | 561.5 | 718.5 | 24 | 5 | 1.5 | 399.5 | 0.70 | 0.97 | 1.44 | 0.94 | 268 | #### *d* 100∼260mm | | | Boundary of | dimensions | \$ | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | Drawing
No. | |---------|-------------------|-------------------|-------------------|---------------|-------------------|-------------------------|-------------------------|-------------------------------|-------------------------------|-------------------------------------|----------------| | | | m | ım | | | k | | k(| | | | | d | D | В | $C_{ m r}$ | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 100 | 215
250 | 105
120 | 110
120 | 3
3 | 1
2.5 | 585
750 | 825
1,080 | 60,000
76,500 | 84,500
110,000 | CRD-2005
CRD-2011 | A
A | | 110 | 240 | 118 | 118 | 3 | 1 | 750 | 1,080 | 76,500 | 110,000 | CRD-2214 | А | | 120 | 260 | 130 | 130 | 3 | 1 | 830 | 1,200 | 85,000 | 122,000 | CRD-2410 | А | | 125 | 305 | 180 | 180 | 3 | 3 | 1,410 | 2,250 | 143,000 | 230,000 | CRD-2503 | В | | 140 | 305 | 160 | 160 | 5 | 1.5 | 1,160 | 1,850 | 118,000 | 189,000 | CRD-2819 | А | | 150 | 320
380 | 144
235 | 144
235 | 4
5 | 4
2.5 | 1,050
2,320 | 1,490
4,000 | 107,000
236,000 | 152,000
410,000 | CRD-3013
CRD-3011 | A
A | | 160 | 260 | 130 | 130 | 3 | 1.5 | 880 | 1,740 | 89,500 | 178,000 | CRD-3253 | А | | 170 | 300
360
360 | 100
144
144 | 100
160
160 | 3
4
4 | 2.5
2.5
1.5 | 845
1,270
1,440 | 1,450
2,000
2,300 | 86,000
129,000
147,000 | 148,000
204,000
234,000 | CRD-3423
CRD-3414
CRD-3416 | A
A
A | | 180 | 330
380
400 | 190
158
232 | 190
158
232 | 5
3
4 | 1.5
4
4 | 1,710
1,380
2,090 | 3,250
1,980
3,600 | 175,000
141,000
213,000 | 330,000
202,000
370,000 | CRD-3615
CRD-3623
CRD-3622 | A
A
A | | 190 | 320
320
350 | 104
104
135 | 104
104
135 | 3
3
3 | 3
4
3 | 810
850
1,130 | 1,460
1,540
1,950 | 83,000
86,500
116,000 | 149,000
157,000
199,000 | CRD-3801
CRD-3813
CRD-3811 | A
A
A | | 210 | 480 | 230 | 230 | 6 | 6 | 2,690 | 4,300 | 274,000 | 440,000 | CRD-4209 | А | | 228.600 | 431.800 | 177.800 | 177.800 | 5 | 5 | 1,630 | 3,100 | 166,000 | 315,000 | *CRD-4604 | А | | 240 | 460 | 140 | 140 | 5 | 5 | 1,380 | 2,510 | 140,000 | 256,000 | ☆CRD-4808 | В | | 254 | 585 | 260 | 285 | 4 | 4 | 3,700 | 6,450 | 375,000 | 660,000 | ☆CRD-5102 | А | | 260 | 458
459
459 | 155
155
155 | 155
155
155 | 5
5
4 | 5
5
4 | 1,740
1,740
1,740 | 3,150
3,150
3,150 | 177,000
177,000
177,000 | 320,000
320,000
320,000 | ☆CRD-5214
☆CRD-5216
☆CRD-5224 | B
A
B | |--| | | Groove | dimens | sions | | Abutm | ent and f | illet dime | nsions | | Constant | Axia | l load fac | tors | Mass | | |------------|------------|------------|-----------|------------|------------|-------------|-------------|-------------|--------------|----------|-------|------------|------------------|-----------|--| | mm | n | | numbers | mm | | m | m | | | | | | | kg | | | width | depth | angle | | key groove | $d_{ m a}$ | $D_{\rm a}$ | $S_{\rm a}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | | | | $K_{ m w}$ | $K_{ m d}$ | θ ° | side face | $K_{ m r}$ | max | min | min | max | max | e | Y_1 | Y_2 | Y_{o} | (approx.) | _ | _ | _ | _ | _ | 117.5 | 201 | 3.7 | 2.5 | 3 | 0.81 | 0.83 | 1.23 | 0.81 | 19.7 | | | _ | _ | _ | _ | _ | 130.5 | 236 | 6.6 | 2.5 | 3 | 0.81 | 0.83 | 1.23 | 0.81 | 31.2 | _ | _ | _ | _ | _ | 129 | 226 | 5.8 | 2.5 | 3 | 0.81 | 0.83 | 1.23 | 0.81 | 26.6 | | | | | | | | 147 5 | 0.40 | 0.1 | 0.5 | 0 | 0.01 | 0.00 | 1.00 | 0.01 | 04.0 | | | _ | _ | _ | _ | _ | 147.5 | 246 | 3.1 | 2.5 | 3 | 0.81 | 0.83 | 1.23 | 0.81 | 34.2 | | | 30.2 | 11 | 90 | 1-2 | _ | 160.5 | 291 | 1.5 | 2.5 | 3 | 0.73 | 0.93 | 1.38 | 0.91 | 68.9 | | | 00.Z | ''' | 30 | 1-2 | | 100.5 | 231 | 1.5 | 2.5 | - 0 | 0.75 | 0.30 | 1.00 | 0.51 | 00.9 | | | _ | _ | _ | _ | _ | 168.5 | 283 | 7.5 | 4 | 5 | 0.73 | 0.92 | 1.37 | 0.90 | 58.1 | | | | | | | | | | | • | | 00 | 0.02 | | 0.00 | | | | _ | _ | _ | _ | _ | 180 | 302 | 8 | 3 | 4 | 0.81 | 0.83 | 1.23 | 0.81 | 56.9 | | | _ | _ | _ | _ | _ | 186.5 | 358 | 6.5 | 4 | 5 | 0.81 | 0.83 | 1.23 | 0.81 | 142 | _ | _ | _ | _ | _ | 177 | 246 | 3.5 | 2.5 | 3 | 0.62 | 1.09 | 1.62 | 1.06 | 27 | _ | _ | _ | _ | _ | 195 | 286 | 5.4 | 2.5 | 3 | 0.70 | 0.97 | 1.44 | 0.94 | 30.2 | | | _ | _ | _ | _ | _ | 204.5 | 342 | 1.5 | 3 | 4 | 1.10 | 0.62 | 0.92 | 0.60 | 79.7 | | | _ | _ | _ | _ | _ | 197 | 342 | 1.5 | 3 | 4 | 1.10 | 0.61 | 0.91 | 0.60 | 79.7 | | | | | | | | | | 0.5 | 4 | _ | 0.50 | | | | 74.0 | | | _ | _ | _ | _ | _ | 200.5 | 308 | 3.5 | 4 | 5 | 0.58 | 1.17 | 1.75 | 1.15 | 71.9 | | | _ | _ | _ | _ | _ | 208.5 | 366 | 3.4 | 2.5 | 3 | 0.81 | 0.83 | 1.23 | 0.81 | 87.6 | | | _ | _ | _ | _ | _ | 211.5 | 382 | 6.8 | 3 | 4 | 0.81 | 0.83 | 1.23 | 0.81 | 146.5 | | | _ | _ | _ | _ | _ | 216.5 | 306 | 5.5 | 2.5 | 3 | 0.73 | 0.92 | 1.37 | 0.90 | 34.1 | | | _ | _ | _ | _ | _ | 214 | 306 | 4.6 | 2.5 | 3 | 0.73 | 0.85 | 1.26 | 0.83 | 34.1 | | | | | _ | | | 216 | 336 | 5.5 | 2.5 | 3 | 0.80 | 0.83 | 1.23 | 0.81 | 57.7 | | | | | | | | 210 | 330 | 5.5 | 2.5 | 3 | 0.61 | 0.65 | 1.23 | 0.61 | 57.7 | | | _ | _ | _ | _ | _ | 253 | 367 | 5.9 | 5 | 5 | 0.81 | 0.83 | 1.23 | 0.81 | 212 | | | | | | | | 200 | 007 | 0.0 | <u> </u> | <u> </u> | 0.01 | 0.00 | 1.20 | 0.01 | 212 | | | _ | _ | _ | _ | _ | 278 | 410 | 1.5 | 4 | 5 | 1.01 | 0.67 | 0.99 | 0.65 | 118 | 50 | 15 | 90 | 2-2 | _ | 296 | 438 | 1.5 | 4 | 5 | 0.87 | 0.78 | 1.16 | 0.76 | 107 | _ | _ | _ | _ | _ | 301 | 567 | 4.5 | 3 | 4 | 1.17 | 0.58 | 0.86 | 0.56 | 392 | 32 | 15 | 90 | 2-2 | _ | 304 | 436 | 1.5 | 4 | 5 | 0.87 | 0.78 | 1.16 | 0.76 | 109 | | | _ | _ | _ | _ | _ | 304 | 437 | 1.5 | 4 | 5 | 0.87 | 0.78 | 1.16 | 0.76 | 110 | | | 32 | 15 | 90 | 2-2 | _ | 304 | 441 | 1.5 | 3 | 4 | 0.87 | 0.78 | 1.16 | 0.76 | 110 | | | | | | | | | | | | | | | | | | | #### d 279.400~305.105mm | 279,400 | | | Boundary o | dimension | s | | dynamic | Basic los | ad ratings
dynamic | static | | awing
No. |
--|---------|--|--|--|-----------------------------|--------------------------------|--|--|--|---|--|------------------| | 279,400 | | | m | ım | | | | | | | numbers | NO. | | 280 | d | D | В | $C_{ m r}$ | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 285 380 92 92 2.5 1 730 1,720 74,500 176,000 CRD-5704 C 440 105 105 4 4 4 1,000 2,150 102,000 219,000 CRD-6025 C 440 105 105 3 3 1,000 2,150 102,000 219,000 CRD-6026 B 500 180 180 18 5 5 1,720 3,300 176,000 340,000 CRD-6006 B 500 200 200 5 5 2,460 5,300 251,000 540,000 ☆CRD-6028 C 500 200 200 5 6 2,480 5,400 253,000 540,000 ☆CRD-6028 C 500 200 180 210 4 4 2,200 4,650 225,000 475,000 CRD-6028 A 304.800 499.948 158.750 203.200 6.4 3.3 1,670 3,300 171,000 340,000 ★CRD-6109 A 499.948 200.000 200.000 6 6 1,670 3,300 171,000 340,000 ★CRD-6128 A 500.000 200.000 200.000 5 5 2,170 5,050 222,000 515,000 ★CRD-6128 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6128 A 305.000 500.000 200.000 200.000 5 5 2,170 5,050 222,000 515,000 ★CRD-6137 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6137 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6137 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.352 4 6.4 2,340 4,700 239,000 480,000 ★CRD-6138 B 560.000 200.000 200.000 200.000 10 6.4 2,240 4,700 239,000 480,000 ★CRD-6138 B 560.000 200.000 200.000 10 6.4 2,240 4,700 232,000 460,000 ★CRD-6112 A 305.003 559.867 169.977 176.352 4 6.4 2,101 3,950 205,000 400,000 ★CRD-6112 A 559.999 200.000 200.000 9.5 6 2,270 4,500 232,000 460,000 ★CRD-6112 A 559.999 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6112 A 559.986 169.977 200.508 4 4 2,230 4,500 222,000 515,000 ★CRD-6116 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6116 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6116 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6117 A 559.968 169.977 200.508 4 4 2,230 4,500 227,000 450,000 ★CRD-6116 D | 279.400 | 533.400 | 241.300 | 266.700 | 6.4 | 2 | 3,150 | 6,100 | 320,000 | 620,000 | ☆ * CRD-5613 | Α | | 300 | 280 | 410 | 110 | 110 | 2.5 | 2.5 | 985 | 1,960 | 101,000 | 200,000 | CRD-5616 | Α | | 300 | 285 | 380 | 92 | 92 | 2.5 | 1 | 730 | 1,720 | 74,500 | 176,000 | CRD-5704 | С | | 304.800 | 300 | 440
500
500
500 | 105
180
200
200 | 105
180
200
200 | 3
5
5
5 | 3
5
5
6 | 1,000
1,720
2,460
2,480 | 2,150
3,300
5,300
5,400 | 102,000
176,000
251,000
253,000 | 219,000
340,000
540,000
550,000 | CRD-6027
CRD-6006
☆CRD-6028
☆CRD-6030 | C
B
C
A | | 305.000 200.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★ * CRD-6148 C | 304.800 | | | | | | | | , | | | | | 305.069 559.999 200.000 200.000 19.7 6.4 2,270 4,500 232,000 460,000 *CRD-6112A.D° 559.999 200.000 200.000 9.5 6 2,270 4,500 232,000 460,000 *CRD-6152 C 560.000 200.000 200.000 19.7 6.4 2,530 4,700 258,000 480,000 ☆*CRD-6136 B 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6101 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6116 D 559.867 169.977 200.000 3 4 2,160 4,300 220,000 440,000 *CRD-6116 D 559.867 169.977 200.508 4 4 2,230 4,500 227,000 455,000 ☆*CRD-6117 A 559.968 200.000 200.000 19 7 2,530 4,700 258,000 480,000 ☆*CRD-6110 B | 305.000 | 500.000
500.000
500.000
559.968
560.000
560.000 | 200.000
200.000
200.000
169.977
200.000
200.000 | 200.000
200.000
200.000
176.434
200.000
200.000 | special chamfer 5 5 4 10 20 | 5
5
5
4
6.4
6.4 | 2,460
2,170
2,460
2,020
2,340
2,340 | 5,300
5,050
5,300
3,950
4,700
4,700 | 251,000
222,000
251,000
206,000
239,000
239,000 | 540,000
515,000
540,000
405,000
480,000 | ☆ * CRD-6148
* CRD-6151
☆ * CRD-6137
* CRD-6140
☆ * CRD-6146
☆ * CRD-6154 | C
C
A
B | | 305.069 559.999 200.000 200.000 9.5 6 2,270 4,500 232,000 460,000 ★ CRD-6152 C 560.000 200.000 200.000 19.7 6.4 2,530 4,700 258,000 480,000 ★ CRD-6136 B | 305.003 | 559.867 | 169.977 | 176.352 | 4 | 6.4 | 2,010 | 3,950 | 205,000 | 400,000 | ☆ * CRD-6113 | Α | | 305.079 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6101 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6116 D 559.867 169.977 200.000 3 4 2,160 4,300 220,000 440,000 ★CRD-6104 A 559.867 169.977 200.508 4 4 2,230 4,500 227,000 455,000 ★*CRD-6117 A 559.968 200.000 200.000 19 7 2,530 4,700 258,000 480,000 ★*CRD-6110 B | 305.069 | 559.999 | 200.000 | 200.000 | 9.5 | 6 | 2,270 | 4,500 | 232,000 | 460,000 | * CRD-6152 | С | | 305.105 559.867 169.977 200.508 4 4 2,230 4,500 227,000 455,000 ☆ * CRD-6117 A 559.968 200.000 200.000 19 7 2,530 4,700 258,000 480,000 ☆ * CRD-6110 B | 305.079 | 500.000 | 200.000 | 200.000 | 5 | 6 | 2,440 | 5,900 | 249,000 | 600,000 | * CRD-6101 | D | | | 305.105 | 559.867 | 169.977 | 200.508 | 4
19 | 4 | 2,230 | 4,500 | 227,000 | 455,000 | ☆ * CRD-6117 | Α | Equivalent bearing load dynamic $P_r = XF_r + YF_a$ static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | | Groove | dimens | ions | | Abutm | ent and fil | let dime | ensions | | Constant | Axia | l load fac | ctors | Mass | |------------|------------|---------------------|------------|------------|------------|-------------|------------------|-------------|--------------|----------|-------|------------|------------------|-----------| | mr | m | | numbers | mm | | mr | n | | | | | | | kg | | width | depth | angle | × | key groove | $d_{ m a}$ | $D_{\rm a}$ | S_{a} | $r_{ m as}$ | $r_{ m las}$ | | | | | | | $K_{ m w}$ | $K_{ m d}$ | θ $^{\circ}$ | side face | $K_{ m r}$ | max | min | min | max | max | e | Y_1 | Y_2 | Y_{o} | (approx.) | | _ | _ | _ | _ | _ | 306 | 505.5 | 1.5 | 5 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 272 | | | | | | | | | | | | | | | | | | | _ | _ | _ | _ | 300 | 398 | 5 | 2 | 2.5 | 1.05 | 0.64 | 0.96 | 0.63 | 49 | | 32 | 13 | 45 | 1-2 | _ | 299.5 | 368 | 6.5 | 2 | 2.5 | 0.81 | 0.83 | 1.23 | 0.81 | 29 | | 32.13 | 22.225 | 45 | 1-2 | _ | 325 | 422 | 4.5 | 3 | 4 | 0.81 | 0.83 | 1.23 | 0.81 | 54 | | 32.1 | 22.2 | 45 | 1-2 | _ | 325 | 381.5 | 4.5 | 2.5 | 3 | 0.81 | 0.83 | 1.23 | 0.81 | 54 | | 40 | 15 | 90 | 2-2 | _ | 345 | 478 | 1.5 | 4 | 5 | 1.19 | 0.57 | 0.85 | 0.56 | 143 | | 50.8 | 34.925 | 45 | 2-2 | _ | 342 | 478 | 1.5 | 4 | 5 | 0.76 | 0.88 | 1.31 | 0.86 | 158 | | _ | _ | _ | _ | _ | 341 | 478 | 1.5 | 4 | 5 | 0.76 | 0.88 | 1.31 | 0.86 | 158 | | _ | _ | _ | _ | _ | 332.5 | 502 | 1.5 | 3 | 4 | 1.17 | 0.58 | 0.86 | 0.56 | 187 | | | | | | | 044 | 470 | 1.5 | _ | _ | 1.10 | 0.57 | 0.04 | ٥.٢٢ | 150 | | _ | _ | _ | _ | _ | 344 | 472 | 1.5 | 5 | 5 | 1.19 | 0.57 | 0.84 | 0.55 | 158 | | _ | | | | _ | 343 | 472 | 2.5 | 5 | 5 | 1.19 | 0.57 | 0.84 | 0.55 | 155 | | 51.5 | 35 | 45 | 2-2 | _ | 347 | 478 | 1.5 | 4 | 5 | 0.70 | 0.97 | 1.44 | 0.94 | 135 | | 50.9 | 35 | 45 | 2-2 | _ | 342 | 478 | 1.5 | 4 | 5 | 0.76 | 0.88 | 1.31 | 0.86 | 155 | | 40.5 | 35 | 45 | 2-2 | _ | 347 | 478 | 1.5 | 4 | 5 | 0.70 | 0.97 | 1.44 | 0.94 | 155 | | 50.8 | 34.925 | 45 | 1-2 | _ | 342 | 478 |
1.5 | 4 | 5 | 0.76 | 0.88 | 1.31 | 0.86 | 155 | | _ | _ | _ | _ | _ | 372.5 | 542 | 1.5 | 3 | 4 | 0.92 | 0.73 | 1.09 | 0.72 | 193 | | 50 | 19 | 90 | 2-2 | _ | 369 | 514 | 1.5 | 9 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 218 | | 50 | 19 | 90 | 2-2 | _ | 369 | 468 | 1.5 | 19 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 218 | | 50.7 | 39.7 | 45 | 1-2 | _ | 372 | 514 | 1.5 | 9 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 218 | | _ | _ | - | _ | _ | 350 | 542 | 1.5 | 3 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 192 | | 50.8 | 19.05 | 90 | 2-2 | 14.5 | 372 | 470 | 1.5 | 18 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 218 | | 50.8 | 39.69 | 45 | 2-2 | _ | 372 | 516 | 1.5 | 8 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 218 | | 50.8 | 19.05 | 90 | 2-2 | _ | 354 | 470 | 4.7 | 18 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 218 | | 50.8 | 34.9 | 45 | 1-2 | _ | 347 | 478 | 1.5 | 4 | 5 | 0.70 | 0.97 | 1.44 | 0.94 | 155 | | _ | _ | _ | _ | 7.938 | 334 | 478 | 3.5 | 5 | 4 | 0.70 | 0.97 | 1.44 | 0.94 | 155 | | _ | _ | _ | _ | 7.938 | 334 | 478 | 3.5 | 5 | 4 | 0.70 | 0.97 | 1.44 | 0.94 | 155 | | _ | _ | _ | _ | _ | 355 | 546 | 1.5 | 3 | 2.5 | 1.09 | 0.62 | 0.92 | 0.61 | 217 | | _ | _ | _ | _ | _ | 350 | 532 | 8 | 3 | 3 | 1.09 | 0.62 | 0.92 | 0.61 | 217 | | 50.7 | 19 | 90 | 2-2 | _ | 353.5 | 476 | 4.7 | 5 | 17 | 1.09 | 0.62 | 0.92 | 0.61 | 217 | | _ | _ | _ | _ _ | _ | 350 | 582 | 5.5 | 2 | 3 | 1.09 | 0.62 | 0.92 | 0.61 | 169 | | | | | | | - | | _ | | - | | - | - | - | | #### *d* 330∼460mm | A | | | Boundar | y dimensio | ns | | dynamic | Basic loa | ad ratings
dynamic | static | Bearing I | Orawing
No. | |---|------|-------|---------|------------|---------------|------------------|------------|-------------|-----------------------|-------------|------------------|----------------| | 330 | | | | mm | | | | | | | Humbers | NO. | | 330 | J | D | n | a | 0 | 0 | a | a | , a | - | | | | 330 650 248 248 7.5 6 3,450 6,500 350,000 665,000 CRD-6608 A 350 590 192 192 3 3 3 2,990 6,400 305,000 655,000 ☆CRD-7001 A 360 540 200 200 5 5 2,480 6,150 253,000 630,000 ★CRD-7001 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ★CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ★CRD-7612 B 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 | a | D | В | $C_{ m r}$ | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 330 650 248 248 7.5 6 3,450 6,500 350,000 665,000 CRD-6608 A 350 590 192 192 3 3 3 2,990 6,400 305,000 655,000 ☆CRD-7001 A 360 540 200 200 5 5 2,480 6,150 253,000 630,000 ★CRD-7001 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ★CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ★CRD-7612 B 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 | | 458 | 120 | 120 | 3 | 3 | 990 | 2,220 | 101,000 | 226,000 | CRD-6604 | В | | 350 618 200 200 6 6 6 3,000 5,700 310,000 580,000 ☆CRD-7004 A® 360 540 200 200 5 5 2,480 6,150 253,000 630,000 ★CRD-7201 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ☆CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7623 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450
365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 | 330 | 650 | 248 | 248 | 7.5 | | 3,450 | | 350,000 | 665,000 | CRD-6608 | | | 360 540 200 200 5 5 2,480 6,150 253,000 630,000 ☆CRD-7201 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ☆CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7614 A 650 240 240 6 3 3,360 7,950 370,000 810,000 ☆CRD-7612 B 650 200 200 17.4 6 3,050 6,100 310,000 625,000 ☆CRD-7612 B 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8010 C 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8010 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ★CRD-8027 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8022 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 | 0.50 | 590 | 192 | 192 | 3 | 3 | 2,990 | 6,400 | 305,000 | 655,000 | ☆CRD-7017 | B [®] | | 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ☆CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7614 A 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7612 B 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7612 B 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8013 C 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8013 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8026 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8033 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8033 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8033 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,00 | 350 | 618 | 200 | 200 | 6 | 6 | 3,000 | | 310,000 | 580,000 | ☆CRD-7004 | A [®] | | 380 | 360 | 540 | 200 | 200 | 5 | 5 | 2,480 | 6,150 | 253,000 | 630,000 | CRD-7201 | В | | \$80 | 370 | 630 | 240 | 240 | 5 | 6 | 3,550 | 7,450 | 365,000 | 760,000 | ☆CRD-7401 | В | | \$80 | | 559.5 | 160 | 160 | 5 | 5 | 1.890 | 4.250 | 192,000 | 435.000 | CRD-7614 | Α | | 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7612 B | 380 | | | | | | | | | , | | | | 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8026 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 6 3 3,600 8,450 365,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8034 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 4 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 40 6 6 6 3,600 8,450 365,000 ★CRD- | | 650 | 240 | 240 | 6 | 3 | 3,600 | 7,950 | 370,000 | 810,000 | ☆CRD-7612 | В | | 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8026 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 6 3 3,600 8,450 365,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8034 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 4 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 40 6 6 6 3,600 8,450 365,000 ★CRD- | | 650 | 200 | 200 | 17.4 | 6 | 3,050 | 6,100 | 310,000 | 625,000 | ☆CRD-8010 | С | | 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8032 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8034 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8035 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600
8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8018 B 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B | | | | | 6 | | | | 340,000 | | ☆CRD-8013 | С | | 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8034 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8035 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,3350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,3350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,400 7,4 | | | | | 6 | 4 | 3,600 | | 365,000 | | ☆CRD-8026 | С | | 650 240 240 6 6 3,600 8,450 365,000 365,000 3 CRD-8034 C 650 240 240 6 4 3,600 8,450 365,000 865,000 3 CRD-8035 C 650 240 240 6 4 3,600 8,450 365,000 865,000 3 CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8042 C 650 240 240 6 5 3,350 7,450 340,000 760,000 3 CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8049 C.D | | 650 | 240 | 240 | 6 | 3 | 3,350 | 7,450 | 340,000 | 760,000 | ☆CRD-8027 | С | | 400 | | | | | | | 3,600 | | 365,000 | 865,000 | ☆CRD-8032 | С | | 400 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 5 3,350 7,450 340,000 760,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D [©] 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 650 | 240 | 240 | 6 | 6 | 3,600 | 8,450 | 365,000 | 865,000 | ☆CRD-8034 | | | 400 650 240 240 6 4 3,600 8,450 365,000 \$\alpha\$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8042 C 650 240 240 6 5 3,350 7,450 340,000 760,000 \$\alpha\$CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8046 D 650 240 240 6 4 3,600 8,450 365,000 \$\alpha\$CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8048 C 650 240 240 6 3 3,350 7,450 340,000 760,000 \$\alpha\$CRD-8049 C.D.® 410 580 160 160 4 5 1,890 4,550 1 | | | | 240 | 6 | 6 | | | , | | ☆CRD-8035 | | | 650 240 240 6 6 5 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 5 3,350 7,450 340,000 760,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A | | | | | | 4 | | | 365,000 | 865,000 | | | | 650 240 240 6 5 3,350 7,450 340,000 760,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8021 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 ★CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A | 400 | | | | 6 | 4 | | | | | ☆CRD-8039 | С | | 650 240 240 6 6 6 3,600 8,450 365,000 ★CRD-8046 D 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 ★CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A | | | 240 | 240 | 6 | | | | 365,000 | | ☆CRD-8042 | | | 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | | | | | | | | 340,000 | | | | | 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | | | | | | | | | | ☆CRD-8046 | | | 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D ⁶ 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | | | | | | | | 365,000 | | | | | 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | | | | | | | | | | ☆CRD-8048 | | | 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | | | | | | | | | | | | | 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | | | | | | | | | | | | | 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | 650 | 240 | 240 | 6 | 6 | 3,350 | 7,450 | 340,000 | 760,000 | ☆CRD-8023 | D | | 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000
CRD-9211 A | 410 | 580 | 160 | 160 | 4 | 5 | 1,890 | 4,550 | 192,000 | 460,000 | CRD-8201 | В | | 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | 440 | 650 | 155 | 155 | 6 | 6 | 2,330 | 5,300 | 238,000 | 540,000 | ☆CRD-8808 | Α | | 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A | | 618 | 150 | 150 | 4 | 4 | 1,720 | 4,400 | 176,000 | 450,000 | CRD-9202 | В | | | 460 | | | | 4 | 4 | | | | | CRD-9211 | | | | | | | | 6 | 2.5 | | | | | ☆CRD-9214 | | **Drawing D** Equivalent bearing load dynamic $P_r = XF_r + YF_a$ static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | | Groove | dimens | ions | | Abutm | ent and fil | let dime | nsions | | Constant | Axia | l load fac | tors | Mass | |------------|------------|---------------------|-----------|------------|------------|-------------|------------------|-------------|--------------|----------|-------|------------|------------------|-----------| | mn | n | | numbers | mm | | mn | n | | | | | | | kg | | width | depth | angle | × | key groove | $d_{ m a}$ | $D_{\rm a}$ | S_{a} | $r_{ m as}$ | $r_{ m las}$ | | | | | , i | | $K_{ m w}$ | $K_{ m d}$ | θ $^{\circ}$ | side face | $K_{ m r}$ | max | min | min | max | max | e | Y_1 | Y_2 | Y_{o} | (approx.) | | | | | | | | | | | | | | | | | | 32 | 12 | 90 | 2-2 | _ | 355.5 | 444 | 8 | 2.5 | 2.5 | 1.05 | 0.64 | 0.96 | 0.63 | 59.7 | | _ | _ | _ | _ | _ | 407 | 624 | 8 | 5 | 6 | 0.90 | 0.75 | 1.12 | 0.73 | 383 | | | | | | | | | | | | | | | | | | 32 | 12 | 90 | 2-2 | _ | 409.5 | 576 | 6.5 | 2.5 | 2.5 | 0.55 | 1.24 | 1.84 | 1.21 | 209 | | 50 | 20 | 90 | 2-2 | _ | 410 | 510 | 1.5 | 5 | 5 | 0.87 | 0.78 | 1.16 | 0.76 | 252 | | | | | | | | | | | | | | | | | | 40 | 12 | 90 | 2-2 | _ | 389.5 | 518 | 4.7 | 4 | 4 | 0.70 | 0.97 | 1.44 | 0.94 | 160 | | 34 | 20 | 90 | 2-2 | _ | 420 | 608 | 8 | 5 | 4 | 0.76 | 0.88 | 1.31 | 0.86 | 316 | | _ | _ | _ | _ | _ | 414.5 | 537.5 | 1.5 | 4 | 4 | 0.70 | 0.97 | 1.44 | 0.94 | 133 | | 50.8 | 40 | 45 | 2-2 | _ | 435 | 622 | 1.5 | 2.5 | 5 | 1.05 | 0.64 | 0.96 | 0.63 | 329 | | 50 | 15 | 90 | 2-2 | _ | 430 | 622 | 8 | 2.5 | 5 | 1.05 | 0.64 | 0.96 | 0.63 | 338.2 | | | | | | | | | | | | | | | | | | 50.4 | 38.1 | 45 | 1-2 | _ | 449 | 618 | 2.5 | 5 | 12 | 0.81 | 0.83 | 1.23 | 0.81 | 260 | | 64.3 | 32 | 45 | 1-2 | _ | 437 | 622 | 8 | 2.5 | 5 | 1.05 | 0.64 | 0.96 | 0.63 | 303 | | 63.6 | 32 | 45 | 1-2 | _ | 456 | 535 | 2.5 | 3 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 437 | 622 | 8 | 2.5 | 5 | 1.05 | 0.64 | 0.96 | 0.63 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 454 | 622 | 2.5 | 3 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 454 | 622 | 1.5 | 5 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 454 | 622 | 8 | 5 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 63.6 | 32 | 45 | 2-2 | _ | 454 | 622 | 2.5 | 3 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 302 | | 64.3 | 32 | 45 | 1-2 | _ | 454 | 622 | 8 | 4 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 454 | 622 | 2 | 5 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 437 | 525 | 8 | 4 | 5 | 1.05 | 0.64 | 0.96 | 0.63 | 292 | | _ | _ | _ | _ | 11.25 | 454 | 622 | 1.5 | 5 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 454 | 622 | 2.5 | 3 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 2-2 | _ | 454 | 622 | 1.5 | 5 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 63.6 | 32 | 45 | 1-2 | 11.25 | 454 | 622 | 1.5 | 5 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 303 | | 64.3 | 32 | 45 | 1-2 | _ | 437 | 622 | 8 | 2.5 | 5 | 1.05 | 0.64 | 0.96 | 0.63 | 303 | | _ | _ | _ | _ | 11.25 | 437 | 622 | 8 | 5 | 5 | 1.05 | 0.64 | 0.96 | 0.63 | 303 | | 50.8 | 10 | 90 | 1-2 | _ | 440 | 562 | 1.5 | 4 | 3 | 0.83 | 0.81 | 1.21 | 0.79 | 133 | | _ | _ | _ | _ | _ | 487 | 622 | 6.5 | 5 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 163 | | 50 | 15 | 90 | 2-2 | _ | 489 | 600 | 8 | 3 | 3 | 1.05 | 0.64 | 0.96 | 0.63 | 126 | | _ | _ | _ | _ | _ | 489.5 | 600 | 1.5 | 3 | 3 | 1.05 | 0.64 | 0.96 | 0.63 | 120 | | 50.8 | 35 | 45 | 2-2 | _ | 500 | 692 | 4.8 | 2 | 5 | 0.80 | 0.85 | 1.26 | 0.83 | 388 | #### d 470~1,400mm | | | Boundary of | dimensions | i | | dynamic | Basic Ioa
static | d ratings
dynamic | static | | awing
No. | |---------|--------------------|--------------------|--------------------|---------------|------------------|----------------|---------------------|----------------------|--------------------|------------------------------|---------------------| | | | m | nm | | | kl | N | ŀ | gf | | | | d | D | В | $C_{ m r}$ | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 470 | 720 | 216 | 216 | 6 | 6 | 2,790 | 6,800 | 284,000 | 690,000 | CRD-9404 | В | | 480 | 689.5
690 | 180
180 | 180
180 | 6
6 | 6
6 | 2,670
2,670 | 6,400
6,400 | 272,000
272,000 | 655,000
655,000 | ☆CRD-9609
☆CRD-9603 | B
B | | 482.600 | 615.950
733.500 | 158.750
200.000 | 158.750
200.000 | 6.4
17.5 | 3.3
5 | 2,240
2,740 | 6,450
6,550 | 228,000
279,000 | 660,000
665,000 | ☆ * CRD-9709
☆ * CRD-9704 | A [©]
C | | 509.948 | 733.425 | 200.02 | 200.02 | 5 | 5 | 3,250 | 8,350 | 330,000 | 855,000 | ☆ * CRD-10208 | С | | 510.134 | 800.001 | 284.493 | 284.493 | 6.4 | 6.4 | 5,200 | 12,100 | 530,000 | 1,230,000 | ☆ * CRD-10206 | С | | 550 | 920 | 330 | 330 | 7.5 | 7.5 | 6,800 | 15,700 | 695,000 | 1,600,000 | ☆CRD-11001 | В | | 600 | 1,000 | 350 | 350 | 7.5 | 7.5 | 8,250 | 19,500 | 840,000 | 1,990,000 | ☆CRD-12002 | Α | | 660.000 | 814.000 | 176.212 | 176.212 | 6.4 | 3.3 | 2,600 | 8,200 | 266,000 | 835,000 | ☆ * CRD-13208 | С | | 685.800 | 939.800 | 234.950 | 228.575 | 3.3 | 6.4 | 4,950 | 13,500 | 505,000 | 1,380,000 | ☆ * CRD-13702 | В | | 685.876 | 939.876 | 234.950 | 227.813 | 3.3 | 6.4 | 4,950 | 13,500 | 505,000 | 1,380,000 | ☆ * CRD-13701 | С | | 720 | 920 | 130 | 150 | 5 | 4 | 2,760 | 7,300 | 281,000 | 745,000 | ☆CRD-14403 | Α | | 780 | 1,000 | 200 | 200 | 5 | 2 | 4,200 | 12,900 | 430,000 | 1,320,000 | ☆CRD-15601 | С | | 1,400 | 1,600 | 180 | 180 | 5 | 2.5 | 4,400 | 16,300 | 445,000 | 1,670,000 | CRD-28003 | Α | [•] Minimum allowable dimension for chamfer dimension r or r. Remarks: 1. The marked "*" bearings are inch system sizes. B-178 Equivalent bearing load dynamic $P_r = XF_r + YF_a$ static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | | | Groove dimensions | | | | Abutr | Abutment and fillet dimensions | | | | | Axia | l load fac | tors | Mass | |---|-------------|-------------------|------------|-----------|------------------|----------------|--------------------------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|------------| | | mm
width | depth | angle | numbers | mm
key groove | $d_{ m a}$ | $D_{ m a}$ | m $S_{ m a}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | kg | | | $K_{ m w}$ | $K_{ m d}$ | θ ° | side face | $K_{ m r}$ | max | min | min | max | max | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | _ | 63.6 | 30 | 90 | 1-2 | _ | 503 | 692 | 3 | 5 | 5 | 1.09 | 0.62 | 0.92 | 0.61 | 315 | | | 50 | 15 | 90 | 2-2 | _ | 525 | 661.5 | 8 | 5 | 5 | 0.87 | 0.78 | 1.16 | 0.76 | 223 | | | 50 | 15 | 90 | 2-1 | _ | 525 | 662 | 8 | 5 | 5 | 0.87 | 0.78 | 1.16 | 0.76 | 224 | | | _
50.8 | _
38 | -
45 | –
2-2 | _
_ | 500.5
546.5 | 588
669.5 | 6.5
8 | 2.5
4 | 5
12 | 0.61
1.09 | 1.11
0.62 | 1.66
0.92 | 1.09
0.61 | 115
301 | | | 50.8 | 38.1 | 45 | 2-2 | _ | 560 | 711.5 | 8 | 4 | 4 | 0.87 | 0.78 | 1.16 | 0.76 | 256 | | | 70.358 | 44.45 | 45 | 1-2 | 12.865 | 560 | 772 | 8 | 5 | 5 | 0.81 | 0.83 | 1.23 | 0.81 | 511 | | | 56 | 22 | 90 | 1-2 | _ | 629.5 | 884 | 4.5 | 6 | 6 | 0.87 | 0.78 | 1.16 | 0.76 | 914 | | | _ | _ | _ | _ | _ | 687 | 964 | 8 | 6 | 6 | 0.87 | 0.78 | 1.16 | 0.76 | 1,130 | | _ | 50 | 20 | 45 | 2-2 | _ | 684.5 | 886 | 8 | 2.5 | 5 | 0.70 | 0.97 | 1.44 | 0.94 | 202 | | _ | 63.5 | 19.05 | 90 | 2-2 | _ | 738 | 926 | 1.5 | 5 | 2.5 | 0.70 | 0.97 | 1.44 | 0.94 | 478 | | | 63.5 | 38.1 | 45 | 2-2 | _ | 738.5 | 926 | 8 | 5 | 2.5 | 0.70 | 0.97 | 1.44 | 0.94 | 435 | | | _ | _ | _ | _ | _ | 760.5 | 898 | 5.8 | 3 | 4 | 0.81 | 0.83 | 1.23 | 0.81 | 240 | | | 90 | 35 | 45 | 1-2 | _ | 824.5 | 978 | 3.6 | 2 | 4 | 0.80 | 0.85 | 1.26 | 0.83 | 384 | | | _ | _ | _ | _ | _ | 1,437.5 | 1,578 | 12.5 | 2 | 4 | 0.55 | 1.24 | 1.84 | 1.21 | 532 | #### *d* 100∼165.100mm | | Bou | ndary dimensi | ons | | | dynamic | Basic loa | d ratings
dynamic | static | |---------|--------------------------|--------------------------|--------------------------|--------------------|--------------------------|--------------------------|--------------------------------|--------------------------------------|---| | | | mm | | | | kN | | kgf | | | d | D | B_2 | C_2 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 100 | 170 | 155 | 155 | 2.5 | 0.6 | 595 | 1,170 | 61,000 | 119,000 | | 105 | 190 | 210 | 210 | 2.5 | 1 | 760 | 1,630 | 77,500 | 166,000 | | 110 | 150 | 150 | 150 | 1.5 | 1.5 | 505 | 1,280 | 51,500 | 131,000 | | 120 | 170
180
200
210 | 124
100
132
174 | 124
100
132
174 | 2
2
2
2.5 | 2.5
2.5
2.5
2.5 | 390
395
640
855 | 1,020
745
1,220
1,710 | 40,000
40,000
65,000
87,500 | 104,000
76,000
125,000
174,000 | | 120.650 | 174.625 | 141.288 | 139.703 | 1.5 | 0.8 | 510 | 1,220 | 52,000 | 124,000 | | 127.000 | 182.562 | 158.750 | 158.750 | 3.3 | 1.5 | 660 | 1,730 | 67,000 | 177,000 | | 130 | 184 | 134 | 134 | 2 | 2.5 | 480 | 1,190 | 49,000 | 122,000 | | 135 | 180 | 160 | 160 | 2 | 1 | 500 | 1,360 | 51,000 | 138,000 | | 136.525 | 190.500 | 161.925 | 161.925 |
3.3 | 1.5 | 695 | 1,900 | 71,000 | 193,000 | | 139.700 | 200.025 | 157.165 | 160.340 | 3.3 | 8.0 | 700 | 1,950 | 71,500 | 199,000 | | 140 | 198
210
210 | 144
114
115 | 144
114
115 | 2
2
2 | 2.5
2.5
2.5 | 575
515
515 | 1,460
1,070
1,070 | 58,500
52,500
52,500 | 149,000
109,000
109,000 | | 146.050 | 244.475 | 192.088 | 187.325 | 3.3 | 1.5 | 955 | 1,980 | 97,000 | 202,000 | | 150 | 210
212 | 190
155 | 190
155 | 2.5
2.5 | 1.5
3 | 860
660 | 2,240
1,700 | 87,500
67,500 | 229,000
173,000 | | 152.400 | 222.250 | 174.625 | 174.625 | 1.5 | 1.5 | 930 | 2,350 | 94,500 | 239,000 | | 160 | 226
265 | 165
173 | 165
173 | 2.5
2.5 | 3
2.5 | 775
1,100 | 2,030
2,270 | 79,000
112,000 | 207,000
231,000 | | 165.100 | 225.425 | 165.100 | 168.275 | 3.3 | 0.8 | 745 | 2,220 | 76,000 | 226,000 | ### **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $\frac{F_{\rm a}}{F_{\rm r}}>e$ | | | | | | | |-------------------------------|------------|---------------------------------|-------|--|--|--|--|--| | X | Y | X | Y | | | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ | Bearing numbers | Abı | Constant | Axia | ıl load fa | ctors | Mass | | | | | |-------------------------------|--------------|--------------|----------------|-----------------|------------------|--------------|--------------|--------------|--------------|--------------| | | | | mm | | | | | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $S_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | | | | | max | max | | -1 | - 2 | -0 | (арргол.) | | CRO-2008 | 120 | 152.5 | 3.7 | 2 | 0.6 | 0.32 | 2.12 | 3.15 | 2.07 | 14.5 | | CRO-2151 | 135 | 168.5 | 2.5 | 2 | 1 | 0.42 | 1.60 | 2.38 | 1.56 | 26 | | CRO-2252 | 119 | 140.5 | 1.2 | 1.5 | 1.5 | 0.18 | 3.66 | 5.46 | 3.58 | 7.7 | | 625924 | 135 | 155.5 | 5 | 2 | 2 | 0.33 | 2.03 | 3.02 | 1.98 | 8.97 | | 623024 | 135 | 166.5 | 3.8 | 2 | 2 | 0.37 | 1.80 | 2.69 | 1.76 | 8.87 | | 623124 | 143 | 182 | 4.1 | 2 | 2 | 0.37 | 1.80 | 2.69 | 1.76 | 16.7 | | CRO-2418 | 140 | 190 | 4.5 | 2 | 2 | 0.40 | 1.67 | 2.50 | 1.64 | 22.2 | | * M224749D/M224710/M224710D | 129 | 163 | 3 | 1.5 | 0.8 | 0.33 | 2.03 | 3.02 | 1.98 | 11.5 | | *T-48290D/48220/48220D | 137 | 168 | 4.5 | 3.3 | 1.5 | 0.31 | 2.21 | 3.29 | 2.16 | 14.3 | | 625926 | 144.5 | 169 | 5 | 2 | 2 | 0.33 | 2.03 | 3.02 | 1.98 | 11.3 | | CRO-2701 | 143 | 165 | 2 | 2 | 1 | 0.33 | 2.03 | 3.02 | 1.98 | 13.5 | | *T-48393D/48320/48320D | 144 | 177 | 4 | 3.3 | 1.5 | 0.32 | 2.10 | 3.13 | 2.05 | 14.8 | | *T-48680D/48620/48620D | 150 | 185 | 3 | 3.3 | 0.8 | 0.34 | 2.01 | 2.99 | 1.96 | 17.3 | | 625928 | 156 | 183 | 5 | 2 | 2 | 0.33 | 2.03 | 3.02 | 1.98 | 14 | | 623028 | 159 | 193 | 3.5 | 2 | 2 | 0.37 | 1.84 | 2.74 | 1.80 | 13.8 | | CRO-2817 | 159 | 193 | 3.4 | 2 | 2 | 0.37 | 1.84 | 2.74 | 1.80 | 13.9 | | * 81576D/81962/81963D | 163 | 225 | 6.5 | 3.3 | 1.5 | 0.35 | 1.92 | 2.86 | 1.88 | 36.8 | | CRO-3052 | 162 | 192.5 | 2.5 | 2 | 1.5 | 0.40 | 1.68 | 2.50 | 1.64 | 20.3 | | 625930 | 167.5 | 195 | 5.5 | 2 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 16.9 | | *T-M231649D/M231610/M231610D | 165 | 207 | 4 | 1.5 | 1.5 | 0.36 | 1.87 | 2.79 | 1.83 | 24.7 | | 625932
CRO-3209 (CRO-3210) | 177.5
184 | 208.5
247 | 5.5
4.5 | 2
2 | 2.5
2 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 20.2
37.0 | | *T-46791D/46720/46721D | 175 | 209 | 3 | 0.8 | 2.5 | 0.38 | 1.76 | 2.62 | 1.72 | 20.7 | #### *d* 170∼220mm | | Bou | ındary dimensi | ons | | Basic load ratings dynamic static dynamic static | | | | | | |---------|---------|----------------|---------|-----------------|--|------------|-------------|------------|-------------|--| | | | mm | | | | kN | | kgf | | | | d | D | B_2 | C_2 | $r_{ m s min}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 240 | 175 | 175 | 2.5 | 3 | 835 | 2,200 | 85,500 | 224,000 | | | | 260 | 144 | 144 | 2.5 | 3 | 840 | 1,730 | 85,500 | 176,000 | | | 170 | 280 | 181 | 181 | 2.5 | 2.5 | 1,150 | 2,420 | 117,000 | 247,000 | | | | 280 | 185 | 185 | 2.5 | 3 | 1,240 | 2,540 | 127,000 | 259,000 | | | | 247.650 | 192.088 | 192.088 | 3.3 | 1.5 | 1,000 | 2,760 | 102,000 | 281,000 | | | 177.800 | 279.400 | 234.950 | 234.947 | 3.3 | 1.5 | 1,420 | 3,400 | 145,000 | 345,000 | | | | 304.800 | 238.227 | 233.365 | 3.3 | 3.3 | 1,580 | 3,100 | 161,000 | 320,000 | | | | 250 | 185 | 185 | 2 | 2.5 | 895 | 2,350 | 91,500 | 239,000 | | | 180 | 254 | 185 | 185 | 2.5 | 3 | 910 | 2,390 | 93,000 | 244,000 | | | | 300 | 280 | 280 | 3 | 3 | 2,160 | 4,800 | 220,000 | 490,000 | | | 187.325 | 269.875 | 211.138 | 211.138 | 3.3 | 1.5 | 1,240 | 3,400 | 127,000 | 345,000 | | | | 268 | 196 | 196 | 2.5 | 3 | 1,060 | 2,850 | 108,000 | 291,000 | | | 100 000 | 270 | 190 | 190 | 2.5 | 2.5 | 1,080 | 2,940 | 111,000 | 300,000 | | | 190.000 | 270 | 190 | 190 | 2.5 | 0.6 | 1,220 | 3,050 | 125,000 | 310,000 | | | | 292.100 | 225.425 | 225.425 | 3.3 | 1.5 | 1,570 | 4,150 | 160,000 | 425,000 | | | 190.500 | 266.700 | 187.325 | 188.912 | 3.3 | 1.5 | 1,040 | 2,990 | 106,000 | 305,000 | | | 198.438 | 284.162 | 225.425 | 225.425 | 3.3 | 1.5 | 1,530 | 4,000 | 156,000 | 410,000 | | | | 282 | 206 | 206 | 2.5 | 3 | 1,200 | 3,300 | 122,000 | 335,000 | | | 200 | 290 | 160 | 160 | 2.5 | 2.5 | 925 | 2,210 | 94,500 | 226,000 | | | | 310 | 200 | 200 | 3 | 3 | 1,530 | 3,300 | 156,000 | 340,000 | | | 203.200 | 317.500 | 215.900 | 209.550 | 3.3 | 3.3 | 1,270 | 2,820 | 129,000 | 288,000 | | | 206.375 | 282.575 | 190.500 | 190.500 | 3.3 | 0.8 | 1,120 | 2,890 | 114,000 | 294,000 | | | 215.900 | 288.925 | 177.800 | 177.800 | 3.3 | 0.8 | 1,110 | 3,250 | 114,000 | 335,000 | | | 216.103 | 330.200 | 263.525 | 269.875 | 3.3 | 1.5 | 2,000 | 5,150 | 204,000 | 525,000 | | | | 300 | 230 | 230 | 2.5 | 2.5 | 1,360 | 3,650 | 138,000 | 375,000 | | | 220 | 310 | 226 | 226 | 3 | 4 | 1,380 | 3,800 | 141,000 | 385,000 | | | | 320 | 200 | 200 | 3 | 1 | 1,390 | 3,400 | 141,000 | 345,000 | | $[\]textcircled{1} \ \ \ \text{Minimum allowable dimension for chamfer dimension } r \text{ or } r_{\text{i}}.$ #### **Equivalent bearing load** dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≦ e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | | |---|------------|-----------------------------------|-------|--|--|--|--|--| | X | Y | X | Y | | | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | | static Por=Fr+YoFa | Bearing numbers | Abutment and fillet dimensions | | | | | | Axia | Axial load factors | | | |---------------------------------------|--------------------------------|-------------|------------------|-------------|--------------|------|-------|--------------------|-------------|-----------| | | | | mm | | | | | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | S_{a} | $r_{ m as}$ | $r_{ m las}$ | | ¥7 | 7.7 | 7.7 | | | | | | min | max | max | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | 625934 | 187.5 | 220 | 5.5 | 2 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 24.4 | | 623034 | 192.5 | 239 | 3.8 | 2 | 2.5 | 0.37 | 1.80 | 2.69 | 1.76 | 27.5 | | CRO-3409 | 192 | 255 | 5 | 2 | 2 | 0.40 | 1.68 | 2.50 | 1.64 | 44 | | 623134 | 197 | 253.5 | 6.4 | 2 | 2.5 | 0.37 | 1.80 | 2.69 | 1.76 | 45.2 | | *67791D/67720/67721D (CRO-3664) | 190 | 229 | 5 | 3.3 | 1.5 | 0.44 | 1.54 | 2.29 | 1.48 | 29.4 | | * 82681D/82620/82620D ` | 195 | 251 | 5 | 1.5 | 3.3 | 0.53 | 1.28 | 1.91 | 1.25 | 55.3 | | * EE280700D/281200/281201D (CRO-3663) | 198 | 279 | 7 | 3.3 | 3.3 | 0.36 | 1.87 | 2.79 | 1.83 | 69.9 | | CRO-3658 | 195 | 229 | 3.1 | 2 | 2.5 | 0.44 | 1.54 | 2.30 | 1.51 | 27.5 | | 625936 | 200.5 | 233.5 | 5.5 | 2 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 28.9 | | CRO-3617 | 201 | 274 | 5 | 2.5 | 2.5 | 0.37 | 1.80 | 2.69 | 1.76 | 69.4 | | * M238849D/M238810/M238810D | 199.9 | 250 | 4 | 3.3 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 41.8 | | 625938 | 209 | 245.5 | 6 | 2 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 34.7 | | CRO-3812 | 205 | 250 | 6 | 2 | 2 | 0.33 | 2.03 | 3.02 | 1.98 | 34.7 | | CRO-3813 | 207 | 248.5 | 2.5 | 2 | 0.6 | 0.40 | 1.68 | 2.50 | 1.64 | 34.5 | | * M241538D/M241510/M241510D | 222 | 271 | 5 | 3.3 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 59.6 | | * T-67885D/67820/67820D | 204 | 246 | 3 | 1.5 | 2.5 | 0.48 | 1.41 | 2.11 | 1.38 | 33.6 | | * M240648D/M240611/M240611D | 212 | 264 | 5.5 | 3.3 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 46 | | 625940 | 219.5 | 258 | 6 | 2 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 40.5 | | CRO-4013 | 221 | 271 | 5 | 2 | 2 | 0.37 | 1.80 | 2.69 | 1.76 | 35.1 | | CRO-4014 | 222 | 284 | 6 | 2.5 | 2.5 | 0.39 | 1.74 | 2.59 | 1.70 | 54.0 | | * EE132082D/132125/132126D | 224 | 294 | 9.5 | 3.3 | 3.3 | 0.31 | 2.15 | 3.20 | 2.10 | 62.5 | | *T-67986D/67920/67920D | 219 | 260 | 5 | 3.3 | 0.8 | 0.51 | 1.33 | 1.97 | 1.30 | 35.4 | | *T-LM742749D/LM742714/LM742714D | 227 | 267 | 5 | 0.8 | 2.5 | 0.48 | 1.40 | 2.09 | 1.37 | 34.3 | | * 9974D/9920/9920D | 235 | 277 | 6 | 3.3 | 1.5 | 0.55 | 1.23 | 1.82 | 1.20 | 82.1 | | CRO-4412 | 236.5 | 277.5 | 6.5 | 0 | 2 | 0.43 | 1.59 | 2.36 | 1.55 | 42.1 | | 625944 | 242 | 284.5 | 6 | 2.5 | 3 | 0.33 | 2.03 | 3.02 | 1.98 | 53.5 | | CRO-4411 | 245 | 294.5 | 6.5 | 2.5 | 2 | 0.35 | 1.95 | 2.90 | 1.91 | 53 | CRO-4411 Remarks: 1. Bearing numbers marked "*" designate inch system bearings. 2. The bearing where parentheses adhered abolished inner ring spacer. B-183 #### **d** 220~266.700mm | | Bou | ındary dimensi | ons | | Basic load ratings dynamic static dynamic static | | | | | | |---------|---------|----------------|---------|---------------|--|------------|-------------|------------|-------------|--| | | | mm | | | | kN | | kgf | | | | d | D | B_2 | C_2 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m
or}$ | | | 220 | 340 | 190 | 190 | 3 | 4 | 1,510 | 3,300 | 154,000 | 335,000 | | | | 340 | 194 | 194 | 3 | 3 | 1,510 | 3,300 | 154,000 | 335,000 | | | 220.662 | 314.325 | 239.712 | 239.712 | 3.3 | 1.5 | 1,840 | 4,900 | 187,000 | 500,000 | | | 228.600 | 364.000 | 296.875 | 296.875 | 3.3 | 3.3 | 2,370 | 5,550 | 242,000 | 565,000 | | | | 425.450 | 349.250 | 361.950 | 6.4 | 3.5 | 3,450 | 8,250 | 355,000 | 845,000 | | | 234.950 | 327.025 | 196.850 | 196.850 | 3.3 | 1.5 | 1,370 | 3,700 | 140,000 | 380,000 | | | 240 | 338 | 248 | 248 | 3 | 4 | 1,870 | 4,950 | 191,000 | 505,000 | | | 241.478 | 350.838 | 228.600 | 228.600 | 3.3 | 1.5 | 1,610 | 4,000 | 164,000 | 410,000 | | | 244.475 | 327.025 | 193.675 | 193.675 | 3.3 | 1.5 | 1,430 | 4,100 | 146,000 | 415,000 | | | | 381.000 | 304.800 | 304.800 | 4.8 | 3.3 | 2,220 | 5,750 | 227,000 | 590,000 | | | 245 | 380 | 255.5 | 254 | 6.4 | 1.5 | 2,060 | 4,750 | 210,000 | 485,000 | | | 250 | 365 | 270 | 270 | 3 | 1.5 | 2,150 | 6,150 | 219,000 | 630,000 | | | | 365 | 270 | 270 | 3 | 2 | 2,150 | 6,150 | 219,000 | 630,000 | | | | 370 | 220 | 220 | 4 | 4 | 2,050 | 5,750 | 209,000 | 590,000 | | | 254.000 | 358.775 | 269.875 | 269.875 | 3.3 | 3.3 | 2,390 | 6,550 | 244,000 | 670,000 | | | | 368.300 | 204.622 | 204.470 | 3.3 | 1.5 | 1,350 | 3,250 | 138,000 | 330,000 | | | | 444.500 | 279.400 | 279.400 | 6.4 | 3.3 | 2,890 | 5,900 | 294,000 | 600,000 | | | 260 | 360 | 272 | 272 | 2.5 | 1 | 2,080 | 5,750 | 212,000 | 585,000 | | | | 368 | 268 | 268 | 4 | 5 | 1,990 | 5,700 | 203,000 | 580,000 | | | | 400 | 220 | 220 | 4 | 5 | 1,970 | 4,400 | 201,000 | 445,000 | | | | 400 | 255 | 255 | 7.5 | 4 | 2,210 | 5,300 | 225,000 | 540,000 | | | 260.350 | 365.125 | 228.600 | 228.600 | 6.4 | 3.3 | 1,750 | 4,550 | 178,000 | 465,000 | | | | 400.050 | 255.588 | 253.995 | 6.4 | 1.5 | 2,090 | 4,950 | 213,000 | 505,000 | | | | 422.275 | 314.325 | 317.500 | 3.3 | 6.4 | 2,980 | 7,100 | 305,000 | 725,000 | | | 266.700 | 355.600 | 230.188 | 228.600 | 3.3 | 1.5 | 1,840 | 5,350 | 188,000 | 545,000 | | | | 355.600 | 230.188 | 228.600 | 3.3 | 1.5 | 1,430 | 4,350 | 146,000 | 445,000 | | | | 393.700 | 269.878 | 269.878 | 6.4 | 3.3 | 2,110 | 6,000 | 216,000 | 610,000 | | **¹** Minimum allowable dimension for chamfer dimension r or r, #### **Equivalent bearing load** dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | | |---|----------|-----------------------------------|-------|--|--|--|--|--| | X | Y | X | Y | | | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | | static Por=Fr+YoFa | Bearing numbers | Abı | ıs | Constant | stant Axial load factors | | | Mass | | | | |---|--------------------------|--------------------------------|----------------------|--------------------------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------| | | | | mm | | | | | | | kg | | | $d_{ m a}$ | D_{a} | $S_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | 623044
CRO-4409 | 250.5
250.5 | 312.5
312.5 | 5.5
6 | 2.5
2.5 | 3
2.5 | 0.37
0.37 | 1.80
1.80 | 2.69
2.69 | 1.76
1.76 | 63.2
64.5 | | | | 293 | 4 | 1.5 | 2.5 | 0.33 | 2.03 | 3.02 | | | | *T-M244249D/M244210/M244210D | 235 | 293 | 4 | 1.5 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 60.2 | | CRO-4606
* EE700090D/700167/700168D | 262
263 | 332
381 | 6.5
3 | 3.3
6.4 | 3.3
3.5 | 0.32
0.33 | 2.12
2.03 | 3.15
3.02 | 2.07
1.98 | 117.9
232 | | * T-8576D/8520/8520D | 250 | 305 | 5 | 3.3 | 1.5 | 0.41 | 1.66 | 2.47 | 1.62 | 53.6 | | 625948A (CRO-4825) | 260.5 | 312 | 6 | 3 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 70 | | * EE127097D/127137/127137D | 262 | 325 | 6.5 | 3.3 | 1.5 | 0.35 | 1.91 | 2.85 | 1.87 | 76.4 | | *LM247748D/LM247710/LM247710DA
*EE126096D/126150/126151D | 257
262 | 310
343 | 5
6.5 | 3.3
3.3 | 1.5
4.8 | 0.32
0.52 | 2.09
1.31 | 3.11
1.95 | 2.04
1.28 | 46.1
132 | | CRO-4901 | 275.5 | 344.5 | 6.5 | 6.4 | 1.5 | 0.37 | 1.80 | 2.69 | 1.76 | 106.7 | | CRO-5004
CRO-5012
CRO-5001 | 275
279
276 | 339
332.5
344 | 5
6
6 | 2.5
3
3 | 1.5
2
3 | 0.33
0.33
0.26 | 2.03
2.03
2.55 | 3.02
3.02
3.80 | 1.98
1.98
2.49 | 82.1
96.7
87 | | *T-M249748D/M249710/M249710D
*EE171000D/171450/171451D
*EE822101D/822175/822176D | 272.5
269
289 | 335
340
406 | 5
6
8 | 2.5
3.3
6.4 | 2.5
1.5
3.3 | 0.33
0.36
0.34 | 2.03
1.85
1.98 | 3.02
2.76
2.94 | 1.98
1.81
1.93 | 85.6
71.8
185 | | CRO-5218
625952
623052
CRO-5215 | 279
287
292
290 | 332.5
338.5
366.5
359 | 6.5
6
6.5
8 | 2.5
3
3
6 | 1
3
3
3 | 0.41
0.33
0.37
0.39 | 1.66
2.03
1.80
1.71 | 2.47
3.02
2.69
2.54 | 1.62
1.98
1.76
1.67 | 74.2
90.3
98.9
106 | | * EE134102D/134143/134144D
* EE221027D/221575/221576D
* HM252349D/HM252310/HM252310D | 282
292
290 | 340
367
392 | 6.5
8
5.5 | 6.4
6.4
3.3 | 3.3
1.5
6.4 | 0.37
0.39
0.33 | 1.80
1.71
2.03 | 2.69
2.54
3.02 | 1.76
1.67
1.98 | 76.5
117
180 | | * T-LM451349D/LM451310/LM451310D (CRO-5307) * CRO-5305 * EE275106D/275155/275156D | 281
281
292 | 335
330.5
367 | 6.5
3.5
5 | 3.3
3.3
6.4 | 1.5
1.5
3.3 | 0.36
0.37
0.40 | 1.87
1.83
1.68 | 2.79
2.72
2.50 | 1.83
1.79
1.64 | 62
62.3
116 | | *EE275106D/275155/275156D 292 367 5 6.4 3.3 0.40 1.68 2.50 1. Remarks: 1. Bearing numbers marked "*" designate inch system bearings. 2. The bearing where parentheses adhered abolished inner ring spacer. B-185 | | | | | | | | | 1.64 | 116 | #### d 269.875~304.800mm | | Boundary dimensions | | | | | | Basic load ratings dynamic static dynamic st | | | | | | |---------|---|---|---|---------------------------------|---------------------------------|---|--|---|---|--|--|--| | | | mm | | | | ki | | dynamic
kç | static
gf | | | | | d | D | B_2 | C_2 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | | 269.875 | 381.000 | 282.575 | 282.575 | 3.3 | 3.3 | 2,470 | 6,850 | 252,000 | 700,000 | | | | | 270 | 410 | 222 | 222 | 4 | 4 | 1,910 | 4,550 | 195,000 | 465,000 | | | | | 275 | 385 | 200 | 200 | 3 | 3 | 1,610 | 4,250 | 165,000 | 435,000 | | | | | 276.225 | 406.400 | 268.290 | 260.355 | 6.4 | 1.5 | 2,110 | 6,000 | 216,000 | 610,000 | | | | | 279.400 | 381.000
393.700
419.100
469.900 | 269.875
269.875
292.100
346.075 | 269.875
269.875
292.100
349.250 | 3.3
6.4
6.4
3.3 | 1.5
1.5
3.3
6.4 | 2,240
1,940
2,770
3,500 | 6,450
5,350
6,950
8,700 | 229,000
197,000
283,000
355,000 | 655,000
545,000
705,000
885,000 | | | | | 279.578 | 380.898 | 244.475 | 244.475 | 3.3 | 1.5 | 1,950 | 6,200 | 199,000 | 635,000 | | | | | 280 | 380
395 | 290
288 | 290
288 | 3.1
4 | 1.7
5 | 2,470
2,560 | 7,250
7,100 | 252,000
261,000 | 740,000
725,000 | | | | | 285.750 | 380.898 | 244.475 | 244.475 | 3.3 | 1.5 | 1,950 | 6,200 | 199,000 | 635,000 | | | | | 288.925 | 406.400 | 298.450 | 298.450 | 3.3 | 3.3 | 2,980 | 8,300 | 305,000 | 850,000 | | | | | 292.100 | 476.250 | 296.047 | 292.100 | 3.3 | 1.5 | 3,050 | 6,800 | 310,000 | 695,000 | | | | | 300 | 424
430
430
460
470
470
500 | 310
280
300
360
270
292
332 | 310
280
300
360
270
292
332 | 4
4
4
4
4
4
5 | 5
4
4
4
4
4
6 | 2,570
2,690
2,690
4,050
3,200
3,500
3,600 | 7,450
7,100
7,100
10,100
7,250
8,300
8,100 | 262,000
275,000
275,000
415,000
325,000
360,000
370,000 | 760,000
725,000
725,000
1,030,000
740,000
845,000
825,000 | | | | | 300.038 | 422.275 | 311.150 | 311.150 | 3.3 | 3.3 | 3,350 | 9,600 | 340,000 | 980,000 | | | | | 304.648 | 438.048
438.048 | 279.400
280.990 | 279.400
279.400 | 3.3
4.8 | 3.3
3.3 | 2,470
2,630 | 6,500
6,900 | 252,000
268,000 | 665,000
700,000 | | | | | 304.800 | 419.100
444.500 | 269.875
247.650 | 269.875
241.300 | 6.4
1.5 | 1.5
8 | 2,390
1,850 | 6,850
4,600 | 244,000
188,000 | 695,000
470,000 | | | | $[\]textcircled{1} \ \ \ \text{Minimum allowable dimension for chamfer dimension } r \text{ or } r_{\text{i}}.$ # **Equivalent bearing load** dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_s}{F_1}$ | >e | |---|----------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e, Y_2 and Y_0 see the table below. | Bearing numbers | Abı | utment ar | nd fillet di | mensior | ns | Constant | Axia | al load fac | ctors | Mass | |---|---|---
----------------------------------|----------------------------|---------------------------------|--|--|--|--|---| | | | | mm | | | | | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $S_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | e | Y_1 | Y_2 | Y_{o} | (approx.) | | | | | | | | | • | 2 | • | (-117 | | * T-M252349D/M252310/M252310D | 290 | 356 | 6 | 2.5 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 97.5 | | CRO-5403 | 305 | 382 | 6 | 3 | 3 | 0.27 | 2.49 | 3.71 | 2.43 | 91 | | CRO-5501 | 300 | 355 | 6 | 2.5 | 2.5 | 0.40 | 1.68 | 2.50 | 1.64 | 62.5 | | * EE275109D/275160/275161D | 293.6 | 366 | 8 | 6.4 | 1.5 | 0.40 | 1.68 | 2.69 | 1.64 | 122 | | * CRO-5628
* EE135111D/135155/135156D
CRO-5614
* EE722111D/722185/722186D | 298.5
297
312.5
316 | 353
368
383.5
432 | 5
6.5
6
5 | 2.5
5
5
3.3 | 1.5
1.5
2.5
6.4 | 0.37
0.40
0.37
0.37 | 1.80
1.68
1.80
1.78 | 2.69
2.50
2.69
2.65 | 1.76
1.64
1.76
1.74 | 79.6
103
141
258 | | * T-LM654644D/LM654610/LM654610D (CRO-5679) | 297 | 356 | 5 | 3.3 | 1.5 | 0.43 | 1.56 | 2.33 | 1.52 | 83.2 | | CRO-5650 (CRO-5676)
625956 (CRO-5684) | 300
304.5 | 354
363.5 | 6.5
7 | 2.5
3 | 1.5
4 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 105
111 | | * T-LM654648D/LM654610/LM654610D (CRO-5710) | 302 | 356 | 5 | 1.5 | 2.5 | 0.43 | 1.56 | 2.33 | 1.53 | 82.5 | | * M255449D/M255410/M255410DA | 310 | 379 | 5 | 3.3 | 3.3 | 0.34 | 2.00 | 2.98 | 1.96 | 125 | | *EE921150D/921875/921876D | 321 | 441 | 7 | 3.3 | 1.5 | 0.29 | 2.30 | 3.42 | 2.25 | 208 | | 625960
CRO-6019
CRO-6022
CRO-6015
☆CRO-6012
☆CRO-6013 (CRO-6033)
623160 | 329
325.5
323
330
338
336
346.5 | 389.5
395.5
394
427
438
437
449 | 7
8
3
10
7
7
5 | 3
3
3
3
3
4 | 4
3
3
3
3
3
4 | 0.33
0.47
0.47
0.31
0.37
0.37 | 2.03
1.45
1.45
2.21
1.80
1.80
1.68 | 3.02
2.16
2.16
3.29
2.69
2.69
2.50 | 1.98
1.42
1.42
2.16
1.76
1.76 | 138
132
141
180
152
164
257 | | ☆ * T-HM256849D/HM256810/HM256810DG2 | 322 | 394 | 6 | 3.3 | 3.3 | 0.34 | 2.00 | 2.98 | 1.95 | 143 | | * EE329119D/329172/329173D
* M757448D/M757410/M757410D | 328
328 | 409
407 | 8
7 | 3.3
4.8 | 3.3
3.3 | 0.33
0.47 | 2.04
1.43 | 3.04
2.12 | 2.00
1.39 | 143
140 | | * M257149D/M257110/M257110D
* EE291202D/291750/291751D | 322
328 | 392
416 | 5
9.5 | 6.4
1.5 | 1.5
8 | 0.33
0.38 | 2.03
1.78 | 3.02
2.65 | 1.98
1.74 | 115
127 | Remarks: 1. Bearing numbers marked "*" designate inch system bearings. 2. Bearing numbers marked "%" designate bearing with hollow rollers and pin type cages. 3. The bearing where parentheses adhered abolished inner ring spacer. #### *d* 304.800∼355mm | | Bou | ndary dimensi | ons | | | dynamic | Basic loa | nd ratings | static | |---------|--------------------|--------------------|--------------------|---------------|----------------|----------------|-----------------|--------------------|----------------------| | | | mm | | | | dynamic
k | | dynamic
ko | | | d | D | B_2 | C_2 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 304.800 | 495.300 | 342.900 | 349.250 | 6.4 | 3.3 | 3,650 | 9,400 | 370,000 | 960,000 | | 304.902 | 412.648 | 266.700 | 266.700 | 3.3 | 3.3 | 2,610 | 7,450 | 267,000 | 760,000 | | 305.003 | 438.048 | 280.990 | 279.400 | 4.8 | 3.3 | 2,630 | 6,900 | 268,000 | 700,000 | | 310 | 430
430 | 310
310 | 310
310 | 4
5.5 | 2.2
2.2 | 2,880
3,050 | 8,100
8,600 | 294,000
310,000 | 825,000
875,000 | | 317.500 | 422.275
447.675 | 269.875
327.025 | 269.875
327.025 | 3.3
3.3 | 1.5
3.3 | 2,260
3,400 | 7,050
9,550 | 231,000
345,000 | 715,000
995,000 | | 320 | 460 | 338 | 338 | 4 | 5 | 2,940 | 8,650 | 300,000 | 880,000 | | 327 | 445 | 230 | 230 | 4 | 2 | 2,150 | 5,650 | 219,000 | 575,000 | | 330 | 470
510 | 340
340 | 340
340 | 2.5
6 | 2.5
6 | 3,150
3,900 | 10,200
9,650 | 320,000
395,000 | 1,040,000
985,000 | | 330.200 | 482.600
533.400 | 306.388
254.000 | 311.150
254.000 | 3.3
6 | 1.5
6 | 2,810
3,200 | 7,900
6,750 | 287,000
330,000 | 805,000
690,000 | | 333.375 | 469.900 | 342.900 | 342.900 | 3.3 | 3.3 | 4,000 | 11,000 | 405,000 | 1,130,000 | | 340 | 480
520 | 350
278 | 350
278 | 5
5 | 6
6 | 3,450
3,250 | 10,400
7,500 | 350,000
330,000 | 1,060,000
765,000 | | 341.312 | 457.098 | 254.000 | 254.000 | 3.3 | 1.5 | 2,370 | 6,900 | 241,000 | 705,000 | | 342.900 | 533.400 | 307.985 | 301.625 | 3.3 | 3.3 | 3,150 | 6,900 | 320,000 | 705,000 | | 343.052 | 457.098
457.098 | 254.000
254.000 | 254.000
254.000 | 3.3
3.3 | 1.5
1.5 | 2,370
2,430 | 6,900
6,750 | 241,000
248,000 | 705,000
685,000 | | 346.075 | 488.950 | 358.775 | 358.775 | 3.3 | 3.3 | 4,350 | 12,800 | 445,000 | 1,300,000 | | 347.662 | 469.900 | 292.100 | 292.100 | 3.3 | 3.3 | 3,200 | 9,100 | 325,000 | 925,000 | | 355 | 490 | 316 | 316 | 3.3 | 1.5 | 3,500 | 10,000 | 355,000 | 1,020,000 | lacktriangled Minimum allowable dimension for chamfer dimension r or r_1 . # **Equivalent bearing load** dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_s}{F_1}$ | >e | |---|----------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static Por=Fr+YoFa For values of e, Y_2 and Y_0 see the table below. | Bearing numbers | Abı | utment ar | nd fillet di | mensior | ns | Constant | Axia | Axial load factors | | | | |--|--------------|------------------|----------------|-----------------|------------------|--------------|--------------|--------------------|--------------|------------|--| | | | | mm | | | | | | | kg | | | | $d_{ m a}$ | D_{a} | $S_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | | * EE724121D/724195/724196D | 330 | 450 | 3 | 6.4 | 3.3 | 0.40 | 1.68 | 2.50 | 1.64 | 273 | | | * M257248D/M257210/M257210D | 325 | 388 | 5 | 3.3 | 3.3 | 0.32 | 2.12 | 3.15 | 2.07 | 107 | | | *M757449D/M757410/M757410D | 328 | 407 | 7 | 4.8 | 3.3 | 0.47 | 1.43 | 2.12 | 1.39 | 139 | | | CRO-6213
CRO-6204 | 333
333.5 | 396.5
397.5 | 8.5
7.5 | 3
4 | 2
2 | 0.40
0.33 | 1.68
2.03 | 2.50
3.02 | 1.64
1.98 | 133
136 | | | LM258649D/LM258610/LM258610D (CRO-6431)
*T-HM259049D/HM259010/HM259010D | 334
339.6 | 398
418 | 7
5 | 3.3
2.5 | 1.5
2.5 | 0.32
0.33 | 2.10
2.02 | 3.13
3.00 | 2.06
1.97 | 110
161 | | | 625964 | 355 | 420.5 | 7 | 3 | 4 | 0.33 | 2.03 | 3.02 | 1.98 | 183 | | | CRO-6501 | 353.5 | 416 | 5.5 | 3 | 2 | 0.33 | 2.03 | 3.02 | 1.98 | 99.8 | | | CRO-6604
CRO-6602 | 366
366 | 440
469 | 5.5
5 | 2
5 | 2
5 | 0.33
0.40 | 2.02
1.68 | 3.00
2.50 | 1.97
1.64 | 141
221 | | | *EE526131D/526190/526191D
*CRO-6606 | 351
378.5 | 448
488 | 3
6.5 | 3.3
5 | 1.5
5 | 0.39
0.37 | 1.72
1.80 | 2.56
2.69 | 1.68
1.76 | 197
221 | | | *HM261049D/HM261010/HM261010DA | 357 | 439 | 5 | 2.5 | 2.5 | 0.33 | 2.02 | 3.00 | 1.97 | 187 | | | 625968
623068 | 373
382.5 | 440
478 | 7
6.5 | 4
4 | 5
4 | 0.33
0.37 | 2.03
1.80 | 3.02
2.69 | 1.98
1.76 | 200
213 | | | *LM761648D/LM761610/LM761610D | 359 | 432 | 5 | 1.5 | 2.5 | 0.47 | 1.43 | 2.12 | 1.40 | 125 | | | *EE971355D/972100/972103D | 378 | 502 | 11 | 3.3 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 252 | | | *LM761649D/LM761610/LM761610D (CRO-6945)
CRO-6910 (CRO-6944) | 361
361 | 432
426 | 5
5 | 3.3
3.3 | 1.5
1.5 | 0.47
0.47 | 1.43
1.43 | 2.12
2.12 | 1.39
1.40 | 117
105 | | | ☆ * T-HM262749D/HM262710/HM262710DG2 | 371 | 456 | 6 | 2.5 | 2.5 | 0.33 | 2.02 | 3.00 | 1.97 | 227 | | | * M262449D/M262410/M262410D | 369 | 443 | 8 | 3.3 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 148 | | | CRO-7105 | 378 | 450 | 7 | 3.3 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 170 | | Remarks: 1. Bearing numbers marked "*" designate inch system bearings. 2. Bearing numbers marked "%" designate bearing with hollow rollers and pin type cages. 3. The bearing where parentheses adhered abolished inner ring spacer. #### *d* 355.600∼406.400mm | | Bou | ndary dimensi | ons | | | dynamic | Basic loa | d ratings
dynamic | static | |---------|---------|---------------|---------|-----------------|----------------|------------|-------------|----------------------|-------------| | | | mm | | | | , | N | kç | | | d | D | B_2 | C_2 | $r_{ m s min}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 444.500 | 241.300 | 241.300 | 3.3 | 1.5 | 1,760 | 6,200 | 180,000 | 635,000 | | | 457.200 | 252.412 | 252.412 | 3.3 | 1.5 | 2,470 | 7,850 | 251,000 | 800,000 | | 355.600 | 482.600 | 265.112 | 269.875 | 3.3 | 1.5 | 2,790 | 7,650 | 285,000 | 780,000 | | | 488.950 | 317.500 | 317.500 | 3.3 | 1.5 | 3,500 | 10,000 | 350,000 | 1,020,000 | | | 508 | 370 | 370 | 5 | 6 | 3,700 | 11,200 | 380,000 | 1,140,000 | | | 520 | 370 | 370 | 5.5 | 3.5 | 4,500 | 12,300 | 455,000 | 1,260,000 | | 360 | 520 | 410 | 410 | 5 | 5 | 5,150 | 14,700 | 525,000 | 1,500,000 | | | 540 | 340 | 340 | 5 | 3 | 4,350 | 11,100 | 445,000 | 1,130,000 | | | 600 | 540 | 540 | 5 | 5 | 6,700 | 18,100 | 685,000 | 1,840,000 | | | 600 | 396 | 396 | 5 | 6 | 5,500 | 13,000 | 560,000 | 1,320,000 | | 000 000 | 523.875 | 382.588 | 382.588 | 6.4 | 3.3 | 4,450 | 13,100 |
455,000 | 1,330,000 | | 368.300 | 596.900 | 342.900 | 342.900 | 6.4 | 6.4 | 4,600 | 10,600 | 470,000 | 1,090,000 | | 374.650 | 501.650 | 250.825 | 260.350 | 3.3 | 1.5 | 2,360 | 6,250 | 241,000 | 640,000 | | | 536 | 390 | 390 | 5 | 6 | 4,900 | 14,100 | 500,000 | 1,440,000 | | | 560 | 282 | 282 | 5 | 6 | 3,550 | 8,700 | 365,000 | 890,000 | | 380 | 560 | 285 | 285 | 5 | 5 | 3,250 | 7,700 | 330,000 | 785,000 | | | 560 | 360 | 360 | 6 | 1.5 | 4,650 | 12,100 | 470,000 | 1,230,000 | | | 560 | 360 | 360 | 5 | 1.5 | 5,050 | 13,500 | 515,000 | 1,380,000 | | 384.175 | 546.100 | 400.050 | 400.050 | 6.4 | 3.3 | 5,400 | 16,100 | 550,000 | 1,640,000 | | 385.762 | 514.350 | 317.500 | 317.500 | 3.3 | 3.3 | 3,650 | 11,100 | 370,000 | 1,130,000 | | 390 | 510 | 350 | 350 | 3.5 | 1.5 | 3,700 | 11,800 | 375,000 | 1,210,000 | | 393.700 | 546.100 | 288.925 | 288.925 | 6.4 | 1.5 | 3,200 | 10,200 | 325,000 | 1,040,000 | | 395 | 545 | 268.7 | 288.7 | 7.5 | 4 | 2,970 | 8,650 | 305,000 | 880,000 | | | 560 | 380 | 380 | 5 | 5 | 4,800 | 14,100 | 490,000 | 1,440,000 | | 400 | 564 | 412 | 412 | 5 | 6 | 4,850 | 14,700 | 495,000 | 1,500,000 | | | 635 | 470 | 470 | 5 | 2.5 | 7,200 | 18,000 | 735,000 | 1,840,000 | | 406.400 | 546.100 | 268.288 | 288.925 | 6.4 | 1.5 | 2,290 | 6,550 | 233,000 | 670,000 | | TUU-TUU | 546.100 | 288.925 | 288.925 | 6.4 | 1.5 | 3,200 | 10,200 | 325,000 | 1,040,000 | lacktriangled Minimum allowable dimension for chamfer dimension r or r_1 . # Equivalent bearing load dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_s}{F_1}$ | >e | |---|----------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static Por=Fr+YoFa | Bearing numbers | Abı | utment an | d fillet di | mension | ıs | Constant | Axia | al load fac | ctors | Mass | |---|--------------|-------------|------------------|--------------|--------------|----------|--------------|-------------|-------------|-----------| | | | | mm | | | | | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | S_{a} | $r_{\rm as}$ | $r_{ m las}$ | | | | | | | | | | min | max | max | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | | | | | | | | | | | | | * L163149D/L163110/L163110D | 370 | 422 | 6.5 | 3.3 | 1.5 | 0.31 | 2.20 | 3.27 | 2.15 | 89.5 | | * LM263149D/LM263110/LM263110D | 372 | 434 | 6 | 3.3 | 1.5 | 0.32 | 2.12 | 3.15 | 2.07 | 106 | | * LM763449D/LM763410/LM763410D | 375 | 453 | 3 | 3.3 | 1.5 | 0.47 | 1.43 | 2.14 | 1.40 | 145 | | * M263349D/M263310/M263310D (CRO-7123) | 374 | 459 | 5 | 3.3 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 173 | | 625972 (CRO-7227) | 394 | 466.5 | 7 | 4 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 236 | | CRO-7220 | 391 | 0 | 5 | 4.5 | 3 | 0.33 | 2.03 | 3.02 | 1.98 | 260 | | ☆CRO-7217 | 396 | 478 | 8.5 | 4 | 4 | 0.33 | 2.03 | 3.02 | 1.98 | 297 | | CRO-7211 | 400 | 496 | 5 | 4 | 2.5 | 0.33 | 2.03 | 3.02 | 1.98 | 270 | | CRO-7210 | 400 | 550 | 8 | 4 | 4 | 0.36 | 1.89 | 2.81 | 1.98 | 520 | | 623172 (CRO-7228) | 414.6 | 541.5 | 8 | 4 | 4.5 | 0.40 | 1.68 | 2.50 | 1.64 | 447 | | ☆ * HM265049D/HM265010/HM265010DG2 (CRO-7406) | 393.7 | 487 | 6 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 280 | | * EE181455D/182350/182351D | 393.7
421 | 541 | 7.5 | 6.4 | 5.3
6.4 | 0.33 | 2.03
1.62 | 2.42 | 1.59 | 373 | | * EE101433D/102330/102331D | 421 | 541 | 7.5 | 0.4 | 0.4 | 0.42 | 1.02 | 2.42 | 1.59 | 3/3 | | *LM765149D/LM765110/LM765110D | 393 | 472 | 2 | 3.3 | 1.5 | 0.47 | 1.43 | 2.12 | 1.40 | 145 | | 625976 | 410 | 494 | 8 | 4 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 277 | | 623076 | 421 | 518 | 6.5 | 4 | 4 | 0.37 | 1.80 | 2.69 | 1.76 | 240 | | CRO-7612 | 417 | 525 | 7 | 4 | 4 | 0.40 | 1.68 | 2.50 | 1.64 | 208 | | CRO-7622 | 416 | 514 | 7 | 5 | 1.5 | 0.40 | 1.68 | 2.50 | 1.64 | 302.22 | | ☆CRO-7621 | 423 | 515 | 6.5 | 4 | 1.5 | 0.40 | 1.68 | 2.50 | 1.64 | 312 | | ☆ * T-HM266449D/HM266410/HM266410DG2 | 411 | 507 | 6.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 312 | | *LM665949D/LM665910/LM665910D | 409 | 482 | 7 | 2.5 | 2.5 | 0.42 | 1.61 | 2.40 | 1.58 | 240 | | CRO-7801 | 411 | 478 | 7 | 3 | 1.5 | 0.33 | 2.03 | 3.02 | 1.98 | 186 | | *LM767745D/LM767710/LM767710D | 418 | 510 | 6.5 | 6.4 | 1.5 | 0.48 | 1.42 | 2.11 | 1.38 | 219 | | CRO-7901 | 434 | 508 | 3 | 6 | 3 | 0.48 | 1.42 | 2.11 | 1.39 | 200 | | ☆CRO-8005 | 436 | 515 | 8 | 4 | 4 | 0.40 | 1.68 | 2.50 | 1.64 | 300 | | 625980 | 434 | 518.5 | 7 | 4 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 324 | | CRO-8010 | 447 | 579 | 6.5 | 4 | 2 | 0.33 | 2.03 | 3.02 | 1.98 | 564 | | * EE234161D/234215/234216D | 438 | 505 | 1.5 | 6.4 | 1.5 | 0.47 | 1.43 | 2.12 | 1.40 | 190 | | * LM767749D/LM767710/LM767710D | 427 | 510 | 6.5 | 6.4 | 1.5 | 0.48 | 1.42 | 2.11 | 1.38 | 201 | ### d 406.400~488.950mm | | Bou | ındary dimensi | ons | | | ali un a | Basic loa | | | |--------------|---------|----------------|---------|---------------|------------------|--------------|-------------|---------------|--------------| | | | mm | | | | dynamic
k | static
N | dynamic
kç | static
gf | | d | D | B_2 | C_2 | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | _ | _ | | | | | | | | | 565.150 | 381.000 | 381.000 | 6.4 | 3.3 | 4,750 | 14,100 | 485,000 | 1,440,000 | | 406.400 | 590.550 | 400.050 | 400.050 | 6.4 | 3.3 | 4,850 | 13,600 | 490,000 | 1,380,000 | | | 609.600 | 309.562 | 317.500 | 6.4 | 3.5 | 3,700 | 9,600 | 380,000 | 980,000 | | 409.575 | 546.100 | 334.962 | 334.962 | 6.4 | 1.5 | 4,100 | 12,700 | 415,000 | 1,290,000 | | 415.925 | 590.550 | 434.975 | 434.975 | 6.4 | 3.3 | 6,300 | 18,900 | 640,000 | 1,930,000 | | 400 | 592 | 432 | 432 | 5 | 6 | 5,350 | 16,300 | 545,000 | 1,660,000 | | 420 | 650 | 460 | 460 | 5 | 5 | 6,950 | 18,300 | 710,000 | 1,870,000 | | | 571.500 | 279.400 | 279.400 | 3.3 | 1.5 | 3,200 | 9,850 | 330,000 | 1,010,000 | | 431.800 | 571.500 | 336.550 | 336.550 | 6.4 | 1.5 | 3,700 | 11,800 | 380,000 | 1,200,000 | | | 635.000 | 355.600 | 355.600 | 6.4 | 6.4 | 5,650 | 15,000 | 580,000 | 1,530,000 | | 432.003 | 609.524 | 317.500 | 317.500 | 6.4 | 3.5 | 4,350 | 11,500 | 445,000 | 1,170,000 | | | 620 | 454 | 454 | 6 | 6 | 6,500 | 19,900 | 665,000 | 2,030,000 | | 440 | 635 | 470 | 470 | 6.4 | 3.3 | 7,100 | 22,100 | 725,000 | 2,260,000 | | 440 | 650 | 355 | 355 | 7.5 | 4 | 5,350 | 13,400 | 545,000 | 1,370,000 | | | 650 | 460 | 460 | 6 | 6 | 6,750 | 20,700 | 690,000 | 2,110,000 | | 447.675 | 635.000 | 463.550 | 463.550 | 6.4 | 3.3 | 7,100 | 22,100 | 725,000 | 2,260,000 | | | 596.900 | 276.225 | 279.400 | 3.3 | 1.5 | 2,900 | 9,150 | 296,000 | 935,000 | | 457.200 | 596.900 | 276.225 | 279.400 | 3.3 | 1.6 | 2,870 | 9,400 | 292,000 | 955,000 | | | 660.400 | 323.850 | 323.847 | 6.4 | 3.3 | 4,150 | 11,200 | 425,000 | 1,140,000 | | 460 | 650 | 474 | 474 | 6 | 6 | 6,500 | 19,900 | 665,000 | 2,030,000 | | 475 | 660 | 450 | 450 | 5 | 3 | 6,300 | 20,400 | 645,000 | 2,080,000 | | | 678 | 494 | 494 | 6 | 6 | 6,250 | 19,600 | 640,000 | 2,000,000 | | 480 | 678 | 494 | 494 | 6 | 6 | 6,250 | 19,600 | 640,000 | 2,000,000 | | .00 | 700 | 390 | 390 | 6 | 6 | 4,700 | 13,400 | 480,000 | 1,370,000 | | 482.600 | 615.950 | 330.200 | 330.200 | 6.4 | 3.3 | 4,000 | 13,400 | 405,000 | 1,370,000 | | 488.950 | 660.400 | 365.125 | 361.950 | 6.4 | 8 | 5,350 | 16,100 | 550,000 | 1,640,000 | | A 100 | | | | | - | -, | , . • • | , | ., , | lacktriangled Minimum allowable dimension for chamfer dimension r or r. # **Equivalent bearing load** dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_s}{F_1}$ | >e | |---|----------|-------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | static Por=Fr+YoFa | Bearing numbers | Ab | utment an | d fillet di | mension | ıs | Constant | Axia | Mass | | | |------------------------------------|------------|-------------|------------------|--------------|--------------|----------|-------|-------|-------------|-----------| | | | | mm | | | | | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | S_{a} | $r_{\rm as}$ | $r_{ m las}$ | | | | | | | | | | min | max | max | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | CRO-8103 | 441 | 525 | 6.5 | 6.4 | 3.3 | 0.35 | 1.95 | 2.90 | 1.91 | 310 | | * EE833161D/833232/833233D | 448 | 549 | 6.5 | 6.4 | 3.3 | 0.33 | 2.07 | 3.09 | 2.03 | 395 | | * EE911603D/912400/912401D | 441 | 568 | 1.5 | 6.4 | 3.5 | 0.38 | 1.76 | 2.62 | 1.72 | 332 | | ☆ * M667947D/M667911/M667911DG2 | 431 | 510 | 5.5 | 6.4 | 1.5 | 0.42 | 1.61 | 2.40 | 1.57 | 226 | | ☆ * T-M268749D/M268710/M268710DG2 | 444 | 549 | 9 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 421 | | 625984 (CRO-8414) | 457 | 545 | 7 | 4 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 374 | | CRO-8402 | 455 | 593 | 8 | 4 | 4 | 0.33 | 2.03 | 3.02 | 1.98 | 600 | | *T-LM869449D/LM869410/LM869410D | 453 | 537 | 8 | 1.5 | 2.5 | 0.55 | 1.24 | 1.84 | 1.21 | 193 | | *LM769349D/LM769310/LM769310D | 453 | 534 | 6.5 | 6.4 | 1.5 | 0.44 | 1.52 | 2.26 | 1.49 | 232 | | ☆ * EE931170D/931250/931251XDG2 | 490 | 607 | 6.6 | 5 | 5 | 0.32 | 2.12 | 3.15 | 2.07 | 402 | | EE736173D/736238/736239D | 464 | 572 | 6.5 | 6.4 | 3.5 | 0.35 | 1.95 | 2.90 | 1.91 | 297 | | 625988 (CRO-8839) | 479 | 572.5 | 8 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.64 | 430 | | ☆CRO-8808 | 494 | 607 | 9 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 498 | | ☆CRO-8807 | 484 | 607 | 9 | 6 | 3 | 0.33 | 2.03 | 3.02 | 1.98 | 400 | | CRO-8806 | 483 | 595 | 11 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 600 | | ☆ * M270749D/M270710/M270710DG2 | 478 | 591 | 8 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 509 | | * L770849D/L770810/L770810D | 478 | 567 | 5.5 | 3.3 | 1.5 | 0.47 | 1.43 | 2.12 | 1.39 | 201 | | * EE244181D/244235/244236D | 490 | 583 | 5.5 | 2.5 | 3 | 0.40 | 1.67 | 2.49 | 1.63 | 207 | | * EE737179D/737260/737260D | 495 | 616 | 6.5 | 6.4 | 3.3 | 0.37 | 1.80 | 2.69 | 1.76 | 379 | | 625992A | 499 | 598.5 | 7 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 493 | |
CRO-9501 | 506 | 614 | 10 | 4 | 2.5 | 0.34 | 1.98 | 2.94 | 1.93 | 465 | | 625996 | 525 | 623 | 7 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 563 | | CRO-9612 | 524 | 650 | 2 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 554 | | CRO-9602 | 517 | 645 | 8 | 5 | 5 | 0.4 | 1.68 | 2.50 | 1.64 | 436 | | ☆ * LM272249D/LM272210/LM272210DG2 | 504 | 585 | 6.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 250 | | ☆ * T-EE640193D/640260/640261DG2 | 519 | 624 | 9 | 6 | 5 | 0.31 | 2.20 | 3.27 | 2.15 | 364 | #### d 489.026~585.788mm | | Bou | ndary dimension | ons | | | dunamia | | ad ratings | atatia | |---------|---------------------------------|---------------------------------|---------------------------------|------------------|--------------------|---|--|---|---| | | | mm | | | | dynamic
k | static
N | dynamic
kç | static
gf | | d | D | B_2 | C_2 | $r_{ m smin}$ | $r_{ m lsmin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 489.026 | 634.873 | 320.675 | 320.675 | 3.3 | 3.3 | 3,650 | 12,000 | 370,000 | 1,220,000 | | 500 | 670
690
705
730
730 | 515
480
515
420
440 | 515
480
515
420
440 | 5
5
6
6 | 1.5
5
6
6 | 6,900
6,000
8,450
7,450
7,200 | 24,600
19,900
27,100
19,900
20,600 | 700,000
610,000
860,000
760,000
735,000 | 2,510,000
2,020,000
2,760,000
2,030,000
2,100,000 | | 501.650 | 711.200 | 520.700 | 520.700 | 6.4 | 3.3 | 8,650 | 27,300 | 885,000 | 2,790,000 | | 508.000 | 762.000 | 463.550 | 463.550 | 6.4 | 6.4 | 7,800 | 21,400 | 795,000 | 2,180,000 | | 509.948 | 654.924 | 377.000 | 379.000 | 6.4 | 1.5 | 5,100 | 17,600 | 520,000 | 1,790,000 | | 514.350 | 673.100 | 422.275 | 422.275 | 6.4 | 3.3 | 5,950 | 20,500 | 605,000 | 2,090,000 | | 519.112 | 736.600 | 536.575 | 536.575 | 6.4 | 3.3 | 9,100 | 28,700 | 925,000 | 2,930,000 | | 520 | 735 | 535 | 535 | 5 | 7 | 9,100 | 28,700 | 925,000 | 2,930,000 | | 533.400 | 965.200 | 495.300 | 495.300 | 7.5 | 7.5 | 11,100 | 28,700 | 1,130,000 | 2,920,000 | | 536.575 | 761.873 | 558.800 | 558.800 | 6.4 | 3.3 | 10,100 | 30,500 | 1,030,000 | 3,100,000 | | 539.750 | 784.225 | 339.725 | 342.900 | 6.4 | 3.3 | 4,800 | 12,200 | 490,000 | 1,240,000 | | 555.625 | 698.500 | 349.250 | 349.250 | 6.4 | 3.2 | 4,350 | 14,300 | 445,000 | 1,460,000 | | 558.800 | 736.600
736.600 | 322.265
409.575 | 322.268
409.575 | 6.4
6.4 | 3.3
3.3 | 4,300
6,100 | 13,500
20,500 | 435,000
625,000 | 1,380,000
2,090,000 | | 570 | 780
810 | 515
590 | 515
590 | 6
6 | 6
6 | 9,200
11,000 | 31,000
35,500 | 935,000
1,120,000 | 3,150,000
3,600,000 | | 571.500 | 812.800 | 593.725 | 593.725 | 6.4 | 3.3 | 11,900 | 36,500 | 1,220,000 | 3,750,000 | | 584.200 | 762.000 | 396.875 | 401.638 | 6.4 | 3.3 | 6,550 | 22,300 | 670,000 | 2,280,000 | | 585.788 | 771.525 | 479.425 | 479.425 | 6.4 | 3.3 | 8,550 | 29,000 | 875,000 | 2,960,000 | #### **Equivalent bearing load** dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}}$ > e | | | | | |---|----------|-------------------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | Bearing numbers | Abutment and fillet dimensions | | | | | Constant | Axia | al load fac | ctors | Mass | |--|---------------------------------|-----------------------------------|----------------------------|-----------------------|-------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------| | | | | mm | | | | | | | kg | | | $d_{\mathtt{a}}$ | D_{a} | $S_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | e | Y_1 | Y_2 | $Y_{ m o}$ | (approx.) | | * LM772749D/LM772710/LM772710DA | 513 | 600 | 6.5 | 2.5 | 2.5 | 0.47 | 1.43 | 2.12 | 1.40 | 268 | | CRO-10008
CRO-10005
6259/500
☆CRO-10023
☆CRO-10003 | 520
530
553
554
550 | 616
640
649.5
702
683 | 8
7
7.5
7.5
11 | 4
4
5
5
5 | 1.5
4
5
5
5 | 0.40
0.33
0.33
0.40
0.33 | 1.68
2.03
2.03
1.68
2.03 | 2.50
3.02
3.02
2.50
3.02 | 1.64
1.98
1.98
1.64
1.98 | 598
600
632
606
535 | | ☆ * M274149D/M274110/M274110DG2 | 534 | 663 | 9.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 726 | | ☆ * EE531201D/531300/531301XDG2 | 549 | 711 | 9.5 | 5 | 5 | 0.38 | 1.77 | 2.64 | 1.73 | 740 | | ☆CRO-10208 (CRO-10214) | 533.5 | 527 | 5 | 5 | 5 | 0.41 | 1.65 | 2.46 | 1.61 | 320 | | * LM274449D/LM274410/LM274410D | 540 | 648 | 8 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 390 | | ☆ * M275349D/M275310/M275310DG2 (CRO-10408) | 552 | 684 | 9.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 761 | | ☆CRO-10402 | 558 | 688 | 11 | 4 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 750 | | ☆CRO-10702 | 680 | 929.2 | 7.5 | 6 | 6 | 0.32 | 2.12 | 3.15 | 2.07 | 1,662 | | ☆ * M276449D/M276410/M276410DG2 | 564 | 711 | 9.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 890 | | * EE522126D/523087/523088D | 575 | 733 | 6.5 | 6.4 | 3.3 | 0.48 | 1.41 | 2.10 | 1.38 | 552 | | CRO-11101 (CRO-11103) | 579 | 670.5 | 6.5 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 298 | | * EE843221D/843290/843291D (CRO-11217) ☆ * LM377449D/LM377410/LM377410DG2 (CRO-11216) | 585
588 | 699
696 | 8.5
8 | 6.4
6.4 | 3.3
3.3 | 0.34
0.35 | 1.98
1.95 | 2.94
2.90 | 1.93
1.90 | 388
502 | | ☆CRO-11402
☆CRO-11403 | 609
620 | 733
760 | 7.5
10 | 5
5 | 5
5 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 625
845 | | ☆ * M278749D/M278710/M278710DAG2 | 609 | 756 | 11 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 1,080 | | ☆ * LM778549D/LM778510/LM778510DG2 | 615 | 717 | 7 | 6.4 | 3.3 | 0.47 | 1.43 | 2.14 | 1.40 | 511 | | *LM278849D/LM278810/LM278810D | 615 | 726 | 10 | 6.4 | 3.3 | 0.35 | 1.95 | 2.90 | 1.91 | 750 | #### **d** 585.788∼730mm | | Bou | ndary dimensi | ons | | Basic load ratings dynamic static dynamic static | | | | | | |---------|-----------------------|--------------------|--------------------|-------------------|--|----------------------------|----------------------------|-------------------------------------|-------------------------------------|--| | | | mm | | | | • | N | kç | | | | d | D | B_2 | C_2 | $r_{ m s min}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 585.788 | 771.525 | 479.425 | 479.425 | 6.4 | 3.3 | 7,350 | 25,700 | 750,000 | 2,620,000 | | | 595.312 | 844.550
844.550 | 615.950
615.950 | 615.950
615.950 | 6.4
6.4 | 3.3
3.3 | 12,300
12,600 | 39,000
40,500 | 1,250,000
1,290,000 | 4,000,000
4,100,000 | | | 609.600 | 787.400
863.600 | 361.950
660.400 | 361.950
660.400 | 6.4
6.4 | 3.3
3.3 | 6,450
13,500 | 20,300
42,000 | 655,000
1,380,000 | 2,070,000
4,300,000 | | | 611.500 | 832.800 | 593.725 | 593.725 | 6.4 | 3.3 | 11,500 | 37,500 | 1,170,000 | 3,850,000 | | | 630 | 920 | 600 | 600 | 7.5 | 7.8 | 13,100 | 39,000 | 1,340,000 | 3,950,000 | | | 650 | 1,030 | 560 | 560 | 7.5 | 12 | 13,500 | 35,000 | 1,380,000 | 3,550,000 | | | 657.225 | 933.450 | 676.275 | 676.275 | 6.4 | 3.3 | 15,300 | 48,000 | 1,560,000 | 4,900,000 | | | 660 | 1,070 | 642 | 642 | 7.5 | 7.5 | 15,400 | 43,500 | 1,570,000 | 4,450,000 | | | 660.400 | 812.800 | 365.125 | 365.125 | 6.4 | 3.3 | 6,200 | 23,200 | 630,000 | 2,360,000 | | | 670 | 960
1,090
1,090 | 700
710
710 | 700
710
710 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 16,700
19,100
17,400 | 51,500
50,000
47,500 | 1,700,000
1,950,000
1,780,000 | 5,300,000
5,100,000
4,850,000 | | | 679.450 | 901.700 | 552.450 | 552.450 | 6.4 | 3.3 | 11,200 | 38,000 | 1,140,000 | 3,900,000 | | | 680 | 870 | 460 | 460 | 6 | 3 | 7,500 | 27,400 | 765,000 | 2,790,000 | | | 682.625 | 965.200 | 701.675 | 701.675 | 6.4 | 3.3 | 16,100 | 50,500 | 1,640,000 | 5,150,000 | | | 685.800 | 876.300 | 352.425 | 355.600 | 6.4 | 3.3 | 6,050 | 21,800 | 615,000 | 2,220,000 | | | 710 | 900 | 410 | 410 | 5 | 2.5 | 7,650 | 26,900 | 780,000 | 2,740,000 | | | 711.200 | 914.400
914.400 | 317.500
317.500 | 317.500
317.500 | 6.4
6.4 | 3.3
16 | 5,350
5,350 | 17,900
17,900 | 545,000
545,000 | 1,820,000
1,820,000 | | | 730 | 1,070 | 642 | 642 | 7.5 | 7.5 | 15,400 | 46,500 | 1,570,000 | 4,750,000 | | #### **Equivalent bearing load** dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}}$ > e | | | | | |---|----------|-------------------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | static Por=Fr+YoFa | Bearing numbers | Al | outment a | nd fillet di | mensio | าร | Constant | Axia | ıl load fa | ctors | Mass | |--|------------|-------------|----------------|-----------------|------------------|--------------|--------------|--------------|--------------|------------| | | | | mm | | | | | | | kg | | | $d_{ m a}$ | $D_{\rm a}$ | $S_{ m a}$ min | $r_{ m as}$ max | $r_{ m las}$ max | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | | | | | | | | | | | | | ☆CRO-11701 | 628 | 718 | 9.5 | 6.4 | 3.3 | 0.35 | 1.95 | 2.90 | 1.91 | 610 | | ☆CRO-11913 | 654 | 781 | 7 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 1,135 | | ☆ * M280049D/M280010/M280010DG2 | 633 | 786 | 11 | 6.4 | 3.3 | 0.33 |
2.03 | 3.02 | 1.98 | 1,160 | | ☆ * EE649241D/649310/649311DG2 | 636 | 747 | 9.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 458 | | ☆ * M280349D/M280310/M280310DG2 | 659 | 796 | 13.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 1,250 | | ☆CRO-12202 | 660 | 776 | 11.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 960 | | ☆CRO-12604 | 702 | 848 | 7.5 | 6 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 1,390 | | ☆CRO-13001 | 765 | 947 | 8.5 | 6 | 10 | 0.32 | 2.12 | 3.15 | 2.07 | 1,760 | | ☆ * M281649D/M281610/M281610DG2 | 699 | 870 | 11 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 1,630 | | ☆CRO-13202 | 760 | 991 | 9 | 6 | 6 | 0.32 | 2.12 | 3.15 | 2.07 | 1,950 | | ☆ * L281149D/L281110/L281110DG2 | 682.8 | 777 | 9 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 448 | | ☆CRO-13401 | 719 | 901 | 8 | 6 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 1,600 | | ☆CRO-13404 | 782 | 997 | 13.5 | 6 | 6 | 0.29 | 2.32 | 3.45 | 2.26 | 2,690 | | ☆CRO-13402 | 799 | 995 | 13.5 | 6 | 6 | 0.32 | 2.12 | 3.15 | 2.07 | 2,600 | | ☆ * LM281849D/LM281810/LM281810DG2 | 714 | 852 | 11 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 1,040 | | CRO-13602 | 713 | 824 | 8 | 5 | 2.5 | 0.43 | 1.57 | 2.34 | 1.53 | 582 | | ☆M282249D/M282210/M282210DG2 | 723 | 900 | 13 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 1,770 | | ☆ * EE655271D/655345/655346DG2 (CRO-13708) | 717 | 831 | 8 | 6.4 | 3.3 | 0.42 | 1.61 | 2.40 | 1.57 | 539 | | ☆CRO-14208 | 745 | 850 | 10 | 4 | 2 | 0.33 | 2.03 | 3.02 | 1.98 | 620 | | ☆ * EE755281D/755360/755361DG2
☆ * EE755280D/755360/755361DG2 | 744
762 | 873
873 | 9.5
8 | 2.5
6.4 | 5
3.3 | 0.38
0.38 | 1.77
1.77 | 2.64
2.64 | 1.73
1.73 | 527
527 | | ☆CRO-14601 | 780 | 1,020 | 7 | 6 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 1,900 | ### *d* 730.250∼1,200.150mm | | Bou | ndary dimensio | ons | | dynamic | Basic lo
static | ad ratings
dynamic | static | | |-----------|------------------------|--------------------|--------------------|----------------|------------------|--------------------|-----------------------|------------------------|------------------------| | | | mm | | | | k | (N | k | gf | | d | D | B_2 | C_2 | $r_{ m s min}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | 730.250 | 1,035.050 | 755.650 | 755.650 | 6.4 | 3.3 | 18,100 | 59,500 | 1,850,000 | 6,050,000 | | 749.300 | 990.600 | 605.000 | 605.000 | 6.4 | 3.3 | 12,600 | 45,500 | 1,290,000 | 4,650,000 | | 762.000 | 1,066.800
1,079.500 | 723.900
787.400 | 736.600
787.400 | 12.7
12.7 | 4.3
4.8 | 17,700
19,200 | 58,500
65,000 | 1,800,000
1,960,000 | 5,950,000
6,600,000 | | 800 | 1,120 | 820 | 820 | 7.5 | 7 | 21,000 | 72,500 | 2,140,000 | 7,400,000 | | 825.500 | 1,168.400 | 844.550 | 844.550 | 12.7 | 4.8 | 22,300 | 76,500 | 2,270,000 | 7,800,000 | | 840 | 1,170 | 840 | 840 | 6 | 6 | 21,900 | 76,500 | 2,230,000 | 7,800,000 | | 863.600 | 1,130.300
1,219.200 | 669.925
876.300 | 669.925
889.000 | 12.7
12.7 | 4.8
4.8 | 15,800
24,100 | 59,500
83,000 | 1,610,000
2,450,000 | 6,050,000
8,450,000 | | 938.212 | 1,270.000 | 825.500 | 825.500 | 12.7 | 4.8 | 22,500 | 80,000 | 2,300,000 | 8,150,000 | | 950 | 1,360 | 880 | 880 | 7.5 | 4 | 27,000 | 89,000 | 2,750,000 | 9,050,000 | | 1,200.150 | 1,593.850 | 990.600 | 990.600 | 12.7 | 4.8 | 33,500 | 132,000 | 3,400,000 | 13,500,000 | # Equivalent bearing load dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤ e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | |---|------------|-----------------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | | | | | | | | static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ | Bearing numbers | Abutment and fillet dimensions | | | | | Constant | Axia | Axial load factors | | | |---|--------------------------------|------------------|--|--------------|--------------|--------------|--------------|--------------------|--------------|----------------| | | $d_{\scriptscriptstyle a}$ | D_{a} | $egin{array}{c} mm \ S_\mathrm{a} \end{array}$ | $r_{ m as}$ | $r_{ m las}$ | | | | | kg | | | ω_{a} | D_a | min | max | max | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | ☆ * M283449D/M283410/M283410D | 774 | 966 | 13 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 2,210 | | ☆ * LM283649D/LM283610/LM283610DG2 | 786 | 936 | 10.5 | 6.4 | 3.3 | 0.33 | 2.03 | 3.02 | 1.98 | 1,250 | | ☆ * M284148D/M284111/M284110DG2 ☆ * M284249D/M284210/M284210DG2 | 840
810 | 985
1,005 | 3.5
13 | 12.7
12.7 | 4.3
4.8 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 2,220
2,480 | | ☆CRO-16001 | 858 | 1,052 | 10 | 6 | 6 | 0.33 | 2.03 | 3.02 | 1.98 | 3,960 | | ☆ * M285848D/M285810/M285810DG2 | 879 | 1,085 | 13 | 12.7 | 4.8 | 0.33 | 2.03 | 3.02 | 1.98 | 3,010 | | ☆CRO-16803 | 897 | 1,099 | 12 | 5 | 5 | 0.33 | 2.03 | 3.02 | 1.98 | 3,970 | | ☆ * LM286249D/LM286210/LM286210DG2 ☆ * EE547341D/547480/547481DG2 (CRO-17301) | 906
918 | 1,065
1,135 | 11
6.5 | 12.7
12.7 | 4.8
4.8 | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 1,950
3,640 | | ☆ * LM287649D/LM287610/LM287610DG2 | 990 | 1,190 | 10 | 12.7 | 4.8 | 0.33 | 2.03 | 3.02 | 1.98 | 4,100 | | ☆CRO-19001 | 1,030 | 1,278 | 12 | 6 | 3 | 0.35 | 1.95 | 2.90 | 1.91 | 4,100 | | ☆ * LM288949D/LM288910/LM288910DG2 | 1,260 | 1,500 | 13 | 12.7 | 4.8 | 0.33 | 2.03 | 3.02 | 1.98 | 6,130 | #### d 140~711.200mm | | | Boundar | y dimension | s | | dynamic | Basic lo | ad ratings
dynamic | static | Bearing
numbers | |------------------|-------------------------------|--------------------------|--------------------------|----------------------|------------------------|----------------------------------|----------------------------------|--|--|--| | | | | mm | | | k | | kį | | namboro - | | d | D | B_2 | C_2 | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 198 | 174 | 174 | 2 | 1.5 | 595 | 1,470 | 60,500 | 150,000 | CRO-2810LL | | 140 | 198 | 174 | 174 | 2 | 1.5 | 615 | 1,510 | 63,000 | 154,000 | CRO-2812LL | | 200 | 282 | 206 | 206 | 2.5 | 2.5 | 950 | 2,450 | 97,000 | 250,000 | CRO-4022LL | | 216.103 | 330.2 | 263.525 | 269.875 | 3.3 | 1.5 | 1,770 | 4,000 | 180,000 | 405,000 | * CRO-4303LL | | 220 | 295
310
320 | 315
280
290 | 315
280
290 | 2.5
2.5
3 | 1
1
2.7 | 1,270
1,590
1,780 | 3,850
4,100
4,850 | 130,000
162,000
181,000 | 395,000
420,000
495,000 | CRO-4424LL
CRO-4427LL
CRO-4436LL | | 240 | 338
338 | 248
340 | 248
340 | 3
2.5 | 3
1 | 1,590
2,040 | 4,200
6,000 | 162,000
208,000 | 430,000
610,000 | CRO-4811LL
CRO-4817LL | | 245 | 345 | 310 | 310 | 3 | 1 | 2,070 | 5,950 | 211,000 | 610,000 | CRO-4906LL | | 250 | 365 | 270 | 270 | 3 | 2.5 | 1,920 | 4,750 | 196,000 | 485,000 | CRO-5015LL | | 254 | 358.775
358.775 | 269.875
269.875 | 269.875
269.875 | 3.3
3.3 | 1.5
3.3 | 1,940
1,850 | 4,900
4,750 | 198,000
188,000 | 500,000
485,000 | * CRO-5117LL
* CRO-5116LL | | 260 | 365 | 339 | 339 | 4 | 1 | 2,250 | 5,950 | 229,000 | 610,000 | CRO-5224LL | | 260.35 | 422.275 | 314.325 | 317.5 | 3.3 | 4.8 | 2,680 | 5,950 | 274,000 | 606,000 | * CRO-5227LL | | 279.4 | 393.7 | 269.875 | 269.875 | 6.4 | 1.5 | 2,000 | 4,950 | 204,000 | 505,000 | * CRO-5652LL | | 280 | 380
395
395
410 | 290
290
340
268 | 290
290
340
268 | 3
4
2.5
6.4 | 1
1.5
3.2
2.2 | 2,060
2,120
2,590
2,140 | 5,750
5,450
7,150
5,000 | 210,000
216,000
264,000
219,000 | 585,000
560,000
730,000
505,000 | CRO-5660LL
CRO-5665LL
CRO-5664LL
CRO-5639LL | | 285 | 400 | 340 | 340 | 4 | 1 | 2,560 | 7,650 | 261,000 | 780,000 | CRO-5709LL | | 290 | 400 | 346 | 346 | 4 | 3.1 | 2,560 | 7,650 | 261,000 | 780,000 | CRO-5814LL | | 300 | 400
420
430 | 254
310
295 | 254
310
305 | 4
4
5 | 5
3.2
1 | 1,920
2,510
2,150 | 5,300
6,850
5,550 | 196,000
256,000
219,000 | 540,000
695,000
565,000 | CRO-6038LL
CRO-6042LL
CRO-6031LL | | 304.648 | 438.048 | 280.99 | 279.4 | 3.7 | 2.8 | 2,250 | 5,450 | 229,000 | 555,000 | * CRO-6143LL | | 310 | 430
430 | 310
350 | 310
350 | 4
2.5 | 1.5
3.2 | 2,340
2,820 | 6,600
7,950 | 239,000
288,000 | 670,000
815,000 | CRO-6220LL
CRO-6222LL | | 320 | 480 | 360 | 360 | 4 | 2 | 3,600 | 8,850 | 370,000 | 900,000 | CRO-6426LL | | 343.052 | 457.098
457.098
457.098 | 254
254
299 | 254
254
299 | 3.3
3.3
3.3 | 1.5
0.6
1.5 | 2,060
1,900
2,470 | 5,500
5,050
7,100 | 210,000
194,000
252,000 | 560,000
515,000
725,000 | * CRO-6930LL
* CRO-6920LL
* CRO-6936LL | | 355 | 490 | 316 | 316 | 4 | 2.3 | 2,520 | 6,600 | 257,000 | 675,000 | CRO-7109LL | | 360 | 480 | 375 | 375 | 3 | 2.8 | 3,400 | 10,200 | 345,000 | 1,040,000 | CRO-7226LL | | 410 | 546 | 400 | 400 | 5 | 1.5 | 3,850 | 11,900 | 390,000 | 1,210,000 | CRO-8204LL | | 420 | 620 | 395 | 320 | 6 | 6 | 4,550 | 11,800 | 465,000 | 1,200,000 | CRO-8412LL | | 440 | 590
620 | 480
454 | 480
454 | 6
6 | 1.5
1.5 | 4,550
5,800 | 13,900
16,600 | 465,000
595,000 | 1,420,000
1,700,000 | CRO-8830LL
CRO-8832LL | | 457.2 | 596.9 | 276.225 | 279.4 | 3.3 | 1.5 | 2,540 | 6,800 | 259,000 | 695,000 | * CRO-9107LL | | 479.425 | 679.45 | 495.3 | 495.3 | 6.4 | 0.6 | 6,450 | 18,400 | 660,000 | 1,870,000 | * CRO-9610LL | | 482.6 | 615.95 | 330.2 | 330.2 | 6.4 | 3.3 | 3,200 | 9,650 | 330,000 | 985,000 | * CRO-9725LL | | 530 | 715 | 590 | 590 | 6 | 4 | 8,200 | 26,900 | 835,000 | 2,740,000 | CRO-10607LL |
 595.312
711.2 | 844.55
914.4
914.4 | 615.95
387.35
410 | 615.95
387.35
410 | 6.4
6.4
5 | 3.0
3.3
2.5 | 10,600
6,300
6,400 | 32,000
19,600
20,700 | 1,080,000
645,000
655,000 | 3,250,000
2,000,000
2,110,000 | * CRO-11919LL
* CRO-14214LL
* CRO-14209LL | | FJ. | |-----| | | | Constant | Axial | load fac | ctors | Mass | |------------------------------|------------------------------|------------------------------|------------------------------|-------------------------| | | | | | kg | | e | Y_1 | Y_2 | $Y_{\rm o}$ | (approx.) | | 0.40
0.47 | 1.68
1.43 | 2.50
2.12 | 1.64
1.40 | 16
15.5 | | 0.33 | 2.03 | 3.02 | 1.98 | 39 | | 0.55 | 1.23 | 1.82 | 1.20 | 78.2 | | 0.37
0.33
0.39 | 1.80
2.03
1.74 | 2.69
3.02
2.59 | 1.76
1.98
1.70 | 57.5
63.5
77 | | 0.43
0.40 | 1.57
1.68 | 2.34
2.50 | 1.53
1.64 | 67.8
94.4 | | 0.40 | 1.68 | 2.50 | 1.64 | 90.5 | | 0.40 | 1.68 | 2.50 | 1.64 | 90 | | 0.40
0.55 | 1.68
1.24 | 2.50
1.84 | 1.64
1.21 | 83
81.7 | | 0.40 | 1.68 | 2.50 | 1.64 | 103 | | 0.55 | 1.24 | 1.84 | 1.21 | 177 | | 0.47 | 1.43 | 2.12 | 1.40 | 96.4 | | 0.33
0.33
0.40
0.33 | 2.03
2.07
1.68
2.07 | 3.02
3.09
2.50
3.09 | 1.98
2.03
1.64
2.03 | 90
108
126
116 | | 0.40 | 1.68 | 2.50 | 1.64 | 134 | | 0.40 | 1.68 | 2.50 | 1.64 | 129 | | 0.28
0.40
0.33 | 2.43
1.68
2.03 | 3.61
2.50
3.02 | 2.37
1.64
1.98 | 84.6
128
136 | | 0.47 | 1.43 | 2.12 | 1.40 | 136 | | 0.40
0.40 | 1.68
1.68 | 2.50
2.50 | 1.64
1.64 | 133
150 | | 0.47 | 1.43 | 2.12 | 1.40 | 228 | | 0.47
0.33
0.43 | 1.43
2.03
1.57 | 2.12
3.02
2.34 | 1.40
1.98
1.53 | 105
107
130 | | 0.33 | 2.03 | 3.02 | 1.98 | 159 | | 0.33 | 2.03 | 3.02 | 1.98 | 180 | | 0.33 | 2.03 | 3.02 | 1.98 | 253 | | 0.37 | 1.80 | 2.69 | 1.76 | 384 | | 0.33
0.33 | 2.03
2.03 | 3.02
3.02 | 1.98
1.98 | 358
426 | | 0.47 | 1.43 | 2.12 | 1.40 | 192 | | 0.33 | 2.03 | 3.02 | 1.98 | 565 | | 0.33 | 2.03 | 3.02 | 1.98 | 225 | | 0.32 | 2.12 | 3.15 | 2.07 | 700 | | 0.33 | 2.03 | 3.02 | 1.98 | 1130 | | 0.38
0.38 | 1.78
1.77 | 2.65
2.64 | 1.74
1.73 | 616
596 | #### 1. Type, Structure and Characteristics The barrel shaped spherical rolling elements of a selfaligning bearing track along two rows of raceway grooves in the inner ring. The center of the outer ring's raceway aligns with the center of the bearing. The self-aligning feature accommodates errors in housing assembly and misalignments between the inner and outer rings caused by bent shafts. The bearings have a large load capacity and are suitable for applications with vibration and impact loads. In addition to a cylindrical shaft bore, the bearings are available with a tapered shaft bore. The tapered bore bearings can be shaft mounted using an adapter or removable sleeves. **Table 1** shows the types of the self-aligning roller bearings. Please consult with **NTN** Engineering for the special product (do part number starts with 2p) Table 1 Model of Self-Aligning Roller Bearings | Model | Standard (Model B) | Model C | Model 213 | | | |-------------------|--|--|--|--|--| | Structure | | | | | | | Bearing Series | Bearings except Model C | 24024~24038 | 213's bore should be more than 55mm. | | | | Roller | A symmetrical roller | Symmetrical roller | A symmetrical roller | | | | Roller guide type | Guided by the inner rib which is united with the inner ring. | By the guide ring located between two rows of rollers. | By the guide ring located between the rollers on the outer ring raceway. | | | | Cage type | Pressed cage
Machined cage | Pressed cage | Machined cage | | | #### 1.2 Lubrication holes and grooves Holes and grooves to supply lubricant are provided on self-aligning roller bearings with outside diameters greater than 320mm. If required, lubrication holes and grooves can be manufactured for bearings with ODs smaller than 320mm. Consult NTN Engineering for further details and add the supplemental code D1 to the part number. Table 2 shows the dimensions for lubrication holes and grooves. The number of lubrication holes are shown in Table 3. When a knock pin for lubricant retention is necessary, please contact \mbox{NTN} Engineering. Table 2 Lubrication hole and groove dimensions Unit mm | Nominal bearing width | | Oil groove width | Oil hole dia | Oil groove depth | | | |-----------------------|------------|------------------|--------------|----------------------|----------------|--| | over | incl | Wo | do | Width series 1, 2, 3 | Width series 4 | | | | 100
120 | 14
16 | 8
10 | 2.5
3.0 | 2.0
2.5 | | | | 160 | 20 | 12 | 3.5 | 3.0 | | | | 200
315 | 27
33 | 16
20 | 5.0
6.0 | 3.5
5.0 | | | 315 | _ | 42 | 25 | 7.0 | 6.5 | | Table 3 Lubrication hole number | N
C | lominal
utside | Hole number | | |--------|-------------------|-------------|---------| | 01 | /er | incl | Z_{o} | | - | _ | 320 | 4 | | 3 | 20 | 1,010 | 8 | | 1,0 | 10 | _ | 12 | ## 8 #### 2. Dimensional Accuracy/Rotation Accuracy Refer to Table 3.3 (Page A-12) #### 3. Recommended Fitting Refer to Table 4.2 (Page A-24) #### 4. Bearing Internal Clearance Refer to Table 5.10 (Page A-36) ### 5. Allowable aligning angle These bearings have a self-aligning function, and their allowable aligning angle varies depending on the dimension series and load conditions, but are mostly described as follows. #### 6. Assembly of Tapered Hole Roller Bearings Tapered hole spherical roller bearings use the measurement method as shown in Fig.1. A suitable tightening rate can be achieved by pushing the bearing toward the axial direction until it reaches the reduction rate of the radial internal clearance or pushing rate of axial direction. When heavy and high speed loads are applied, or when it is necessary to keep a higher tightening rate as the temperature difference between the inner and outer rings rises, be sure to have the maximum reduction rate of radial internal clearance or the pushing rate of the axial direction, as shown in Table 4, by using a bearing with a radial internal clearance of more than C3. The clearance after mounting in this case should be larger than the minimum clearance after mounting as shown in Table 4. Fig.1 Measurement method of spherical roller bearing internal clearance Table 4 Assembly of tapered hole spherical roller bearings Unit:mm | | | | | | | | | | | Unit:mm | |------------|-------------|---------------|--------------|-------|---------------|-------------------|--------|-------------------|------------------|--------------| | Nominal be | earing bore | | n rate of | Р | ushing rate o | f axial direction | on | Minimum r | esidual intern | al claaranca | | C | d | radial intern | al clearance | tapeı | r 1/12 | tapeı | r 1/30 | I WIII III III II | esiduai iiileiii | ai cicarance | | over | incl | min | max | min | max | min | max | CN | C3 | C4 | | 80 | 100 | 0.045 | 0.055 | 0.7 | 0.8 | 1.75 | 2.25 | 0.035 | 0.05 | 0.08 | | 100 | 120 | 0.05 | 0.06 | 0.75 | 0.9 | 1.9 | 2.25 | 0.05 | 0.065 | 0.1 | | 120 | 140 | 0.065 | 0.075 | 1.1 | 1.2 | 2.75 | 3 | 0.055 | 0.08 | 0.11 | | 140 | 160 | 0.075 | 0.09 | 1.2 | 1.4 | 3 | 3.75 | 0.055 | 0.09 | 0.13 | | 160 | 180 | 0.08 | 0.1 | 1.3 | 1.6 | 3.25 | 4 | 0.06 | 0.1 | 0.15 | | 180 | 200 | 0.09 | 0.11 | 1.4 | 1.7 | 3.5 | 4.25 | 0.07 | 0.1 | 0.16 | | 200 | 225 | 0.1 | 0.12 | 1.6 | 1.9 | 4 | 4.75 | 0.08 | 0.12 | 0.18 | | 225 | 250 | 0.11 | 0.13 | 1.7 | 2 | 4.25 | 5 | 0.09 | 0.13 | 0.2 | | 250 | 280 | 0.12 | 0.15 | 1.9 | 2.4 | 4.75 | 6 | 0.1 | 0.14 | 0.22 | | 280 | 315 | 0.13 | 0.16 | 2 | 2.5 | 5 | 6.25 | 0.11 | 0.15 | 0.24 | | 315 | 355 | 0.15 | 0.18 | 2.4 | 2.8 | 6 | 7 | 0.12 | 0.17 | 0.26 | | 355 | 400 | 0.17 | 0.21 | 2.6 | 3.3 | 6.5 | 8.25 | 0.13 | 0.19 | 0.29 | | 400 | 450 | 0.2 | 0.24 | 3.1 | 3.7 | 7.75 | 9.25 | 0.13 | 0.2 | 0.31 | | 450 | 500 | 0.21 | 0.26 | 3.3 | 4 | 8.25 | 10 | 0.16 | 0.23 | 0.35 | | 500 | 560 | 0.24 | 0.3 | 3.7 | 4.6 | 9.25 | 11.5 | 0.17 | 0.25 | 0.36 | | 560 | 630 | 0.26 | 0.33 | 4 | 5.1 | 10 | 12.5 | 0.2 | 0.29 | 0.41 | | 630 | 710 | 0.3 | 0.37 | 4.6 | 5.7 | 11.5 | 14.5 | 0.21 | 0.31 | 0.45 | | 710 | 800 | 0.34 | 0.43 | 5.3 | 6.7 | 13.3 | 16.5 | 0.23 | 0.35 | 0.51 | | 800 | 900 | 0.37 | 0.47 | 5.7 | 7.3 | 14.3 | 18.5 | 0.27 | 0.39 | 0.57 | | 900 | 1,000 | 0.41 | 0.53 | 6.3 | 8.2 | 15.8 | 20.5 | 0.3 | 0.43 | 0.64 | | 1,000 | 1,120 | 0.45 | 0.58 | 6.8 | 8.7 | 17 | 22.5 | 0.32 | 0.48 | 0.7 | | 1,120 | 1,250 | 0.49 | 0.63 | 7.4 | 9.4 | 18.5 | 24.5 | 0.34 | 0.54 | 0.77 | ### 7. General Operating Cautions Pressed cages or machined cages are standard depending on the bearing type and dimensions. However, a standard cage may not be used under high speed specifications or in conditions under severe vibration or impact. When bearings are operated under small loads (about $F_{\rm r} \leq 0.04 C_{\rm or}$), or under axial loads only, prevent rolling elements from smearing by operating in conditions where $F_{\rm a}/F_{\rm r} \leq 2{\rm e}$. (Refer to the dimension table for the value of "e.") This is most apparent when using large size spherical roller bearings due to the large roller and cage mass. Please consult NTN Engineering for further details. Cylindrical bore **Tapered bore** taper 1:12 ### *d* 100∼140mm | ı | Boundary dimensions | | dynamic | | | static | Bearing | numbers | Abutment and fillet dimensions | | | | |---------|---------------------|-----------|---------------|------------|-------------|------------|-------------|-------------|--------------------------------|------------|-------------|--------------| | | | mm | | | kN | | kgf | 0.45-11-1 | | | mm | | | , | D | D | 0 | a | a | a | <i>a</i> | Cylindrical | tapered
[®] | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore | min | max | max | | | 105 | 50 | 0 | 010 | 470 | 04 500 | 47.500 | 001000 | 00100DV | 110 | 155 | 0 | | | 165 | 52 | 2 | 310 | 470 | 31,500 | 47,500 | 23120B | 23120BK | 110 | 155 | 2 | | | 170 | 65
65 | 2 | 380 | 590 | 38,500 | 60,000 | 2P2009 | 2P2009K | 110 | 160 | 2 | | | 170 | 65 | 2 | 405 | 640 | 41,500 | 65,500 | ☆2P2014 | 2P2014K | 110 | 160 | 2 | | 100 | 180 | 46 | 2.1 | 315 | 415 | 32,000 | 42,500 | 22220B | 22220BK | 112 | 168 | 2 | | | 180 | 60.3 | 2.1 | 405 | 580 | 41,500 | 59,000 | 23220B | 23220BK | 112 | 168 | 2 | | | 215 | 47 | 3 | 370 | 465 | 37,500 | 47,500 | 21320 | 21320K | 114 | 201 | 2.5 | | | 215 | 73 | 3 | 605 | 755 | 61,500 | 77,000 | 22320B | 22320BK | 114 | 201 | 2.5 | | | 170 | 45 | 2 | 282 | 455 | 28,800 | 46,500 | 23022B | 23022BK | 120 | 160 | 2 | | | 180 | 56 | 2 | 370 | 580 | 37,500 | 59,500 | 23122B | 23122BK | 120 | 170 | 2 | | | 180 | 69 | 2 | 450 | 755 | 46,000 | 77,000 | 24122B | 24122BK30 | 120 | 170 | 2 | | 110 | 200 | 53 | 2.1 | 410 | 570 | 42,000 | 58,000 | 22222B | 22222BK | 122 | 188 | 2 | | 110 | 200 | 69.8 | 2.1 | 515 | 760 | 52,500 | 77,500 | 23222B | 23222BK | 122 | 188 | 2 | | | 240 | 50 | 3 | 495 | 615 | 50,500 | 62,500 | 21322 | 21322K | 124 | 226 | 2.5 | | | 240 | 80 | 3 | 745 | 930 | 76,000 | 95,000 | 22322B | 22322BK | 124 | 226 | 2.5 | | | | | | | | | - | | | | | | | | 180 | 46 | 2 | 296 | 495 | 30,000 | 50,500 | 23024B | 23024BK | 130 | 170 | 2 | | | 180 | 60 | 2 | 390 | 670 | 39,500 | 68,500 | 24024B | 24024BK30 | 130 | 170 | 2 | | | 180 | 60 | 2 | 395 | 695 | 40,000 | 71,000 | ☆24024C | 24024CK30 | 130 | 170 | 2 | | | 180 | 69 | 2 | 415 | 785 | 42,500 | 80,000 | ☆2P2416 | 2P2416K | 130 | 170 | 2 | | 120 | 200 | 62 | 2 | 455 | 705 | 46,500 | 71,500 | 23124B | 23124BK | 130 | 190 | 2 | | | 200 | 80 | 2 | 575 | 945 | 58,500 | 96,500 | 24124B | 24124BK30 | 130 | 190 | 2 | | | 215 | 58 | 2.1 | 485 | 700 | 49,500 | 71,500 | 22224B | 22224BK | 132 | 203 | 2 | | | 215 | 76 | 2.1 | 585 | 880 | 59,500 | 89,500 | 23224B | 23224BK | 132 | 203 | 2 | | | 260 | 86 | 3 | 880 | 1,120 | 89,500 | 114,000 | 22324B | 22324BK | 134 | 246 | 2.5 | | | 200 | 52 | 2 | 375 | 620 | 38,500 | 63,500 | 23026B | 23026BK | 140 | 190 | 2 | | | 200 | 69 | 2 | 505 | 895 | 51,500 | 91,000 | 24026B | 24026BK30 | 140 | 190 | 2 | | | 200 | 69 | 2 | 490 | 860 | 50,000 | 87,500 | ☆24026C | 24026CK30 | 140 | 190 | 2 | | | 210 | 64 | 2 | 495 | 795 | 50,500 | 81,000 | 23126B | 23126BK | 140 | 200 | 2 | | 130 | 210 | 80 | 2 | 585 | 995 | 60,000 | 102,000 | 24126B | 24126BK30 | 140 | 200 | 2 | | | 230 | 64 | 3 | 570 | 790 | 58,000 | 80,500 | 22226B | 22226BK | 144 | 216 | 2.5 | | | 230 | 80 | 3 | 685 | 1,060 | 70,000 | 108,000 | 23226B | 23226BK | 144 | 216 | 2.5 | | | 280 | 93 | 4 | 1,000 | 1,290 | 102,000 | 131,000 | 22326B | 22326BK | 148 | 262 | 3 | | 139.734 | 218 | 80 | 1.1 | 605 | 1,050 | 61.500 | 106,000 | 2P2803 | 2P2803K | 146 | 211 | 1 | | 100.704 | | | | | .,555 | | | | | | | • | | 140 | 210 | 53 | 2 | 405 | 690 | 41,000 | 70,500 | 23028B | 23028BK | 150 | 200 | 2 | | 1.0 | 210 | 69 | 2 | 510 | 945 | 52,000 | 96,500 | 24028B | 24028BK30 | 150 | 200 | 2 | Smallest allowable dimension for chamfer dimension r. Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. Remarks: 1. Bearing numbers marked "☆" are C type. B-206 B-206 Constant Axial load factors Y_2 3.15 2.65 2.61 $Y_{\rm o}$ 2.07 1.74 1.72 Y_1 2.12 1.78 1.75 0.32 0.38 0.38 0.32 0.30 0.38 0.28 0.35 0.37 0.35 0.25 0.32 2.12 2.23 1.78 2.39 1.92 1.81 1.91 2.73 2.09 3.15 3.32 2.65 3.56 2.86 2.69 2.84 4.06 3.12 2.07 2.18 1.74 2.33 1.88 1.77 1.86 2.67 2.05 7.91 8.47 11 11.2 14.3 26.8 10.8 6.35 8.57 7.78 8.2 10.8 10.9 13.9 26.2 10.3 6.12 8.43 ### **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm B}}{F_{\rm B}}$ | >e | |---|----------|-------------------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | #### static Mass (approx.) kg tapered bore 4.16 5.62 5.69 Cylindrical bore 4.3 5.84 5.91 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e, Y_1 , Y_2 and Y_0 see the table below. Cylindrical bore **Tapered bore** taper 1:12 #### *d* 140∼180mm | | Boundary dimensions | | dynamic | Basic lo
static
kN | ad ratings
dynamic | static
kgf | Bearing | numbers | | utment a
dimens | | | |-----|---------------------|----------|---------------|--------------------------|-----------------------|------------------|------------------|------------------|------------------------|--------------------|----------------|-----------------| | | | 111111 | | | KIN | | kgi | Cylindrical | tapered ² | 7 | | | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | | | | | · S Hilli | 01 | 0.01 | 01 | 001 | 20.0 | 20.0 | | max | max | | | 210 | 69 | 2 | 520 | 940 | 53.000 | 95.500 | ☆24028C | 24028CK30 | 150 | 200 | 2 | | | 225 | 68 | 2.1 | 540 | 895 | 55,000 | 91,000 | 23128B | 23128BK | 152 | 213 | 2 | | | 225 | 85 | 2.1 | 670 | 1,150 | 68,500 | 117,000 | 24128B | 24128BK30 | 152 | 213 | 2 | | 140 | 250 | 68 | 3 | 685 | 975 | 70,000 | 99,500 | 22228B | 22228BK | 154 | 236 | 2.5 | | | 250 | 88 | 3 | 805 | 1,270 | 82,000 | 129,000 | 23228B | 23228BK | 154 | 236 | 2.5 | | | 300 | 102 | 4 | 1,130 | 1,460 | 115,000 | 149,000 | 22328B | 22328BK | 158 | 282 | 3 | | | | | - | 1,100 | 1,100 | , | | | | | | | | | 225 | 56 | 2.1 | 445 | 775 | 45,500 | 79,000 | 23030B | 23030BK | 162 | 213 | 2 | | | 225 | 75 | 2.1 | 585 | 1,060 | 59,500 | 108,000 | 24030B | 24030BK30 | 162 | 213 | 2 | | | 225 | 75 | 2.1 | 600 | 1,090 | 61,000 | 111,000 | ☆24030C | 24030CK30 | 162 | 213 | 2 | | 450 | 250 | 80 | 2.1 | 730 | 1,190 | 74,500 | 121,000 | 23130B | 23130BK | 162 | 238 | 2 | | 150 | 250 | 100 | 2.1 | 885 | 1,520 | 90,500 | 155,000 | 24130B | 24130BK30 | 162 | 238 | 2 | | | 270 | 73 | 3 | 775 | 1,160 | 79,000 | 119,000 | 22230B | 22230BK | 164 | 256 | 2.5 | | | 270 | 96 | 3 | 935 | 1,460 | 95,000 | 149,000 | 23230B | 23230BK | 164 | 256 | 2.5 | | | 320 | 108 | 4 | 1,270 | 1,750 | 130,000 | 179,000 | 22330B | 22330BK | 168 | 302 | 3 | | | 000 | 45 | 0 | 000 | 010 | 00.000 | 00.500 | 00000 | 000001/ | 170 | 010 | 0 | | | 220
240 | 45
60 | 2
2.1 | 320
505 | 610
885 | 33,000
51,500 | 62,500
90,000 | 23932
23032B | 23932K
23032BK | 170
172 | 210
228 | 2
2 | | | 240
240 | 80 | 2.1 | 650 | 1,200 | 66,500 | 122,000 | 23032B
24032B | 24032BK30 | 172 | 228 | 2 | | | 240 | 80 | 2.1 | 665 | 1,250 | 67,500 | 127,000 | ☆24032C | 24032BK30
24032CK30 | 172 | 228 | 2 | | 160 | 270 | 86 | 2.1 | 840 | 1,230 | 85,500 | 140,000 | 23132B | 23132BK | 172 | 258 | 2 | | 100 | 270 | 109 | 2.1 | 1,040 | 1,780 | 106,000 | 181,000 | 24132B | 24132BK30 | 172 | 258 | 2 | | | 290 | 80 | 3 | 870 | 1,290 | 88,500 | 132,000 | 22232B | 22232BK | 174 | 276 | 2.5 | | | 290 | 104 | 3 | 1,050 | 1,660 | 107,000 | 170,000 | 23232B | 23232BK | 174 | 276 | 2.5 | | | 340 | 114 | 4 | 1,410 | 1,990 | 144,000 | 203,000 | 22332B | 22332BK | 178 | 322 | 3 | | | | | _ | | | | | | | | | _ | | | 230 | 45 | 2 | 330 | 650 | 34,000 | 66,000 | 23934 | 23934K | 180 | 220 | 2 | | | 260 | 67 | 2.1 | 630 | 1,080 | 64,000 | 110,000 | 23034B | 23034BK | 182 | 248 | 2 | | | 260 | 90 | 2.1 | 800 | 1,470 | 81,500 | 150,000 | 24034B | 24034BK30 | 182 | 248 | 2 | | 4=0 | 260 | 90 | 2.1 | 815 | 1,500 | 83,000 | 153,000 | ☆24034C | 24034CK30 | 182 | 248 | 2 | | 170 | 280 | 88 | 2.1 | 885 | 1,490 | 90,500 | 152,000 | 23134B | 23134BK | 182 | 268 | 2 | | | 280 | 109 | 2.1 | 1,080 | 1,880 | 110,000 | 191,000 | 24134B | 24134BK30 | 182 | 268 | 2 | | | 310 | 86 | 4 | 1,000 | 1,520 | 102,000 | 155,000 | 22234B | 22234BK | 188 | 292 | 3 | | | 310 | 110 | 4 | 1,180 | 1,960 | 120,000 | 200,000 | 23234B | 23234BK | 188 | 292 | 3 | | | 360 | 120 | 4 | 1,540 | 2,180 | 157,000 | 223,000 | 22334B | 22334BK | 188 | 342 | 3 | | | 250 | 52 | 2 | 440 | 835 | 45,000 | 85,000 | 23936 | 23936K | 190 | 240 | 2 | | 180 | 280 | 74 | 2.1 | 740 | 1,290 | 75,500 | 132,000 | 23036B | 23036BK | 192 | 268 | 2 | | | 280 | 100 | 2.1 | 965 | 1,770 | 98,500 | 181,000 | 24036B | 24036BK30 | 192 | 268 | 2 | Smallest allowable dimension for chamfer dimension r. Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. Remarks: 1. Bearing numbers marked "☆" are C type. B-208 Mass (approx.) kg **Constant** Axial load factors # Equivalent bearing load dynamic $P_r = XF_r + YF_a$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | ≤ e | $\frac{F_{i}}{F_{i}}$ | >e | |---|------------|-----------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | | e | Y_1 | Y_2 | $Y_{ m o}$ | Cylindrical bore | tapered
bore | |------|-------|-------|------------|------------------|-----------------| | 0.30 | 2.23 | 3.32 | 2.18 | 8.48 | 7.66 | | 0.30 | 2.25 | 3.35 | 2.20 | 10.2 | 9.86 | | 0.38 | 1.80 | 2.68 | 1.76 | 13.3 | 13.1 | | 0.28 | 2.39 | 3.55 | 2.33 | 14 | 13.7 | | 0.36 | 1.90 | 2.83 | 1.86 | 18.8 | 18.2 | | 0.37 | 1.80 | 2.69 | 1.76 | 33.8 | 33 | | 0.24 | 2.76 | 4.11 | 2.70 | 7.73 | 7.45 | | 0.33 | 2.06 | 3.07 | 2.02 | 10.7 | 10.5 | | 0.30 | 2.25 | 3.34 | 2.20 | 10.5 | 10.3 | | 0.32 | 2.11 | 3.15 | 2.06 | 15.6 | 15.1 | | 0.40 | 1.69 | 2.51 | 1.65 | 20.2 | 20 | | 0.27 | 2.46 | 3.66 | 2.40 | 18.1 | 17.7 | | 0.36 | 1.88 | 2.79 | 1.83 | 24.1 | 23.4 | | 0.35 | 1.92 | 2.86 | 1.88 | 42.7 | 41.8 | | 0.18 | 3.69 | 5.49 | 3.61 | 5.5 | 5.33 | | 0.25 | 2.74 | 4.09 | 2.68 | 9.42 | 9.09 | | 0.32 | 2.10 | 3.13 | 2.06 | 13 | 12.8 | | 0.31 | 2.18 | 3.24 | 2.13 | 12
 11.8 | | 0.32 | 2.11 | 3.15 | 2.07 | 19.8 | 19.2 | | 0.40 | 1.67 | 2.48 | 1.63 | 26 | 25.6 | | 0.28 | 2.42 | 3.60 | 2.37 | 22.7 | 22.2 | | 0.36 | 1.86 | 2.77 | 1.82 | 30 | 29.1 | | 0.35 | 1.94 | 2.89 | 1.90 | 50.8 | 49.7 | | 0.17 | 3.91 | 5.83 | 3.83 | 5.8 | 5.62 | | 0.25 | 2.66 | 3.96 | 2.60 | 12.7 | 12.3 | | 0.34 | 1.98 | 2.95 | 1.94 | 17.7 | 17.4 | | 0.31 | 2.16 | 3.22 | 2.12 | 17.4 | 17.1 | | 0.31 | 2.15 | 3.21 | 2.11 | 21.5 | 20.8 | | 0.39 | 1.74 | 2.59 | 1.70 | 27.2 | 26.8 | | 0.28 | 2.39 | 3.56 | 2.34 | 28 | 27.3 | | 0.36 | 1.87 | 2.79 | 1.83 | 36.8 | 35.7 | | 0.34 | 1.96 | 2.91 | 1.91 | 59.8 | 58.5 | | 0.19 | 3.52 | 5.25 | 3.45 | 8.21 | 7.95 | | 0.26 | 2.59 | 3.85 | 2.53 | 16.7 | 16.1 | | 0.35 | 1.91 | 2.85 | 1.87 | 23.3 | 22.9 | Cylindrical bore **Tapered bore** taper 1:12 #### *d* 180∼240mm | March Marc | | Bounda | | ensions | dynamic | static | ad ratings
dynamic | static | Bearing | numbers | | Abutment and fillet dimensions | | |---|------|--------|-----|---------------|------------|-------------|-----------------------|-------------|-----------|-------------|-----|--------------------------------|-----| | 280 100 2.1 965 1.770 98,500 181,000 24036C 24036CK30 192 268 2 290 110 2.1 1.050 1.890 107,000 193,000 22336B 23136BK 194 286 2.5 300 31 33 1.250 2.210 127,000 225,000 24136B 23136BK 194 286 2.5 320 86 4 1.040 1.610 106,000 164,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 23336BK 202 278 2 290 100 2.1 970 1.820 96,500 186,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1.820 96,500 186,000 24038B 23038BK 202 278 2 290 100 2.1 970 1.820 96,500 186,000 24138B 24138BK30 202 278 2 | | | mm | | | kN | | kgf | . | | | mm | | | 280 100 2.1 965 1,770 98,500 181,000 | | _ | _ | | | _ | | | • | • | | | | | 180 | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore | min | max | max | | 180 | | 222 | 400 | 0.4 | | 4 ===0 | 00 500 | 404.000 | 1 0 10000 | 0.100001/00 | 400 | | | | 180 300 96 3 1,030 1,730 105,000 176,000 23136B 23136BK 194 286 2.5 | | | | | | , | | | | | | | | | 180 300 118 3 1,250 2,210 127,000 225,000 24136B 24136BK30 194 286 2.5 320 182 41,040 1,610 106,000 164,000 22336B 22336BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 23336B 23236BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 23236BK 198 302 3 3 380 126 4 1,740 2,560 177,000 261,000 22336B 23236BK 198 302 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | | | , | , | | | | | | | | | 320 86 4 1,040 1,610 106,000 164,000 22236B 22336BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 302 3 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 302 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | | | | | | | | | | | | | 320 112 4 1,230 2,000 125,000 204,000 23236B 23236BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 362 3 380 126 4 1,740 2,560 177,000 261,000 23938 23338K 200 250 2 290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 24038C 24038CK30 202 278 2 230 104 3 1,190 2,020 122,000 206,000 23138B 23138BK 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22338B 22338BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23338B 23238BK 208 322 3 400 132 5 1,870 2,780 191,000 284,000 23338B 23338BK 212 378 4 4 4 3 1,630 2,780 191,000 284,000 23340B 2340BK 212 298 2 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 340 140 3 1,630 2,900 166,000 295,000 24408B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 2340B 2340BK 234 326 2.5 340 118 3 1,350 2,570 138,000 269,000 2340B 2340BK 234 326 2.5 340 118 3 1,350 2,570 138,000 269,000 2344B 2344BK 234 326 2.5 370 150 4 1,880 3,400 192,000 345,000 2444B 2344BK 234 326 2.5 370 150 4 1,880 3,400 192,000 345,000 2444B 2344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2444B 2344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2444 | 180 | | | | , | | | | | | | | | | 260 52 2 460 890 47,000 91,000 23938 23938K 200 250 2 290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 997 1,850 185,000 186,000 24038B 24038BK30 202 278 2 290 100 2.1 997 1,850 185,000 24038B 24038BK30 202 278 | | | | - | | | | | | | | | | | 260 52 2 460 890 47,000 91,000 23938 23938K 200 250 2 278 2 290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ★24038C 24038CK30 202 278 2 2302 128 3 1,420 2,480 144,000 253,000 24138B 23138BK 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22338B 23238BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23138B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 200 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 200 132 5 1,870 2,790 191,000 284,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 2240BK 218 342 3 360 128 4 1,610 2,640 165,000 295,000 2340B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 295,000 2340B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 295,000 2340B 2340BK 218 342 3 340 118 3 1,350 2,570 138,000 265,000 22340B 22340BK 218 342 3 340 118 3 1,350 2,570 138,000 265,000 2344B 2344BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23140B 23144BK 233 352 3 400 184 4 1,540 2,670 157,000 272,000 23144B 23144BK30 234 326 2.5 370 120 4 1,540 2,670
157,000 272,000 23144B 23144BK 238 352 3 400 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 2444B 2244BK 238 352 3 400 150 4 2,040 3,400 208,000 345,000 2444B 2244BK 244 438 4 2440 150 4 2,040 3,400 208,000 345,000 22344B 23344BK 242 438 4 240 320 3 | | | | - | , | , | | | | | | | | | 290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ☆24038C 24038CK30 202 278 2 2 320 128 3 1,420 2,480 144,000 253,000 24138B 24138BK30 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22138B 24138BK30 204 306 2.5 340 92 4 1,400 2,330 143,000 253,000 24138B 24138BK30 204 306 2.5 340 120 4 1,400 2,330 143,000 237,000 22238B 22338BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 2 280 60 2.1 545 1,100 56,000 112,000 23940 23940K 212 268 2 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22140B 23140BK 214 326 2.5 360 98 4 1,610 2,640 165,000 269,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 22340B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 340 140 33 1,350 2,570 138,000 269,000 23240B 23240BK 218 342 3 340 140 33 1,350 2,570 138,000 269,000 23240B 23240BK 218 342 3 340 140 34 1,580 2,670 157,000 272,000 23144B 23044BK 234 326 2.5 370 120 4 1,580 2,670 157,000 272,000 24044B 23044BK 234 326 2.5 370 120 4 1,580 2,670 157,000 272,000 24044B 23044BK 234 326 2.5 370 120 4 1,580 3,400 192,000 345,000 21444B 23144BK30 238 352 3 400 184 4 1,580 2,460 161,000 251,000 2244B 23244BK 238 352 3 400 184 4 2,010 3,350 205,000 345,000 24144B 23144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 242 438 4 240 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 242 438 4 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 242 438 4 4 240 150 4 2,040 3,400 208,000 345,000 22444B 23244BK 242 438 4 4 240 150 4 2,040 3,550 205,000 340,000 22344B 23244BK 242 438 4 2440 | | 380 | 126 | 4 | 1,740 | 2,560 | 177,000 | 261,000 | 22336B | 22336BK | 198 | 362 | 3 | | 190 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ★24038C 24038CK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ★24038C 24038CK30 202 278 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 260 | 52 | 2 | 460 | 890 | 47,000 | 91,000 | 23938 | 23938K | 200 | 250 | 2 | | 190 100 2.1 970 1,820 98,500 186,000 | | 290 | 75 | 2.1 | 755 | 1,350 | 77,000 | 138,000 | 23038B | 23038BK | 202 | 278 | 2 | | 190 320 104 3 1,190 2,020 122,000 206,000 23138B 23138BK 204 306 2.5 320 128 3 1,420 2,480 144,000 253,000 24138B 24138BK30 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22238B 22238BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 280 60 2.1 545 1,100 56,000 112,000 23940 23940K 212 268 2 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 265,000 22440B 22440BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 23944 23944K 232 288 2 370 120 4 1,540 2,670 157,000 272,000 23144B 23044BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 400 144 4 2,010 3,350 205,000 340,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 22344B 23244BK 238 382 3 400 144 4 2,040 3,400 208,000 345,000 2444B 22344BK 238 382 3 400 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 234 438 4 240 320 60 2.1 565 1,190 58,000 121,000 23948 23948K 252 308 2 | | 290 | 100 | 2.1 | 995 | 1,850 | 102,000 | 188,000 | 24038B | 24038BK30 | 202 | 278 | 2 | | 200 128 3 1,420 2,480 144,000 253,000 24138B 24138BK30 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22238B 22238BK 208 322 3 400 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 23238BK 212 378 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 290 | 100 | 2.1 | 970 | 1,820 | 98,500 | 186,000 | ☆24038C | 24038CK30 | 202 | 278 | 2 | | 340 92 4 1,160 1,810 118,000 185,000 22238B 22238BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 | 190 | 320 | 104 | 3 | 1,190 | 2,020 | 122,000 | 206,000 | 23138B | 23138BK | 204 | 306 | 2.5 | | 200 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 3 4 2338B 23238BK 208 322 3 3 3 3 3 3 3 3 | | 320 | 128 | 3 | 1,420 | 2,480 | 144,000 | 253,000 | 24138B | 24138BK30 | 204 | 306 | 2.5 | | 200 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 3 4 3 4 4 3 4 4 4 | | 340 | 92 | 4 | 1,160 | 1,810 | 118,000 | 185,000 | 22238B | 22238BK | 208 | 322 | 3 | | 200 | | 340 | 120 | 4 | 1,400 | 2,330 | 143,000 | 237,000 | 23238B | 23238BK | 208 | 322 | 3 | | 200 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 23044B 23044BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23044BK 238 352 3 370 120 4 1,880 3,400 192,000 345,000 24044B 24044BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,670 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,5000 340,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 242 438 4 201 240 240 240 240 240 240 240 240 240 240 | | 400 | 132 | 5 | 1,870 | 2,790 | 191,000 | 284,000 | 22338B | 22338BK | 212 | 378 | 4 | | 200 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 23044B 23044BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23044BK 238 352 3 370 120 4 1,880 3,400 192,000 345,000 24044B 24044BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,670 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,5000 340,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 242 438 4 201 240 240 240 240 240 240 240 240 240 240 | | 280 | 60 | 2.1 | 545 | 1,100 | 56,000 | 112,000 | 23940 | 23940K | 212 | 268 | 2 | | 200 310 109 2.1 1,160 2,140 118,000 219,000 23140B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 360 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 232 288 2 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 24044BK30 234 326 2.5 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 23244BK 238 382 3 400 144 4 2,010 3,350 2,650 340,000 251,000 22244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | | | | | | , | | | | | | | | | 200 | | 310 | 109 | 2.1 | 1.160 | | | | 24040B | 24040BK30 | 212 | 298 | | | 200 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B
23240BK 222 398 4 2340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 192,000 345,000 24144B 24144BK30 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | | | | | | , - | | | | | | | | | 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 | 200 | 340 | 140 | 3 | , | • | | | 24140B | 24140BK30 | 214 | 326 | | | 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 | | | 98 | | , | , | | | 22240B | 22240BK | 218 | 342 | 3 | | 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 300 60 2.1 565 1,170 57,500 119,000 23944 23944K 232 288 2 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 294401 294401K30 <th></th> <th></th> <th></th> <th></th> <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | | | | | | , | | | | | | | | | 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK | | | | | | | | | | | | | | | 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK | | 300 | 60 | 2.1 | 565 | 1.170 | 57.500 | 119.000 | 23944 | 23944K | 232 | 288 | 2 | | 220 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3
370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3
400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3
400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3
400 150 4 2,040 3,400 208,000 345,000 294401 2P4401K30 238 382 3
400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3
460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | | | | | | | | | | | | | | | 220 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | | | | | | , | | | | | _ | | | | 220 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | | | _ | | | , | | | _ | | | | _ | | 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3
400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3
400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3
460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | 220 | | | | , | , | | | _ | | | | | | 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3
400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3
460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | | | | | | • | | | | | | | | | 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 | | | | | | | | | | | | | | | 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 240 320 60 2.1 565 1,190 58,000 121,000 23948 23948K 252 308 2 | | | | | | | | | | | | | | | 741) | | | | | | | | | _ | | | | | | 741) | 0.40 | 320 | 60 | 21 | 565 | 1 190 | 58 000 | 121 000 | 23948 | 23948K | 252 | 308 | 2 | | | 240 | 360 | 92 | 3 | 1,130 | 2,140 | 116,000 | 219,000 | 23048B | 23048BK | 254 | 346 | 2.5 | Smallest allowable dimension for chamfer dimension r. Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. Remarks: 1. Bearing numbers marked "☆" are C type. B-210 | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm b}}$ | >e | |-----------------------------|----------|-------------------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | | Consta | nt Axia | al load fac | ctors | Mass | (approx.) | |--------|---------|-------------|-------------|-------------|-----------| | | | | | k | g | | | | | | Cylindrical | tapered | | e | Y_1 | Y_2 | $Y_{\rm o}$ | bore | bore | | | | | | | | | 0.33 | 2.04 | 3.04 | 2.00 | 23 | 22.6 | | 0.37 | 1.82 | 2.70 | 1.78 | 27.5 | 26.3 | | 0.32 | 2.11 | 3.15 | 2.07 | 25.1 | 24.2 | | 0.39 | 1.72 | 2.56 | 1.68 | 34.3 | 33.8 | | 0.27 | 2.49 | 3.70 | 2.43 | 29.3 | 28.6 | | 0.35 | 1.91 | 2.84 | 1.86 | 39 | 37.8 | | 0.34 | 1.97 | 2.93 | 1.92 | 70 | 68.5 | | 0.18 | 3.81 | 5.67 | 3.73 | 8.6 | 8.34 | | 0.26 | 2.65 | 3.94 | 2.59 | 17.7 | 17.1 | | 0.33 | 2.03 | 3.02 | 1.98 | 24.3 | 23.9 | | 0.31 | 2.16 | 3.22 | 2.12 | 23 | 22.6 | | 0.33 | 2.07 | 3.09 | 2.03 | 35.3 | 34.2 | | 0.40 | 1.69 | 2.51 | 1.65 | 42.8 | 42.2 | | 0.27 | 2.47 | 3.68 | 2.42 | 36.6 | 35.8 | | 0.36 | 1.89 | 2.82 | 1.85 | 47.6 | 46.2 | | 0.34 | 1.97 | 2.94 | 1.93 | 81 | 79.3 | | 0.17 | 3.91 | 5.82 | 3.82 | 12.1 | 11.7 | | 0.26 | 2.59 | 3.85 | 2.53 | 22.7 | 21.9 | | 0.35 | 1.94 | 2.89 | 1.90 | 31 | 30.5 | | 0.33 | 2.05 | 3.05 | 2.00 | 43.3 | 42 | | 0.41 | 1.64 | 2.44 | 1.60 | 53.4 | 52.6 | | 0.28 | 2.45 | 3.64 | 2.39 | 44 | 43 | | 0.36 | 1.88 | 2.79 | 1.83 | 57.2 | 55.5 | | 0.34 | 1.98 | 2.95 | 1.94 | 93.2 | 91.2 | | 0.19 | 3.62 | 5.39 | 3.54 | 13.1 | 12.7 | | 0.26 | 2.59 | 3.85 | 2.53 | 29.9 | 28.8 | | 0.34 | 1.97 | 2.94 | 1.93 | 40.2 | 39.6 | | 0.33 | 2.07 | 3.09 | 2.03 | 53.3 | 51.6 | | 0.41 | 1.66 | 2.47 | 1.62 | 67 | 66 | | 0.27 | 2.46 | 3.66 | 2.40 | 60.4 | 59.1 | | 0.36 | 1.85 | 2.76 | 1.81 | 80 | 77.6 | | 0.41 | 1.64 | 2.44 | 1.61 | 81.9 | 80.8 | | 0.33 | 2.06 | 3.07 | 2.02 | 117 | 115 | | 0.16 | 4.13 | 6.15 | 4.04 | 14 | 13.6 | | 0.25 | 2.69 | 4.01 | 2.63 | 33.4 | 32.2 | | | | | | | | Cylindrical bore **Tapered bore** taper 1:12 ### **d** 240~300mm | <i>a</i> 240 | | | | | | | | | | | | | |--------------|--------|---------|---------------|------------|-------------|------------------------|------------------------|---------------------|--------------------------|--------------------------------|----------------|-----------------| | | Bounda | | nsions | dynamic | static | oad ratings
dynamic | Bearing numbers static | | numbers | Abutment and fillet dimensions | | | | | | mm | | | kN | ŀ | gf | Culindrical | toporod@ | | mm | | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | Cylindrical
bore | tapered bore | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | | | | | D IIIII | • | - 01 | • | - 01 | | | | | | | | 360 | 118 | 3 | 1,410 | 2,770 | 144,000 | 282,000 | 24048B | 24048BK30 | 254 | 346 | 2.5 | | | 400 | 128 | 4 | 1,730 | 3,050 | 177,000 | 310,000 | 23148B | 23148BK | 258 | 382 | 3 | | 0.40 | 400 | 160 | 4 | 2,110 | 3,800 | 215,000 | 390,000 | 24148B | 24148BK30 | 258 | 382 | 3 | | 240 | 440 | 120 | 4 | 1,940 | 3,100 | 198,000 | 315,000 | 22248B | 22248BK | 258 | 422 | 3 | | | 440 | 160 | 4 | 2,430 | 4,100 | 247,000 | 420,000 | 23248B | 23248BK | 258 | 422 | 3 | | | 500 | 155 | 5 | 2,720 | 4,100 | 278,000 | 420,000 | 22348B | 22348BK | 262 | 478 | 4 | | 247.65 | 400.0 | 5 120.6 | 65 4 | 1,590 | 2,780 | 162,000 | 283,000 | 2P5002 | 2P5002K | 266 | 382 | 3 | | | 360 | 70 | 2.1 | 805 | 1,590 | 82,000 | 163,000 | 2P5203 | 2P5203K | 272 | 348 | 2 | | | 360 | 75 | 2.1 | 760 | 1,580 | 77,500 | 161,000 | 23952 | 23952K | 272 | 348 | 2 | | | 400 | 104 | 4 | 1,420 | 2,620 | 144,000 | 267,000 | 23052B | 23052BK | 278 | 382 | 3 | | | 400 | 140 | 4 | 1,830 | 3,550 | 186,000 | 365,000 | 24052B | 24052BK30 | 278 | 382 | 3 | | 260 | 440 | 144 | 4 | 2,140 | 3,850 | 219,000 | 395,000 | 23152B | 23152BK | 278 | 422 | 3 | | | 440 | 180 | 4 | 2,510 | 4,600 | 256,000 | 470,000 | 24152B | 24152BK30 | 278 | 422 | 3 | | | 480 | 130 | 5 | 2,230 | 3,600 | 228,000 | 365,000 | 22252B | 22252BK | 282 | 458 | 4 | | | 480 | 174 | 5 | 2,760 | 4,700 | 281,000 | 480,000 | 23252B | 23252BK | 282 | 458 | 4 | | | 540 | 165 | 6 | 3,100 | 4,750 | 320,000 | 485,000 | 22352B | 22352BK | 288 | 512 | 5 | | | 350 | 52 | 2 | 525 | 1,220 | 54,000 | 125,000 | 23856 | 23856K | 290 | 340 | 2 | | | 380 | 75 | 2.1 | 830 | 1,750 | 84,500 | 179,000 | 23956 | 23956K | 292 | 368 | 2 | | | 420 | 106 | 4 | 1,510 | 2,920 | 154,000 | 297,000 | 23056B | 23056BK | 298 | 402 | 3 | | | 420 | 140 | 4 | 1,950 | 3,950 | 199,000 | 405,000 | 24056B | 24056BK30 | 298 | 402 | 3 | | | 440 |
160 | 4 | 2,180 | 4,250 | 222,000 | 435,000 | 2P5604 | 2P5604K | 298 | 422 | 3 | | 280 | 460 | 146 | 5 | 2,300 | 4,250 | 234,000 | 435,000 | 23156B | 23156BK | 302 | 438 | 4 | | | 460 | 180 | 5 | 2,730 | 5,200 | 278,000 | 530,000 | 24156B | 24156BK30 | 302 | 438 | 4 | | | 500 | 130 | 5 | 2,310 | 3,800 | 236,000 | 390,000 | 22256B | 22256BK | 302 | 478 | 4 | | | 500 | 176 | 5 | 2,930 | 5,150 | 298,000 | 525,000 | 23256B | 23256BK | 302 | 478 | 4 | | | 580 | 175 | 6 | 3,500 | 5,350 | 360,000 | 545,000 | 22356B | 22356BK | 308 | 552 | 5 | | 290 | 430 | 110 | 4 | 1,380 | 2,860 | 141,000 | 291,000 | 2P5802 | 2P5802K | 308 | 412 | 3 | | | 420 | 90 | 3 | 1,110 | 2,320 | 113,000 | 237,000 | 23960 | 23960K | 314 | 406 | 2.5 | | | 460 | 118 | 4 | 1,890 | 3,550 | 193,000 | 365,000 | 23060B | 23060BK | 318 | 442 | 3 | | | 460 | 160 | 4 | 2,450 | 4,950 | 250,000 | 505,000 | 24060B | 24060BK30 | 318 | 442 | 3 | | 300 | 500 | 160 | 5 | 2,750 | 5,000 | 280,000 | 510,000 | 23160B | 23160BK | 322 | 478 | 4 | | | 500 | 200 | 5 | 3,300 | 6,400 | 340,000 | 650,000 | 24160B | 24160BK30 | 322 | 478 | 4 | | | 540 | 140 | 5 | 2,670 | 4,350 | 272,000 | 440,000 | 22260B | 22260BK | 322 | 518 | 4 | | | 540 | 192 | 5 | 3,450 | 6,000 | 355,000 | 615,000 | 23260B | 23260BK | 322 | 518 | 4 | | | • | | • | -, | -, | , | , | | | | | • | ^{540 192 5 5,450 5,555} Smallest allowable dimension for chamfer dimension r. Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. B-212 | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm B}}{F_{\rm B}}$ | >e | |---|----------|-------------------------------|-------| | X | Y | X | Y | | 1 | Y_1 | 0.67 | Y_2 | | | Consta | nt Axia | al load fac | ctors | Mass (approx.) | | | | |---|--------|---------|-------------|------------------|----------------|---------|--|--| | | | | | | k | g | | | | | | | | | Cylindrical | tapered | | | | | e | Y_1 | Y_2 | Y_{o} | bore | bore | | | | ı | | | | | | | | | | | 0.32 | 2.09 | 3.12 | 2.05 | 43 | 42.3 | | | | | 0.32 | 2.11 | 3.15 | 2.07 | 65.8 | 63.8 | | | | | 0.40 | 1.69 | 2.51 | 1.65 | 82.2 | 80.9 | | | | | 0.28 | 2.43 | 3.62 | 2.38 | 81.7 | 80 | | | | | 0.37 | 1.83 | 2.72 | 1.79 | 108 | 105 | | | | | 0.32 | 2.10 | 3.13 | 2.06 | 148 | 145 | | | | | 0.31 | 2.18 | 3.24 | 2.13 | 58.2 | 56.3 | | | | | 0.18 | 3.76 | 5.60 | 3.67 | 21.6 | 21 | | | | | 0.19 | 3.53 | 5.26 | 3.45 | 24 | 23.3 | | | | | 0.26 | 2.63 | 3.92 | 2.57 | 48.5 | 46.8 | | | | | 0.34 | 1.96 | 2.91 | 1.91 | 65.2 | 64.1 | | | | | 0.33 | 2.05 | 3.06 | 2.01 | 91.4 | 88.6 | | | | | 0.41 | 1.63 | 2.43 | 1.60 | 114 | 112 | | | | | 0.28 | 2.45 | 3.64 | 2.39 | 106 | 104 | | | | | 0.37 | 1.83 | 2.72 | 1.79 | 141 | 137 | | | | | 0.32 | 2.13 | 3.18 | 2.09 | 183 | 179 | | | | | 0.12 | 5.42 | 8.07 | 5.30 | 11 | 10.6 | | | | | 0.17 | 3.88 | 5.78 | 3.79 | 26.4 | 25.6 | | | | | 0.25 | 2.73 | 4.06 | 2.67 | 52.4 | 50.6 | | | | | 0.33 | 2.06 | 3.07 | 2.02 | 69 | 67.9 | | | | | 0.35 | 1.92 | 2.86 | 1.88 | 88.6 | 84.9 | | | | | 0.32 | 2.13 | 3.18 | 2.09 | 97.7 | 94.6 | | | | | 0.39 | 1.73 | 2.58 | 1.69 | 120 | 118 | | | | | 0.26 | 2.57 | 3.83 | 2.51 | 112 | 110 | | | | | 0.36 | 1.90 | 2.83 | 1.86 | 150 | 145 | | | | | 0.31 | 2.16 | 3.22 | 2.12 | 224 | 220 | | | | | 0.25 | 2.69 | 4.00 | 2.63 | 56 | 54.1 | | | | | 0.20 | 3.34 | 4.98 | 3.27 | 40 | 38.7 | | | | | 0.25 | 2.66 | 3.96 | 2.60 | 72.4 | 70.2 | | | | | 0.34 | 1.97 | 2.93 | 1.92 | 98 | 96.4 | | | | | 0.32 | 2.11 | 3.15 | 2.07 | 131 | 127 | | | | | 0.40 | 1.69 | 2.51 | 1.65 | 161 | 159 | | | | | 0.26 | 2.57 | 3.83 | 2.51 | 141 | 138 | | | | | 0.36 | 1.88 | 2.79 | 1.83 | 193 | 187 | | | | | | | | | | | | | Cylindrical bore **Tapered bore** taper 1:12 ## **d** 300∼380mm | | Bounda | Boundary dimensions | | dynamic | Basic Io | oad ratings
dynamic | static | Bearing | numbers | Abutment and fillet dimensions | | | |-----|--------|---------------------|---------------|------------|-------------|------------------------|-------------|-------------|----------------------|--------------------------------|------------------|-------------| | | | mm | | • | kN | • | gf | | | 111101 | mm | 10113 | | | | | | | | | J | Cylindrical | tapered ² | $d_{ m a}$ | D_{a} | $r_{ m as}$ | | d | D | B | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore | min | max | max | | | | | | | | | | | | | | | | 300 | 620 | 185 | 7.5 | 3,600 | 5,400 | 365,000 | 550,000 | 22360B | 22360BK | 336 | 584 | 6 | | | 400 | 80 | 2.1 | 870 | 2,210 | 89,000 | 226,000 | 24864 | 24864K30 | 332 | 388 | 2 | | | 440 | 90 | 3 | 1,140 | 2,460 | 116,000 | 251,000 | 23964 | 23964K | 334 | 426 | 2.5 | | | 480 | 121 | 4 | 1,960 | 3,850 | 200,000 | 395,000 | 23064B | 23064BK | 338 | 462 | 3 | | | 480 | 160 | 4 | 2,510 | 5,200 | 255,000 | 530,000 | 24064B | 24064BK30 | 338 | 462 | 3 | | 320 | 540 | 176 | 5 | 3,100 | 5,800 | 320,000 | 590,000 | 23164B | 23164BK | 342 | 518 | 4 | | | 540 | 218 | 5 | 3,850 | 7,300 | 390,000 | 745,000 | 24164B | 24164BK30 | 342 | 518 | 4 | | | 580 | 150 | 5 | 3,100 | 5,050 | 315,000 | 515,000 | 22264B | 22264BK | 342 | 558 | 4 | | | 580 | 208 | 5 | 4,000 | 7,050 | 410,000 | 720,000 | 23264B | 23264BK | 342 | 558 | 4 | | | 580 | 213 | 5 | 3,950 | 6,900 | 405,000 | 705,000 | 2P6404 | 2P6404K | 342 | 558 | 4 | | 330 | 540 | 186 | 5 | 3,100 | 6,000 | 315,000 | 615,000 | 2P6601 | 2P6601K | 352 | 518 | 4 | | | 460 | 90 | 3 | 1,220 | 2,650 | 124,000 | 270,000 | 23968 | 23968K | 354 | 446 | 2.5 | | | 520 | 133 | 5 | 2,310 | 4,550 | 235,000 | 465,000 | 23068B | 23068BK | 362 | 498 | 4 | | | 520 | 180 | 5 | 3,000 | 6,200 | 305,000 | 630,000 | 24068B | 24068BK30 | 362 | 498 | 4 | | 340 | 580 | 190 | 5 | 3,600 | 6,600 | 365,000 | 670,000 | 23168B | 23168BK | 362 | 558 | 4 | | | 580 | 243 | 5 | 4,600 | 8,950 | 470,000 | 910,000 | 24168B | 24168BK30 | 362 | 558 | 4 | | | 620 | 224 | 6 | 4,450 | 8,000 | 455,000 | 815,000 | 23268B | 23268BK | 368 | 592 | 5 | | | 620 | 229 | 6 | 4,450 | 8,000 | 455,000 | 815,000 | 2P6802 | 2P6802K | 368 | 592 | 5 | | | 440 | 60 | 2.1 | 735 | 1,830 | 74,500 | 187,000 | 23872 | 23872K | 372 | 428 | 2 | | | 480 | 75 | 3 | 1,090 | 2,350 | 111,000 | 239,000 | 2P7202 | 2P7202K | 374 | 466 | 2.5 | | | 480 | 90 | 3 | 1,320 | 2,930 | 135,000 | 298,000 | 23972 | 23972K | 374 | 466 | 2.5 | | | 520 | 133 | 5 | 1,790 | 3,900 | 182,000 | 395,000 | 2P7201 | 2P7201K | 382 | 498 | 4 | | | 530 | 127 | 5 | 2,060 | 4,100 | 210,000 | 415,000 | 2P7205 | 2P7205K | 382 | 508 | 4 | | 360 | 540 | 134 | 5 | 2,370 | 4,700 | 242,000 | 480,000 | 23072B | 23072BK | 382 | 518 | 4 | | | 540 | 180 | 5 | 3,100 | 6,600 | 320,000 | 675,000 | 24072B | 24072BK30 | 382 | 518 | 4 | | | 600 | 192 | 5 | 3,750 | 7,050 | 385,000 | 715,000 | 23172B | 23172BK | 382 | 578 | 4 | | | 600 | 243 | 5 | 4,600 | 9,150 | 470,000 | 935,000 | 24172B | 24172BK30 | 382 | 578 | 4 | | | 610 | 255 | 5 | 4,300 | 8,300 | 440,000 | 845,000 | 2P7206 | 2P7206K | 382 | 588 | 4 | | | 650 | 232 | 6 | 4,850 | 8,700 | 495,000 | 885,000 | 23272B | 23272BK | 388 | 622 | 5 | | | 520 | 106 | 4 | 1,560 | 3,550 | 159,000 | 360,000 | 23976 | 23976K | 398 | 502 | 3 | | 000 | 560 | 135 | 5 | 2,510 | 5,150 | 256,000 | 525,000 | 23076B | 23076BK | 402 | 538 | 4 | | 380 | 560 | 180 | 5 | 3,250 | 7,100 | 330,000 | 725,000 | 24076B | 24076BK30 | 402 | 538 | 4 | | | 620 | 194 | 5 | 3,900 | 7,500 | 400,000 | 765,000 | 23176B | 23176BK | 402 | 598 | 4 | | | 620 | 243 | 5 | 4,800 | 9,650 | 490,000 | 985,000 | 24176B | 24176BK30 | 402 | 598 | 4 | ^{620 243 5 7,000 5,523} Smallest allowable dimension for chamfer dimension r. Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. B-214 | $\frac{F_{\rm a}}{F_{\rm r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | |-------------------------------|----------|-----------------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_1 | 0.67 | Y_2 | | | | Consta | nt Axia | ctors | Mass (approx.) | | | | |--------|---------|-------|----------------|-------------|---------|--| | | | | | k | q | | | | | | | Cylindrical | tapered | | | e | Y_1 | Y_2 | $Y_{\rm o}$ | bore | bore | | | | • | 2 | | | | | | 0.32 | 2.13 | 3.17 | 2.08 | 270 | 265 | | | 0.47 | 0.00 | E 04 | 0.00 | | 00.4 | | | 0.17 | 3.90 | 5.81 | 3.82 | 22.8 | 22.4 | | | 0.19 | 3.50 | 5.21 | 3.42 | 43 | 41.7 | | | 0.25 | 2.73 | 4.06 | 2.67 | 78.2 | 75.5 | | | 0.33 | 2.06 | 3.07 | 2.02 | 103 | 101 | | | 0.33 | 2.06 | 3.07 | 2.02 | 167 | 162 | | | 0.40 | 1.67 | 2.48 | 1.63 | 207 | 204 | | | 0.26 | 2.57 | 3.83 | 2.51 | 172 | 168 | | | 0.36 | 1.86 | 2.77 | 1.82 | 243 | 236 | | | 0.36 | 1.86 | 2.77 | 1.82 | 241 | 233 | | | 0.34 | 1.99 | 2.96 | 1.94 | 166 | 160 | | | 0.17 | 3.91 | 5.83 | 3.83 | 44.7 | 43.3 | | | 0.25 | 2.68 | 3.99 | 2.62 | 104 | 100 | | | 0.34 | 1.98 | 2.95 | 1.94 | 140 | 138 | | | 0.33 | 2.05 | 3.06 | 2.01 | 210 | 204 | | | 0.42 | 1.61 | 2.39 | 1.57 | 269 | 265 | | | 0.37 | 1.84 | 2.75 | 1.80 | 300 | 291 | | | 0.37 | 1.84 | 2.75 | 1.80 | 298 | 288 | | | | | | | | | | | 0.12 | 5.78 | 8.61 | 5.66 | 19.2 | 18.6 | | | 0.14 | 4.94 | 7.36 | 4.83 | 37.1 | 36.1 | | | 0.17 | 3.99 | 5.93 | 3.90 | 47.2 | 45.7 | | | 0.25 | 2.69 | 4.01 | 2.63 | 92.8 | 89.5 | | | 0.23 | 2.92 | 4.35 | 2.86 | 95.3 | 92.3 | | | 0.24 | 2.78 | 4.14 | 2.72 | 110 | 106 | | | 0.33 | 2.06 | 3.07 | 2.02 | 147 | 145 | | | 0.32 | 2.11 | 3.15 | 2.07 | 222 | 215 | | | 0.40 | 1.67 | 2.48 | 1.63 | 281 | 277 | | | 0.41 | 1.64 | 2.44 | 1.60 | 290 | 277 | | | 0.36 | 1.87 | 2.78 | 1.83 | 339 | 329 | | | 0.19 | 3.54 | 5.27 | 3.46 | 69.9 | 67.7 | | | 0.24 | 2.87 | 4.27 | 2.80 | 115 | 111 | | | 0.30 | 2.23 | 3.32 | 2.18 | 153 | 150 | | | 0.31 | 2.16 | 3.22 | 2.12 | 235 | 228 | | | 0.39 | 1.73 | 2.58 | 1.69 | 292 | 287 | | | 0.03 | 1.75 | 2.50 | 1.03 | 202 | 201 | | Cylindrical bore **Tapered bore** taper 1:12 #### *d* 380∼460mm | mm kN
kgf
Cylindrical ta | pered d _a | $egin{array}{c} mm \ & D_{\mathrm{a}} \end{array}$ | nd ons $r_{ m as}$ | | |--|----------------------|--|--------------------|--| | | · Wa | 1) | | | | d D B $r_{ m smin}$ $C_{ m r}$ $C_{ m or}$ $C_{ m r}$ $C_{ m or}$ bore | | max | $r_{ m as}$ max | | | | | | | | | 680 240 6 5,200 9,650 530,000 985,000 23276B 232 | 276BK 408 | 652 | 5 | | | 380 680 245 6 5,200 9,650 536,000 985,000 2P7603 2P | 7603K 408 | 652 | 5 | | | | | | | | | 390 510 90 3 1,310 3,050 133,000 310,000 2P7801 2P | 7801K 404 | 496 | 2.5 | | | | | 400 | | | | 7 | 880K30 412 | | 2 | | | 7.1.1 | 980K 418 | _ | 3 | | | | 080BK 422 | | 4 | | | 400 | 080BK30 422 | | 4 | | | 650 200 6 4,200 8,050 425,000 820,000 23180B 23 | 180BK 428 | | 5 | | | | 180BK30 428 | | 5 | | | | 280BK 428 | | 5 | | | 720 260 6 5,850 10,600 595,000 1,080,000 2P8002 2P 8 | 8002K 428 | 692 | 5 | | | 520 75 2.1 1,090 2,710 111,000 277,000 23884 238 | 384K 432 | 508 | 2 | | | | 984K 438 | | 3 | | | | 084BK 442 | | 4 | | | | 084BK30 442 | | 4 | | | | 184BK 448 | | 5 | | | | 184BK30 448 | | 5 | | | | 284BK 456 | | 6 | | | 100 272 710 0,000 12,000 000,000 1,200,000 | 100 | , = . | | | | 600 118 4 2,030 4,700 207,000 480,000 23988 23 9 | 988K 458 | 582 | 3 | | | 650 157 6 3,300 6,850 335,000 695,000 23088B 23 0 | D88BK 468 | 622 | 5 | | | 650 212 6 4,300 9,450 440,000 960,000 24088B 24 0 | 088BK30 468 | 622 | 5 | | | 440 720 226 6 5,200 10,100 530,000 1,030,000 23188B 23 1 | 188BK 468 | 692 | 5 | | | 720 280 6 6,450 13,100 660,000 1,330,000 24188B 24 1 | 188BK30 468 | 692 | 5 | | | 790 280 7.5 6,900 12,800 705,000 1,310,000 23288B 23 2 | 288BK 476 | 754 | 6 | | | 790 285 7.5 6,900 12,800 705,000 1,310,000 2P8802 2P 8 | 8802K 476 | 754 | 6 | | | 4F0 000 100 0 0.000 7.400 015.000 755.000 0P0000 0P | 0000K 404 | 000 | 0.5 | | | 450 620 190 3 3,050 7,400 315,000 755,000 2P9002 2P 9 | 9002K 464 | 606 | 2.5 | | | 580 118 3 1,840 4,850 187,000 495,000 24892 248 | 892K30 474 | 566 | 2.5 | | | | 992K 478 | | 3 | | | 620 140 4 2,440 6,000 248,000 610,000 2P9203 2P | 9203K 478 | | 3 | | | | 092BK 488 | | 5 | | | , | 092BK30 488 | | 5 | | | | 192BK 496 | | 6 | | | | 192BK30 496 | | 6 | | ^{760 300 7.5 7,100 1,500 •} Smallest allowable dimension for chamfer dimension r. • Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. B-216 **Constant** Axial load factors ## **Equivalent bearing load** dynamic Pr=XFr+YFa | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | |---|----------|-----------------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_1 | 0.67 | Y_2 | | | Mass (approx.) kg Cylindrical tapered static $P_{\text{or}}=F_{\text{r}}+Y_{\text{o}}F_{\text{a}}$ For values of e, Y_{1} , Y_{2} and Y_{o} see the table below. | | | | | | Cyllilarical | lapereu | |---|------|-------|-------|-------------|--------------|---------| | | e | Y_1 | Y_2 | $Y_{\rm o}$ | bore | bore | | 1 | | | | | | | | | 0.36 | 1.89 | 2.82 | 1.85 | 380 | 369 | | | 0.36 | 1.89 | 2.82 | 1.85 | 382 | 370 | | | 0.50 | 1.09 | 2.02 | 1.05 | 302 | 370 | | Ī | 0.15 | 4.41 | 6 57 | 4.01 | 47.0 | 4E 7 | | | 0.15 | 4.41 | 6.57 | 4.31 | 47.3 | 45.7 | | | 0.18 | 3.76 | 5.59 | 3.67 | 45.3 | 44.5 | | | 0.18 | 3.71 | 5.53 | 3.63 | 73 | 70.7 | | | 0.24 | 2.80 | 4.16 | 2.73 | 149 | 144 | | | 0.32 | 2.09 | 3.11 | 2.04 | 202 | 200 | | | 0.31 | 2.21 | 3.28 | 2.16 | 264 | 256 | | | 0.38 | 1.77 | 2.63 | 1.73 | 329 | 324 | | | 0.37 | 1.81 | 2.69 | 1.73 | 457 | 443 | | | | | | | | | | | 0.37 | 1.81 | 2.69 | 1.77 | 457 | 443 | | Ī | 0.12 | 5.42 | 8.08 | 5.30 | 34.8 | 33.6 | | | 0.17 | 3.95 | 5.88 | 3.86 | 76.2 | 73.8 | | | 0.24 | 2.85 | 4.24 | 2.78 | 157 | 152 | | | 0.32 | 2.13 | 3.18 | 2.09 | 210 | 207 | | | 0.32 | 2.11 | 3.15 | 2.07 | 354 | 343 | | | 0.40 | 1.69 | 2.51 | 1.65 | 440 | 433 | | | | | | | _ | | | | 0.36 | 1.86 | 2.77 | 1.82 | 544 | 528 | | | 0.18 | 3.66 | 5.46 | 3.58 | 101 | 98 | | | 0.24 | 2.85 | 4.24 | 2.78 | 181 | 175 | | | 0.32 | 2.11 | 3.15 | 2.07 | 245 | 241 | | | 0.31 | 2.15 | 3.21 | 2.11 | 370 | 358 | | | 0.39 | 1.75 | 2.61 | 1.71 | 456 | 449 | | | 0.36 | 1.88 | 2.80 | 1.84 | 600 | 582 | | | 0.36 | 1.88 | 2.80 | 1.84 | 595 | 576 | | | 0.50 | 1.00 | 2.00 | 1.04 | 333 | 370 | | | 0.27 | 2.49 | 3.71 | 2.43 | 166 | 157 | | - | | | | | | | | | 0.18 | 3.76 | 5.59 | 3.67 | 73.6 | 72.3 | | | 0.17 | 3.95 | 5.88 | 3.86 | 107 | 104 | | | 0.21 | 3.22 | 4.80 | 3.15 | 122 | 118 | | | 0.23 | 2.88 | 4.29 | 2.82 | 206 | 200 | | | 0.04 | 0.45 | 0.04 | | 070 | 0=0 | 0.31 0.31 0.39 2.15 2.14 1.71 3.21 3.19 2.55 2.11 2.10 1.67 276 443 550 272 429 541 Cylindrical bore **Tapered bore** taper 1:12 ## *d* 460∼600mm | | Boundary dimensions | | | Basic I | oad ratings | | Bearing numbers Abutment and fillet dimensions | | | | | | |-----|---|--|---------------------------------------|--|--|---|---|--|---|---|---|------------------------------| | | | mm | | dynamic | static
kN | dynamic | static
kgf | | | fillet | dimensi
mm | ions | | | | | | | | | 3 | Cylindrical | tapered ² | $d_{ m a}$ | $D_{\rm a}$ | $r_{\rm as}$ | | d | D | В | $r_{ m s min}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore | min | max | max | | 460 | 830 | 296 | 7.5 | 7,750 | 14,500 | 790,000 | 1,470,000 | 23292B | 23292BK | 496 | 794 | 6 | | 480 | 650
660
700
700
790
790 | 128
200
165
218
248
308 | 5
3
6
6
7.5
7.5 | 2,330
3,550
3,650
4,650
6,200
7,450 | 5,500
8,350
7,700
10,500
12,300
15,300 | 238,000
360,000
370,000
475,000
635,000
760,000 | 565,000
850,000
785,000
1,070,000
1,260,000
1,560,000 | 23996
2P9602
23096B
24096B
23196B
24196B | 23096BK
24096BK30
23196BK
24196BK30 | 502
494
508
508
516
516 | 628
646
672
672
754
754 | 4
2.5
5
6
6 | | 490 | 870
650 | 310
130 | 7.5
5 | 8,300
2,270 | 15,500
5,450 | 232,000 | 1,580,000 | 23296B
2P9801 | 23296BK
2P9801K | 516
512 | 834
628 | 6
4 | | 500 | 620
670
720
720
830
830
920 | 90
128
167
218
264
325
336 | 3
5
6
6
7.5
7.5
7.5 | 1,550
2,370
3,850
4,750
6,950
8,050
9,400 | 3,950
5,600
8,300
10,900
13,700
16,700
17,800 | 158,000
242,000
390,000
485,000
705,000
825,000
960,000 | 405,000
570,000
845,000
1,110,000
1,400,000
1,700,000
1,820,000 | 238/500
239/500
230/500B
240/500B
231/500B
241/500B
232/500B | 238/500K
239/500K
230/500BK
240/500BK30
231/500BK
241/500BK30
232/500BK | 514
522
528
528
536
536
536 | 606
648
692
692
794
794
884 | 2.5
4
5
5
6
6 | | 530 | 710
780
780
870
870
980 | 136
185
250
272
335
355 | 5
6
6
7.5
7.5
9.5 | 2,640
4,400
5,600
7,000
8,300
10,400 | 6,450
9,350
12,700
14,200
17,400
19,800 | 269,000
445,000
570,000
715,000
850,000
1,060,000 | 655,000
955,000
1,290,000
1,450,000
1,770,000
2,020,000 | 239/530
230/530B
240/530B
231/530B
241/530B
232/530B | 239/530K
230/530BK
240/530BK30
231/530BK
241/530BK30
232/530BK | 552
558
558
566
566
574 | 688
752
752
834
834
936 | 4
5
5
6
6
8 | | 545 | 755 | 230 | 4 | 4,550 | 10,800 | 460,000 | 1,100,000 | 2P10901 | 2P10901K | 563 | 737 | 3 | | 560 | 680
750
820
820
920
920
1,030 | 90
140
195
258
280
355
365 | 3
5
6
6
7.5
7.5
9.5 | 1,650
2,830
4,800
6,100
7,650
9,950
11,100 | 4,450
6,700
10,500
14,100
15,500
20,800
21,100 | 168,000
288,000
490,000
620,000
780,000
1,010,000
1,130,000 | 455,000
680,000
1,070,000
1,440,000
1,580,000
2,120,000
2,150,000 | 238/560
239/560
230/560B
240/560B
231/560B
241/560B
232/560B | 238/560K
239/560K
230/560BK
240/560BK30
231/560BK
241/560BK30
232/560BK | 574
582
588
588
596
596
604 | 666
728
792
792
884
884
986 | 2.5
4
5
5
6
6 | | 600 | 800
870 | 150
200 | 5
6 | 3,150
5,250 | 7,800
12,000 | 325,000
535,000 | 795,000
1,220,000 | 239/600
230/600B | 239/600K
230/600BK | 622
628 | 778
842 | 4
5 | ^{870 200} b 5,250 12,555 Smallest allowable dimension for chamfer dimension r. Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. B-218 | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | |
---|----------|-----------------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_1 | 0.67 | Y_2 | | | | Consta | ınt Ax | ial load | factors | Mas | SS (approx.) | |--------|--------|----------|-------------|-----------|--------------| | | | | | | kg | | | | | | Cylindric | al tapered | | e | Y_1 | Y_2 | $Y_{\rm o}$ | bore | bore | | 0.00 | 1.07 | 0.70 | 1.00 | 704 | 600 | | 0.36 | 1.87 | 2.78 | 1.83 | 704 | 683 | | 0.18 | 3.85 | 5.73 | 3.76 | 123 | 119 | | 0.27 | 2.52 | 3.75 | 2.46 | 195 | 185 | | 0.23 | 2.94 | 4.38 | 2.88 | 217 | 209 | | 0.30 | 2.22 | 3.30 | 2.17 | 285 | 280 | | 0.31 | 2.15 | 3.21 | 2.11 | 492 | 477 | | 0.39 | 1.74 | 2.59 | 1.70 | 608 | 600 | | 0.36 | 1.87 | 2.78 | 1.83 | 814 | 790 | | 0.16 | 4.10 | 6.10 | 4.01 | 114 | 109 | | 0.13 | 5.38 | 8.02 | 5.26 | 59.6 | 57.5 | | 0.17 | 4.02 | 5.98 | 3.93 | 131 | 127 | | 0.23 | 2.98 | 4.44 | 2.91 | 226 | 218 | | 0.30 | 2.28 | 3.40 | 2.23 | 295 | 290 | | 0.32 | 2.12 | 3.16 | 2.08 | 584 | 566 | | 0.39 | 1.72 | 2.57 | 1.69 | 716 | 705 | | 0.39 | 1.74 | 2.59 | 1.70 | 1,000 | 971 | | | | | | | | | 0.17 | 3.94 | 5.87 | 3.86 | 157 | 152 | | 0.22 | 3.03 | 4.52 | 2.97 | 306 | 295 | | 0.30 | 2.24 | 3.33 | 2.19 | 413 | 406 | | 0.30 | 2.22 | 3.30 | 2.17 | 653 | 633 | | 0.38 | 1.79 | 2.67 | 1.75 | 800 | 788 | | 0.39 | 1.74 | 2.59 | 1.70 | 1,200 | 1,170 | | 0.28 | 2.45 | 3.65 | 2.40 | 301 | 286 | | 0.11 | 5.97 | 8.88 | 5.83 | 66.1 | 63.7 | | 0.16 | 4.09 | 6.09 | 4.00 | 182 | 176 | | 0.22 | 3.03 | 4.51 | 2.96 | 353 | 340 | | 0.30 | 2.29 | 3.40 | 2.24 | 467 | 459 | | 0.30 | 2.27 | 3.38 | 2.22 | 752 | 729 | | 0.39 | 1.75 | 2.61 | 1.71 | 948 | 934 | | 0.36 | 1.88 | 2.80 | 1.84 | 1,360 | 1,320 | | 0.18 | 3.85 | 5.73 | 3.76 | 218 | 211 | | 0.21 | 3.17 | 4.72 | 3.10 | 400 | 386 | | | | | | | | Cylindrical bore **Tapered bore** taper 1:12 #### *d* 600∼780mm | | | Boundary dimensions | | dynamic | Basic Io
static
kN | oad ratings
dynamic | static | Bearing n | numbers | | tment a
dimensi | | | |----|-----|---------------------|-----|---------------|--------------------------|------------------------|------------|-------------|-------------|----------------------|--------------------|----------------|-----------------| | | | | mm | | | KIN | | kgf | Cylindrical | tapered [©] | .a | | | | | d | D | B | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | bore | bore | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | | | | | | | | | | | | | | | | | | | 870 | 272 | 6 | 6,450 | 15,600 | 655,000 | 1,590,000 | 240/600B | 240/600BK30 | 628 | 842 | 5 | | | 000 | 980 | 300 | 7.5 | 9,000 | 18,400 | 920,000 | 1,880,000 | 231/600B | 231/600BK | 636 | 944 | 6 | | | 600 | 980 | 375 | 7.5 | 10,700 | 23,200 | 1,090,000 | 2,360,000 | 241/600B | 241/600BK30 | 636 | 944 | 6 | | | | 1,090 | 388 | 9.5 | 12,200 | 23,700 | 1,240,000 | 2,420,000 | 232/600B | 232/600BK | 644 | 1,046 | 8 | | | | 780 | 150 | 4 | 3,050 | 8,800 | 310,000 | 895,000 | 248/630 | 248/630K30 | 648 | 762 | 3 | | | | 850 | 165 | 6 | 3,700 | 9,250 | 375,000 | 945,000 | 239/630 | 239/630K | 658 | 822 | 5 | | 63 | | 920 | 212 | 7.5 | 5,900 | 13,000 | 600,000 | 1,330,000 | 230/630B | 230/630BK | 666 | 884 | 6 | | | 630 | 920 | 290 | 7.5 | 7,550 | 17,900 | 770,000 | 1,830,000 | 240/630B | 240/630BK30 | 666 | 884 | 6 | | | | 1,030 | 315 | 7.5 | 9,600 | 19,900 | 975,000 | 2,030,000 | 231/630B | 231/630BK | 666 | 994 | 6 | | | | 1,030 | 400 | 7.5 | 11,600 | 25,000 | 1,180,000 | 2,550,000 | 241/630B | 241/630BK30 | 666 | 994 | 6 | | | | 1,150 | 412 | 12 | 13,700 | 26,800 | 1,400,000 | 2,740,000 | 232/630B | 232/630BK | 684 | 1,096 | 10 | | | | 900 | 170 | 6 | 4,100 | 10,300 | 420,000 | 1,050,000 | 239/670 | 239/670K | 698 | 872 | 5 | | | | 980 | 230 | 7.5 | 6,550 | 14,600 | 665,000 | 1,490,000 | 230/670B | 230/670BK | 706 | 944 | 6 | | | | 980 | 308 | 7.5 | 8,650 | 20,600 | 885,000 | 2,100,000 | 240/670B | 240/670BK30 | 706 | 944 | 6 | | | 670 | 1,090 | 336 | 7.5 | 11,000 | 22,800 | 1,120,000 | 2,330,000 | 231/670B | 231/670BK | 706 | 1,054 | 6 | | | | 1,090 | 412 | 7.5 | 12,700 | 28,000 | 1,300,000 | 2,850,000 | 241/670B | 241/670BK30 | 706 | 1,054 | 6 | | | | 1,220 | 438 | 12 | 16,100 | 32,000 | 1,640,000 | 3,250,000 | 232/670B | 232/670BK | 724 | 1,166 | 10 | | | 680 | 980 | 220 | 7.5 | 6,050 | 14,000 | 615,000 | 1,430,000 | 2P13601 | 2P13601K | 716 | 944 | 6 | | | | 950 | 180 | 6 | 4,450 | 11,500 | 450,000 | 1,170,000 | 239/710 | 239/710K | 738 | 922 | 5 | | | | 1,030 | 236 | 7.5 | 7,200 | 16,200 | 730,000 | 1,650,000 | 230/710B | 230/710BK | 746 | 994 | 6 | | | 710 | 1,030 | 315 | 7.5 | 9,300 | 22,500 | 945,000 | 2,300,000 | 240/710B | 240/710BK30 | 746 | 994 | 6 | | | 710 | 1,150 | 345 | 9.5 | 11,600 | 24,900 | 1,190,000 | 2,540,000 | 231/710B | 231/710BK | 754 | 1,106 | 8 | | | | 1,150 | 438 | 9.5 | 14,500 | 32,000 | 1,470,000 | 3,250,000 | 241/710B | 241/710BK30 | 754 | 1,106 | 8 | | | | 1,280 | 450 | 12 | 16,300 | 32,500 | 1,660,000 | 3,300,000 | 232/710B | 232/710BK | 764 | 1,226 | 10 | | | | 920 | 128 | 5 | 3,100 | 8,450 | 320,000 | 865,000 | 238/750 | 238/750K | 772 | 898 | 4 | | | | 1,000 | 185 | 6 | 5,000 | 13,000 | 510,000 | 1,330,000 | 239/750 | 239/750K | 778 | 972 | 5 | | | 750 | 1,090 | 250 | 7.5 | 8,150 | 18,300 | 835,000 | 1,860,000 | 230/750B | 230/750BK | 786 | 1,054 | 6 | | | 750 | 1,090 | 335 | 7.5 | 10,100 | 24,600 | 1,030,000 | 2,500,000 | 240/750B | 240/750BK30 | 786 | 1,054 | 6 | | | | 1,220 | 365 | 9.5 | 12,800 | 27,200 | 1,310,000 | 2,780,000 | 231/750B | 231/750BK | 794 | 1,176 | 8 | | | | 1,360 | 475 | 15 | 18,200 | 36,500 | 1,860,000 | 3,750,000 | 232/750B | 232/750BK | 814 | 1,296 | 12 | | | 760 | 1,140 | 325 | 7.5 | 10,200 | 23,800 | 1,040,000 | 2,430,000 | ☆2P15203 | 2P15203K | 796 | 1,104 | 6 | | | 780 | 1,220 | 375 | 9.5 | 12,800 | 28,700 | 1,300,000 | 2,920,000 | 2P15605 | 2P15605K | 824 | 1,176 | 8 | [¶] Smallest allowable dimension for chamfer dimension r. № Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. Remarks: 1. Bearing numbers marked "☆" are C type. B-220 B-220 | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | |---|----------|-----------------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_1 | 0.67 | Y_2 | | | | Consta | nt Axia | al load fac | ctors | Mass (approx.) | | | | |--------|---------|-------------|-------------|----------------|---------|---|--| | | | | | k | g | | | | | | | | Cylindrical | tapered | | | | e | Y_1 | Y_2 | $Y_{\rm o}$ | bore | bore | | | | | | | | | | | | | 0.29 | 2.33 | 3.47 | 2.28 | 544 | 535 | | | | 0.30 | 2.22 | 3.30 | 2.17 | 908 | 880 | | | | 0.37 | 1.81 | 2.70 | 1.77 | 1,130 | 1,110 | | | | 0.36 | 1.86 | 2.77 | 1.82 | 1,540 | 1,490 | | | | 0.17 | 4.07 | 6.06 | 3.98 | 158 | 155 | | | | 0.18 | 3.66 | 5.45 | 3.58 | 277 | 268 | | | | 0.22 | 3.14 | 4.67 | 3.07 | 481 | 464 | | | | 0.30 | 2.28 | 3.40 | 2.23 | 657 | 646 | | | | 0.30 | 2.27 | 3.38 | 2.22 | 1,050 | 1,020 | | | | 0.38 | 1.78 | 2.66 | 1.74 | 1,330 | 1,310 | | | | 0.36 | 1.87 | 2.78 | 1.83 | 1,900 | 1,840 | | | | 0.18 | 3.76 | 5.59 | 3.67 | 317 | 307 | | | | 0.10 | 3.07 | 4.57 | 3.00 | 594 | 573 | | | | 0.22 | 2.29 | 3.41 | 2.24 | 794 | 781 | | | | 0.30 | 2.22 | 3.30 | 2.17 | 1,250 | 1,210 | | | | 0.37 | 1.83 | 2.73 | 1.79 | 1,530 | 1,510 | | | | 0.36 | 1.89 | 2.73 | 1.85 | 2,270 | 2,200 | | | | 0.00 | 1.00 | 2.01 | 1.00 | 2,270 | 2,200 | _ | | | 0.21 | 3.17 | 4.72 | 3.10 | 550 | 533 | | | | 0.18 | 3.85 | 5.73 | 3.76 | 375 | 363 | | | | 0.22 | 3.02 | 4.50 | 2.96 | 663 | 640 | | | | 0.29 | 2.36 | 3.51 | 2.31 | 884 | 870 | | | | 0.29 | 2.32 | 3.45 | 2.27 | 1,420 | 1,380 | | | | 0.37 | 1.80 | 2.69 | 1.76 | 1,800 | 1,770 | | | | 0.35 | 1.91 | 2.84 | 1.87 | 2,540 | 2,470 | | | | 0.12 | 5.72 | 8.51 | 5.59 | 179 | 173 | | | | 0.17 | 3.90 | 5.81 | 3.81 | 412 | 399 | | | | 0.21 | 3.20 | 4.76 | 3.13 | 790 | 763 | | | | 0.29 | 2.35 | 3.49 | 2.29 | 1,060 | 1,040 | | | | 0.29 | 2.32 | 3.45 | 2.27 | 1,700 | 1,650 | | | | 0.35 | 1.92 | 2.86 | 1.88 | 3,050 | 2,960 | | | | 0.24 | 2.79 | 4.15 | 2.73 | 1,100 | 1,060 | | | | 0.30 | 2.25 | 3.34 | 2.20 | 1,610 | 1,560 | | | Cylindrical bore **Tapered bore** taper 1:12 ## *d* 790∼1,060mm | | Bounda | ary dime | ensions | dynamic | Basic Io
static
kN | pad ratings
dynamic | static
kgf | Bearing nu | umbers | | tment ar
dimension | | |-------|---|---|---|--|--|---|---|---|---|--|---|---| | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | Cylindrical bore | tapered bore | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | | 790 | 1,100 | 310 | 7.5 | 8,650 | 21,000 | 880,000 | 2,150,000 | 2P15802 | 2P15802K | 826 | 1,064 | 6 | | 800 | 1,060
1,150
1,150
1,280 | 195
258
345
375 | 6
7.5
7.5
9.5 | 5,400
8,400
11,200
14,400 | 13,700
19,500
27,800
31,000 | 550,000
860,000
1,140,000
1,460,000 |
1,400,000
1,990,000
2,840,000
3,150,000 | 239/800
230/800B
240/800B
231/800B | 239/800K
230/800BK
240/800BK30
231/800BK | 828
836
836
844 | 1,032
1,114
1,114
1,236 | 5
6
6
8 | | 850 | 1,030
1,120
1,220
1,220
1,220
1,220
1,220
1,360
1,500 | 136
200
272
290
290
330
365
400
515 | 5
6
7.5
7.5
7.5
7.5
7.5
12 | 3,600
5,850
9,750
9,150
10,500
11,000
12,500
15,500
22,300 | 10,500
15,100
22,700
22,000
24,000
26,900
31,500
34,000
47,500 | 365,000
595,000
995,000
935,000
1,070,000
1,120,000
1,270,000
1,580,000
2,270,000 | 1,070,000
1,540,000
2,310,000
2,240,000
2,450,000
2,740,000
3,200,000
3,500,000
4,850,000 | 238/850
239/850
230/850B
2P17001
☆2P17011
☆2P17012
240/850B
231/850B
232/850B | 238/850K
239/850K
230/850BK
2P17001K
2P17011K
2P17012K
240/850BK30
231/850BK | 872
878
886
886
886
886
904
914 | 1,008
1,092
1,184
1,184
1,184
1,184
1,184
1,306
1,436 | 4
5
6
6
6
6
6
10
12 | | 900 | 1,180
1,280
1,280
1,420 | 206
280
375
412 | 6
7.5
7.5
12 | 6,650
10,300
13,200
16,800 | 17,300
24,700
33,500
38,000 | 675,000
1,050,000
1,350,000
1,720,000 | 1,770,000
2,520,000
3,450,000
3,850,000 | 239/900
230/900B
240/900B
231/900B | 239/900K
230/900BK
240/900BK30
231/900BK | 928
936
936
954 | 1,152
1,244
1,244
1,366 | 5
6
6
10 | | 950 | 1,250
1,280
1,330
1,360
1,360
1,360
1,400 | 224
260
300
300
320
412
380 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7,750
8,650
8,400
11,500
11,500
15,500
14,100 | 20,500
22,200
21,200
28,400
28,000
40,000
33,500 | 790,000
885,000
855,000
1,180,000
1,170,000
1,580,000
1,440,000 | 2,090,000
2,270,000
2,170,000
2,900,000
2,860,000
4,100,000
3,400,000 | 239/950
2P19014
2P19013
230/950B
☆2P19022
240/950B
2P19019 | 239/950K
2P19014K
2P19013K
230/950BK
2P19022K
240/950BK30
2P19019K | 986
986
986
986
986
986
986 | 1,214
1,244
1,294
1,324
1,324
1,324
1,364 | 6
6
6
6
6
6 | | 1,000 | 1,320
1,320
1,420
1,420 | 236
258
308
412 | 7.5
7.5
7.5
7.5 | 8,600
8,500
12,400
16,000 | 22,700
22,600
30,000
42,000 | 875,000
865,000
1,260,000
1,640,000 | 2,310,000
2,300,000
3,050,000
4,250,000 | 239/1000
2P20002
230/1000B
240/1000B | 240/1000BK30 | <u>'</u> | 1,284
1,284
1,384
1,384 | 6
6
6
6 | | 1,050 | 1,500
1,400
1,500 | 250
325 | 9.5
7.5
9.5 | 9,300
13,600 | 24,700
33,500 | 950,000
1,390,000 | 2,520,000
3,400,000 | ☆2P21001
239/1060
230/1060B | 2P21001K
239/1060K
230/1060BK | 1,094
1,096
1,104 | 1,456
1,364
1,456 | 8
6
8 | [¶] Smallest allowable dimension for chamfer dimension r. № Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. Remarks: 1. Bearing numbers marked "☆" are C type. B-222 B-222 | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | |---|----------|-----------------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | Consta | ınt Axi | ial load f | actors | Mass | (approx.) | |--------|---------|------------|-------------|-------------|-----------| | | | | | k | g | | | | | | Cylindrical | tapered | | e | Y_1 | Y_2 | $Y_{\rm o}$ | bore | bore | | 0.24 | 2.76 | 4.11 | 2.70 | 857 | 817 | | 0.17 | 4.05 | 6.04 | 3.96 | 487 | 471 | | 0.21 | 3.15 | 4.69 | 3.08 | 890 | 859 | | 0.28 | 2.41 | 3.59 | 2.36 | 1,190 | 1,170 | | 0.29 | 2.32 | 3.45 | 2.27 | 1,890 | 1,830 | | 0.11 | 6.01 | 8.94 | 5.87 | 232 | 223 | | 0.16 | 4.25 | 6.32 | 4.15 | 550 | 532 | | 0.20 | 3.32 | 4.95 | 3.25 | 1,050 | 1,010 | | 0.23 | 2.98 | 4.44 | 2.92 | 1,100 | 1,070 | | 0.21 | 3.28 | 4.88 | 3.21 | 1,060 | 1,020 | | 0.23 | 2.90 | 4.31 | 2.83 | 1,200 | 1,160 | | 0.28 | 2.42 | 3.61 | 2.37 | 1,410 | 1,390 | | 0.28 | 2.37 | 3.54 | 2.32 | 2,270 | 2,200 | | 0.35 | 1.94 | 2.89 | 1.90 | 3,890 | 3,780 | | 0.16 | 4.32 | 6.44 | 4.23 | 623 | 603 | | 0.20 | 3.32 | 4.95 | 3.25 | 1,170 | 1,130 | | 0.27 | 2.48 | 3.70 | 2.43 | 1,570 | 1,540 | | 0.28 | 2.42 | 3.60 | 2.36 | 2,500 | 2,420 | | 0.16 | 4.20 | 6.26 | 4.11 | 774 | 749 | | 0.17 | 3.98 | 5.92 | 3.89 | 921 | 888 | | 0.18 | 3.66 | 5.46 | 3.58 | 1,210 | 1,170 | | 0.21 | 3.26 | 4.85 | 3.18 | 1,430 | 1,380 | | 0.20 | 3.33 | 4.96 | 3.25 | 1,450 | 1,400 | | 0.28 | 2.39 | 3.56 | 2.34 | 1,970 | 1,940 | | 0.24 | 2.77 | 4.13 | 2.71 | 1,940 | 1,870 | | 0.16 | 4.21 | 6.26 | 4.11 | 916 | 887 | | 0.16 | 4.23 | 6.30 | 4.14 | 911 | 877 | | 0.20 | 3.37 | 5.02 | 3.29 | 1,580 | 1,520 | | 0.27 | 2.51 | 3.73 | 2.45 | 2,110 | 2,080 | | 0.24 | 2.85 | 4.25 | 2.79 | 2,290 | 2,200 | | 0.16 | 4.28 | 6.37 | 4.19 | 1,090 | 1,060 | | 0.20 | 3.36 | 5.00 | 3.28 | 1,850 | 1,790 | | | | | | | | Cylindrical bore **Tapered bore** taper 1:12 ## *d* 1,060∼1,800mm | | Bounda | mm | ensions | dynamic
ł | dynamic static dynamic | | Bearing no
static
kgf | | ımbers | Abutment and fillet dimensions mm | | | |-------|----------------------------------|--------------------------|------------------------|-------------------------------------|--------------------------------------|--|--|--|---|-----------------------------------|----------------------------------|-----------------| | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | Cylindrical
bore | tapered bore | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | | 1,060 | 1,500
1,500 | 340
438 | 9.5
9.5 | 13,100
17,800 | 32,000
47,000 | 1,340,000
1,810,000 | 3,250,000
4,800,000 | 2P21202
240/1060B | 2P21202K
240/1060BK30 | 1,104
1,104 | 1,456
1,456 | | | 1,120 | 1,360
1,460
1,580
1,580 | 180
250
345
462 | 6
7.5
9.5
9.5 | 6,200
9,850
15,600
19,500 | 18,700
26,700
39,000
52,500 | 630,000
1,000,000
1,590,000
1,990,000 | 1,900,000
2,720,000
4,000,000
5,350,000 | 238/1120
239/1120
230/1120B
240/1120B | 238/1120K
239/1120K
230/1120BK
240/1120BK30 | 1,148
1,156
1,164
1,164 | 1,332
1,424
1,536
1,536 | 6
8 | | 1,180 | 1,420
1,540
1,540
1,660 | 180
272
355
475 | 6
7.5
7.5
9.5 | 6,350
11,000
13,700
20,700 | 19,700
29,800
40,500
55,500 | 650,000
1,120,000
1,390,000
2,110,000 | 2,010,000
3,050,000
4,150,000
5,650,000 | 238/1180
239/1180
249/1180
240/1180B | 238/1180K
239/1180K
249/1180K30
240/1180BK30 | 1,208
1,216
1,216
1,224 | 1,392
1,504
1,504
1,616 | 6
6 | | 1,200 | 1,700
1,700 | 410
410 | 9.5
12 | 17,600
17,800 | 44,500
45,000 | 1,800,000
1,810,000 | 4,550,000
4,600,000 | 2P24005
☆2P24007 | 2P24005K
2P24007K | 1,244
1,254 | 1,656
1,646 | | | 1,250 | 1,630
1,750 | 280
390 | 7.5
9.5 | 12,100
17,200 | 33,500
44,000 | 1,230,000
1,760,000 | 3,400,000
4,500,000 | 239/1250
2P25002 | 239/1250K
2P25002K | 1,286
1,294 | 1,594
1,706 | | | 1,320 | 1,720
1,850
1,850 | 300
480
530 | 7.5
12
12 | 13,600
22,200
25,200 | 38,000
58,500
67,500 | 1,390,000
2,270,000
2,570,000 | 3,900,000
5,950,000
6,900,000 | 239/1320
2P26402
240/1320B | 239/1320K
2P26402K
240/1320BK30 | 1,356
1,374
1,374 | 1,684
1,796
1,796 | 10 | | 1,400 | 1,820 | 315 | 9.5 | 15,100 | 43,000 | 1,540,000 | 4,400,000 | 239/1400 | 239/1400K | 1,444 | 1,776 | 8 | | 1,500 | 1,820 | 315 | 7.5 | 12,300 | 41,500 | 1,260,000 | 4,200,000 | 248/1500 | 248/1500K30 | 1,536 | 1,784 | 6 | | 1,800 | 2,180 | 375 | 9.5 | 17,500 | 60,500 | 1,790,000 | 6,200,000 | 248/1800 | 248/1800K30 | 1,844 | 2,136 | 8 | Smallest allowable dimension for chamfer dimension r. Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. Remarks: 1. Bearing numbers marked "☆" are C type. B-224 B-224 | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | |-----------------------------|----------|-----------------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_1 | 0.67 | Y_2 | | | | | Consta | ant Axi | ial load 1 | actors | Mass | Mass (approx.) | | | | |--------|---------|------------|------------------|-------------|----------------|--|--|--| | | | | | ŀ | κg | | | | | | | | | Cylindrical | tapered | | | | | e | Y_1 | Y_2 | Y_{o} | bore | bore | | | | | 0.21 | 3.25 | 4.83 | 3.17 | 1,870 | 1,810 | | | | | 0.21 | 2.49 | 3.71 | 2.44 | 2,450 | 2,140 | | | | | 0.27 | 2. 10 | 0.7 1 | | 2, 100 | 2,110 | | | | | 0.11 | 5.97 | 8.89 | 5.84 | 536 | 517 | | | | | 0.15 | 4.42 | 6.58 | 4.32 | 1,140 | 1,100 | | | | | 0.21 | 3.29 | 4.80 | 3.21 | 2,160 | 2,090 | | | | | 0.27 | 2.50 | 3.72 | 2.44 | 2,890 | 2,840 | | | | | 0.11 | 6.27 | 9.34 | 6.13 | 559 | 539 | | | | | 0.15 | 4.40 | 6.55 | 4.30 | 1,390 | 1,340 | | | | | 0.21 | 3.28 | 4.88 | 3.21 | 1,740 | 1,660 | | | | | 0.27 | 2.54 | 3.78 | 2.48 | 3,220 | 3,170 | | | | | 0.21 | 3.19 | 4.75 | 3.12 | 2,860 | 2,750 | | | | | 0.21 | 3.21 | 4.77 | 3.14 | 2,830 | 2,730 | | | | | 0.15 | 4.42 | 6.58 | 4.32 | 1,600 | 1,550 | | | | | 0.20 | 3.31 | 4.93 | 3.24 |
2,880 | 2,780 | | | | | 0.16 | 4.34 | 6.46 | 4.24 | 1,900 | 1,840 | | | | | 0.22 | 3.12 | 4.64 | 3.05 | 3,830 | 3,670 | | | | | 0.25 | 2.65 | 3.94 | 2.59 | 4,320 | 4,240 | | | | | 0.15 | 4.39 | 6.54 | 4.29 | 2,230 | 2,160 | | | | | 0.15 | 4.54 | 6.75 | 4.43 | 1,660 | 1,580 | | | | | 0.15 | 4.47 | 6.65 | 4.37 | 2,830 | 2,770 | | | | #### 1. Classification and Features #### 1. 1 Thrust ball bearings Balls are arranged between a set of washers (a shaft washer and housing washer) and the contact angle is 90° . Axial loads can be supported in only one direction and radial loads cannot be supported. These bearings are unsuitable for high speed operation. **Table 1** shows the standard cage models. Table 1 Standard cage model | Bearing series | 511 | 512 | 513 | 514 | |----------------|-------------------|-----------------|-----------------|-------| | Press cage | 51120
~51152 | 51220
~51224 | 51320 | _ | | Machined cage | 51156
~511/750 | 51226
~51292 | 51322
~51340 | 51420 | Fig.1 Single type thrust ball bearing (Example of the press cage) #### 1. 2 Cylindrical roller thrust bearings These bearings use cylindrical rollers and have single row, double row, 3 row, 4 row, and also duplex types. Bearings can support only axial loads and are suitable to heavy loads. Their axial rigidity is high. Cages are the machined type. Fig.2 Cylindrical roller thrust bearing #### 1. 3 Tapered roller thrust bearings These are thrust bearings using tapered rollers, and the single type bearings have three types of housing washers. One type is the housing raceway with a rib, the other one is without a rib, and the third bearing is the full complement roller type. Double type bearings are mainly used to support axial loads on the roll neck of rolling mill. Machined cages are used for cages. Fig.3 Tapered roller thrust bearings (Single type) Fig.4 Tapered roller thrust bearings (Double type) #### 1. 4 Self-aligning thrust roller bearings These bearings have a self-aligning nature using barrel-shaped rollers. The allowable aligning angle varies depending on the bearing's dimension system, but it is 1° - 2° for normal loads. Cages are machined type and the guide sleeve is on the axial housing raceway. Since the load capacity for axial loads is high, these bearings can support a certain amount of radial load in the instances that axial loads are applied. However, it is necessary to use these bearing where the load conditions meet $F_{\rm r}/F_{\rm a} \leq 0.55$. These bearings have some spots where lubricant cannot enter such as the gap between the cage and guide sleeve. It is necessary to use oil lubrication even in low speed operation. Fig.5 Self-aligning thrust roller bearing #### 2. Dimensional Accuracy / Rotation Accuracy | Thrust ball bearings | ··Table 3.6 (Page A-18) | |--|-------------------------| | Cylindrical roller thrust bearings | ·Table 3.6 (Page A-18) | | Tapered roller thrust bearings ····· | ·Table 3.8 (Page A-19) | | Self-aligning thrust roller bearings ····· | ··Table 3.8 (Page A-19) | #### 3. Recommended Fitting Thrust ball bearings Cylindrical roller thrust bearings Tapered roller thrust bearings Self-aligning thrust roller bearings Table 4.3 (Page A-26) #### 4. General Operating Cautions Thrust bearings need to load a certain amount of axial load to prevent sliping between the rolling elements and axial housing raceway. Please consult with **NTN** Engineering for details. Equivalent bearing load dynamic $P_{\rm a}\!=\!F_{\rm a}$ static ### d 100~190mm | В | oundary d | limens | ions | dynamic | Basic loa | ad ratings
dynamic | static | Bearing
numbers | Dimer | sions | | utment a | | Mass | |-----|-----------|----------|---------------|------------------|-------------------|-----------------------|-------------------|--------------------|----------------------------------|-------------------------------|------------------|-------------|--------------|--------------| | | m | m | | , | N | * | kgf | | m | m | | mm | | kg | | | | | | | | | | | | | d_{a} | $D_{\rm a}$ | $r_{\rm as}$ | | | d | D | T | $r_{ m smin}$ | C_{a} | C_{oa} | $C_{ m a}$ | C_{oa} | | $d_{1\mathrm{s}\mathrm{max}}^{}$ | $D_{1\mathrm{s}\mathrm{min}}$ | min | max | max | (approx.) | | | | | | | | | | | | | | | | | | | 135 | 25 | 1 | 85.0 | 268 | 8,700 | 27,300 | 51120 | 135 | 102 | 121 | 114 | 1 | 0.987 | | 100 | 150 | 38 | 1.1 | 147 | 410 | 14,900 | 42,000 | 51220 | 150 | 103 | 130 | 120 | 1 | 2.29 | | .00 | 170 | 55
85 | 1.5
3 | 237
370 | 595 | 24,100 | 60,500 | 51320
* 51420 | 170
205 | 103
103 | 142 | 128
145 | 1.5 | 4.88
14.7 | | | 210 | 65 | 3 | 370 | 970 | 37,500 | 99,000 | ↑ 5 14ZU | 205 | 103 | 165 | 145 | 2.5 | 14.7 | | | 145 | 25 | 1 | 87.0 | 288 | 8,900 | 29,400 | 51122 | 145 | 112 | 131 | 124 | 1 | 1.07 | | 110 | 160 | 38 | 1.1 | 153 | 450 | 15,600 | 46,000 | 51222 | 160 | 113 | 140 | 130 | 1 | 2.46 | | | 190 | 63 | 2 | 267 | 705 | 27,300 | 72,000 | *51322 | 187 | 113 | 158 | 142 | 2 | 7.67 | | | | | | | | | - | | | | | | | | | | 155 | 25 | 1 | 89.0 | 310 | 9,100 | 31,500 | 51124 | 155 | 122 | 141 | 134 | 1 | 1.11 | | 120 | 170 | 39 | 1.1 | 154 | 470 | 15,700 | 48,000 | 51224 | 170 | 123 | 150 | 140 | 1 | 2.71 | | | 210 | 70 | 2.1 | 296 | 805 | 30,000 | 82,500 | *51324 | 205 | 123 | 173 | 157 | 2 | 10.8 | | | 170 | 30 | 1 | 104 | 050 | 10.000 | 00.000 | 51126 | 170 | 132 | 154 | 146 | 1 | 1.73 | | 120 | 190 | 30
45 | 1.5 | 191 | 350
565 | 10,600
19,400 | 36,000
57,500 | * 51126
* 51226 | 187 | 133 | 166 | 154 | 1.5 | 4.22 | | 130 | 225 | 75 | 2.1 | 330 | 960 | 33,500 | 97,500 | * 51226
* 51326 | 220 | 134 | 186 | 169 | 2 | 12.7 | | | 223 | 75 | ۷.۱ | 000 | 300 | 00,000 | 37,500 | 4 3 1 3 2 0 | 220 | 104 | 100 | 103 | | 12.7 | | | 180 | 31 | 1 | 107 | 375 | 10,900 | 38,500 | *51128 | 178 | 142 | 164 | 156 | 1 | 1.90 | | 140 | 200 | 46 | 1.5 | 193 | 595 | 19,700 | 60,500 | *51228 | 197 | 143 | 176 | 164 | 1.5 | 4.77 | | | 240 | 80 | 2.1 | 350 | 1,050 | 35,500 | 107,000 | *51328 | 235 | 144 | 199 | 181 | 2 | 15.3 | | | | | | | | | | . = | | | | | | | | 450 | 190 | 31 | 1 | 109 | 400 | 11,100 | 41,000 | *51130 | 188 | 152 | 174 | 166 | 1 | 2.00 | | 150 | 215 | 50 | 1.5 | 220 | 685 | 22,400 | 70,000 | * 51230
* 51230 | 212 | 153 | 189 | 176 | 1.5 | 5.87 | | | 250 | 80 | 2.1 | 360 | 1,130 | 37,000 | 115,000 | * 51330 | 245 | 154 | 209 | 191 | 2 | 16.1 | | | 200 | 31 | 1 | 112 | 425 | 11.400 | 43,500 | *51132 | 198 | 162 | 184 | 176 | 1 | 2.10 | | 160 | 225 | 51 | 1.5 | 223 | 720 | 22,800 | 73,000 | *51232 | 222 | 163 | 199 | 186 | 1.5 | 6.32 | | .00 | 270 | 87 | 3 | 450 | 1,470 | 45,500 | 150,000 | *51332 | 265 | 164 | 225 | 205 | 2.5 | 20.7 | | | | | | | | • | | | | | | | | | | | 215 | 34 | 1.1 | 134 | 510 | 13,700 | 52,000 | *51134 | 213 | 172 | 197 | 188 | 1 | 2.77 | | 170 | 240 | 55 | 1.5 | 261 | 835 | 26,600 | 85,000 | *51234 | 237 | 173 | 212 | 198 | 1.5 | 7.81 | | | 280 | 87 | 3 | 465 | 1,570 | 47,000 | 160,000 | * 51334 | 275 | 174 | 235 | 215 | 2.5 | 21.6 | | | 225 | 34 | 1.1 | 135 | 525 | 13,700 | E4 000 | * 51136 | 222 | 183 | 207 | 198 | 1 | 2.92 | | 180 | 250 | 56 | 1.5 | 266 | 525
875 | 27,100 | 54,000
89,000 | * 51136
* 51236 | 247 | 183 | 222 | 208 | 1.5 | 2.92
8.34 | | 100 | 300 | 95 | 3 | 490 | 1,700 | 50,000 | 174,000 | * 51236
* 51336 | 295 | 184 | 251 | 229 | 2.5 | 27.5 | | | 500 | 55 | J | 700 | 1,700 | 50,000 | 177,000 | . 01000 | 200 | 104 | 201 | 223 | 2.0 | 21.0 | | 190 | 240 | 37 | 1.1 | 170 | 655 | 17,400 | 67,000 | *51138 | 237 | 193 | 220 | 210 | 1 | 3.75 | | 190 | 270 | 62 | 2 | 310 | 1,060 | 31,500 | 108,000 | *51238 | 267 | 194 | 238 | 222 | 2 | 11.3 | Smallest allowable dimension for chamfer dimension r. Maximum allowable dimension for shaft washer outer dimension d. Maximum allowable dimension for housing washer inner dimension D. Remarks: Bearing numbers marked "*" signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing. B-230 Equivalent bearing load dynamic $P_a = F_a$ static ## d 190~420mm | Во | undary | dimens | ions | dynamic | Basic loa
static | ad ratings
dynamic | static | Bearing numbers | Dimer | sions | | utment a | | Mass | |-----|------------|-----------|---------------|------------|---------------------|-----------------------|--------------------|------------------|----------------------|-------------------------------|----------------|----------------|-----------------|--------------| | | n | nm | | - 1 | kN | | kgf | | m | m | J | mm | | kg | | d | D | T | $r_{ m smin}$ | $C_{ m a}$ | C_{oa} | $C_{ m a}$ | C_{oa} | | $d_{1\mathrm{smax}}$ | $D_{1\mathrm{s}\mathrm{min}}$ | $d_{ m a}$ min | $D_{ m a}$ max | $r_{ m as}$ max | (approx.) | | W | D | - | ' S HIIII | O a | Oba | O a | Oa | | W Is max | 2) Is min | 111111 | max | mux | (арргох.) | | 190 | 320 | 105 | 4 | 545 | 1,950 | 55,500 | 199,000 | *51338 | 315 | 195 | 266 | 244 | 3 | 35.0 | | | 250 | 37 | 1.1 | 172 | 675 | 17,500 | 69,000 | *51140 | 247 | 203 | 230 | 220 | 1 | 3.92 | | 200 | 280 | 62 | 2 | 315 | 1,110 | 32,000 | 113,000 | *51240 | 277 | 204 | 248 | 232 | 2 | 11.8 | | | 340 | 110 | 4 | 595 | 2,220 | 61,000 | 227,000 | *51340 | 335 | 205 | 282 | 258 | 3 | 41.8 | | | 270 | 37 | 1.1 | 177 | 740 | 18,100 | 75,500 | *51144 | 267 | 223 | 250 | 240 | 1 | 4.27 | | 220 | 300 | 63 | 2 | 325 | 1,210 | 33,000 | 123,000 | *51244 | 297 | 224 | 268 | 252 | 2 | 13.0 | | | | | | | -, | | | | | | | | | | | 240 | 300 | 45 | 1.5 | 228 | 935 | 23,200 | 95,000 | *51148 | 297 | 243 | 276 | 264 | 1.5 | 6.87 | | 240 | 340 | 78 | 2.1 | 415 | 1,650 | 42,500 | 168,000 |
*51248 | 335 | 244 | 299 | 281 | 2 | 22.4 | | | 320 | 45 | 1.5 | 232 | 990 | 23,600 | 101,000 | *51152 | 317 | 263 | 296 | 284 | 1.5 | 7.38 | | 260 | 360 | 79 | 2.1 | 440 | 1,810 | 45,000 | 184,000 | *51252 | 355 | 264 | 319 | 301 | 2 | 24.2 | | | | | | | <u> </u> | <u> </u> | <u> </u> | | | | | | | | | 280 | 350 | 53 | 1.5 | 305 | 1,270 | 31,000 | 130,000 | *51156 | 347 | 283 | 322 | 308 | 1.5 | 11.8 | | | 380 | 80 | 2.1 | 460 | 1,970 | 47,000 | 201,000 | *51256 | 375 | 284 | 339 | 321 | 2 | 26.1 | | | 380 | 62 | 2 | 355 | 1,560 | 36,000 | 159,000 | *51160 | 376 | 304 | 348 | 332 | 2 | 17.2 | | 300 | 420 | 95 | 3 | 590 | 2,680 | 60,000 | 273,000 | *51260 | 415 | 304 | 371 | 349 | 2.5 | 40.6 | | | | | | | | | | | | | | | | | | 320 | 400 | 63 | 2 | 365 | 1,660 | 37,000 | 169,000 | *51164 | 396 | 324 | 368 | 352 | 2 | 18.4 | | | 440 | 95 | 3 | 595 | 2,800 | 61,000 | 285,000 | *51264 | 435 | 325 | 392 | 368 | 2.5 | 44.9 | | | 420 | 64 | 2 | 375 | 1,760 | 38,000 | 179,000 | *51168 | 416 | 344 | 388 | 372 | 2 | 19.7 | | 340 | 460 | 96 | 3 | 605 | 2,920 | 61,500 | 298,000 | *51268 | 455 | 345 | 412 | 388 | 2.5 | 47.8 | | | | | | | | | | | | | | | | | | 360 | 440
500 | 65
110 | 2
4 | 380
720 | 1,860 | 39,000 | 190,000 | *51172
*51272 | 436
495 | 364
365 | 408
444 | 392
416 | 2 | 21.1 | | | 500 | 110 | 4 | 720 | 3,650 | 73,500 | 375,000 | *51272 | 495 | 305 | 444 | 410 | 3 | 69.0 | | 000 | 460 | 65 | 2 | 380 | 1,910 | 39,000 | 195,000 | *51176 | 456 | 384 | 428 | 412 | 2 | 22.3 | | 380 | 520 | 112 | 4 | 735 | 3,800 | 74,500 | 390,000 | *51276 | 515 | 385 | 464 | 436 | 3 | 73.7 | | | 400 | 0.5 | 0 | 000 | 0.010 | 40.000 | 005.000 | W E4400 | 470 | 404 | 440 | 400 | 0 | 00.0 | | 400 | 480
540 | 65
112 | 2
4 | 390
745 | 2,010
3,950 | 40,000
76,000 | 205,000
405,000 | *51180
*51280 | 476
535 | 404
405 | 448
484 | 432
456 | 2
3 | 23.3
76.9 | | | 340 | 114 | 7 | 740 | 0,300 | 70,000 | +00,000 | * 31200 | JJJ | 400 | 404 | 400 | J | 70.8 | | 420 | 500 | 65 | 2 | 395 | 2,110 | 40,500 | 215,000 | *51184 | 495 | 424 | 468 | 452 | 2 | 24.4 | | 420 | 580 | 130 | 5 | 865 | 4,850 | 88,500 | 490,000 | *51284 | 575 | 425 | 516 | 484 | 4 | 109 | | | | | | | _ | | | | | | | | | | Smallest allowable dimension for chamfer dimension r. Maximum allowable dimension for shaft washer outer dimension d. Maximum allowable dimension for housing washer inner dimension D. Remarks: Bearing numbers marked "*" signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing. B-231 B-231 Equivalent bearing load dynamic $P_{\rm a}\!\!=\!\!F_{\rm a}$ static $P_{0a}=F_{a}$ #### d 440~750mm | <i>a</i> 44 | 440° - 750mm | | | | | | | | | | | | | | |-------------|--------------|--------|---------------|----------------|--------------------|------------------------|-------------------|-----------------|----------------------|-------------------------------|------------|-------------|-------------|-----------| | Во | undary (| dimens | ions | dynamic | Basic lo
static | oad ratings
dynamic | static | Bearing numbers | Dimen | sions | | utment a | | Mass | | | n | nm | | k | N | kgf | | | mm | | | mm | | kg | | d | D | T | $r_{ m smin}$ | $C_{ m a}$ | C_{oa} | C | C_{oa} | | $d_{1\mathrm{smax}}$ | $D_{1\mathrm{s}\mathrm{min}}$ | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | , | | α | D | 1 | 7's min | C _a | Coa | C_{a} | C _{oa} | | $a_{1\text{s max}}$ | $D_{1 ext{s min}}$ | min | max | max | (approx.) | | | 540 | 80 | 2.1 | 515 | 2.850 | 52,500 | 291,000 | *51188 | 535 | 444 | 499 | 481 | 2 | 40.0 | | 440 | 600 | 130 | 5 | 855 | 4,850 | 87,500 | 490,000 | *51288 | 595 | 445 | 536 | 504 | 4 | 113 | | | | | | | | | | | | | | | | | | 460 | 560 | 80 | 2.1
5 | 525 | 3,000 | 53,500 | 305,000 | *51192 | 555
615 | 464
465 | 519
556 | 501
524 | 2 | 41.6 | | | 620 | 130 | Э | 895 | 5,250 | 91,000 | 535,000 | *51292 | 015 | 465 | 556 | 524 | 4 | 118 | | 480 | 580 | 80 | 2.1 | 525 | 3,100 | 54,000 | 315,000 | *51196 | 575 | 484 | 539 | 521 | 2 | 43.3 | | 500 | 600 | 80 | 2.1 | 575 | 3,400 | 58,500 | 345,000 | * 511/500 | 595 | 504 | 559 | 541 | 2 | 45.0 | | 530 | 640 | 85 | 3 | 645 | 4,000 | 66,000 | 405,000 | * 511/530 | 635 | 534 | 595 | 575 | 2.5 | 55.8 | | 560 | 670 | 85 | 3 | 595 | 3,750 | 60,500 | 385,000 | * 511/560 | 665 | 564 | 625 | 605 | 2.5 | 59.4 | | 600 | 710 | 85 | 3 | 645 | 4,200 | 66,000 | 430,000 | *511/600 | 705 | 604 | 666 | 644 | 2.5 | 62.6 | | 630 | 750 | 95 | 3 | 720 | 4,850 | 73,500 | 495,000 | * 511/630 | 745 | 634 | 702 | 678 | 2.5 | 82.5 | | 670 | 800 | 105 | 4 | 825 | 5,850 | 84,000 | 600,000 | *511/670 | 795 | 674 | 748 | 722 | 3 | 105 | | 710 | 850 | 112 | 4 | 875 | 6,350 | 89,000 | 650,000 | *511/710 | 845 | 714 | 794 | 766 | 3 | 129 | | 750 | 900 | 120 | 4 | 1,010 | 7,650 | 103,000 | 780,000 | * 511/750 | 895 | 755 | 841 | 809 | 3 | 155 | Smallest allowable dimension for chamfer dimension r. Maximum allowable dimension for shaft washer outer dimension d. Maximum allowable dimension for housing washer inner dimension D. Remarks: Bearing numbers marked "*" signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing. B-232 Type 811 Type 812 **Type 893** **Type 874** ## *d* 100∼180mm | | Boundary dimensions | | | dynamic | Basic load ra | atings
dynamic | static | Bearing
numbers | |-----|---------------------|----|---------------|------------|-------------------|-------------------|-------------|--------------------| | | | mm | | | kN | | kgf | | | d | D | T | $r_{ m smin}$ | $C_{ m a}$ | C_{oa} | $C_{ m a}$ | $C_{ m oa}$ | | | | 135 | 25 | 1 | 158 | 555 | 16,100 | 57,000 | 81120L1 | | | 150 | 38 | 1.1 | 243 | 795 | 24,800 | 81,000 | 81220L1 | | 100 | 170 | 42 | 1.5 | 335 | 1,370 | 34,500 | 140,000 | 89320L1 | | | 210 | 50 | 3 | 580 | 2,650 | 59,000 | 271,000 | 87420L1 | | | 145 | 25 | 1 | 165 | 605 | 16,800 | 61,500 | 81122L1 | | 110 | 160 | 38 | 1.1 | 259 | 885 | 26,400 | 90,000 | 81222L1 | | 110 | 190 | 48 | 2 | 430 | 1,770 | 44,000 | 180,000 | 89322L1 | | | 230 | 54 | 3 | 725 | 3,150 | 74,000 | 325,000 | 87422L1 | | | 155 | 25 | 1 | 172 | 655 | 17,500 | 66,500 | 81124L1 | | 120 | 170 | 39 | 1.1 | 264 | 930 | 26,900 | 94,500 | 81224L1 | | 120 | 210 | 54 | 2.1 | 555 | 2,300 | 56,500 | 235,000 | 89324L1 | | | 250 | 58 | 4 | 830 | 3,900 | 84,500 | 395,000 | 87424L1 | | | 170 | 30 | 1 | 197 | 755 | 20,100 | 77,000 | 81126L1 | | 130 | 190 | 45 | 1.5 | 360 | 1,210 | 36,500 | 123,000 | 81226L1 | | 100 | 225 | 58 | 2.1 | 615 | 2,600 | 63,000 | 265,000 | 89326L1 | | | 270 | 63 | 4 | 895 | 4,250 | 91,500 | 435,000 | 87426L1 | | | 180 | 31 | 1 | 206 | 815 | 21,000 | 83,000 | 81128L1 | | 140 | 200 | 46 | 1.5 | 370 | 1,280 | 38,000 | 130,000 | 81228L1 | | | 240 | 60 | 2.1 | 695 | 2,980 | 71,000 | 305,000 | 89328L1 | | | 280 | 63 | 4 | 940 | 4,600 | 96,000 | 470,000 | 87428L1 | | | 190 | 31 | 1 | 214 | 870 | 21,800 | 89,000 | 81130L1 | | 150 | 215 | 50 | 1.5 | 455 | 1,580 | 46,000 | 161,000 | 81230L1 | | | 250 | 60 | 2.1 | 710 | 3,130 | 72,500 | 320,000 | 89330L1 | | | 200 | 31 | 1 | 221 | 930 | 22,600 | 95,000 | 81132L1 | | 160 | 225 | 51 | 1.5 | 518 | 1,930 | 53,000 | 197,000 | 81232L1 | | | 270 | 67 | 3 | 835 | 3,690 | 85,500 | 375,000 | 89332L1 | Dimer | nsions | | Abutment and fillet dimensions | | | | | |-------|--------|-----|--------------------------------|-------------|-----------|--|--| | m | mm | | mm | | | | | | | | | D_{a} | $r_{ m as}$ | kg | | | | d_1 | D_1 | min | max | max | (approx.) | | | | 105 | 400 | 400 | 400 | | 4 000 | | | | 135 | 102 | 128 | 106 | 1 | 1.220 | | | | 150 | 103 | 139 | 109 | 1 | 2.730 | | | | 170 | 103 | 163 | 110 | 1.5 | 4.500 | | | | 210 | 103 | 203 | 112 | 3 | 9.500 | | | | 145 | 112 | 138 | 116 | 1 | 1.330 | | | | 160 | 113 | 149 | 119 | 1 | 2.980 | | | | 190 | 113 | 183 | 122 | 2 | 6.350 | | | | 230 | 113 | 221 | 118 | 3 | 11.850 | | | | | | | | _ | | | | | 155 | 122 | 148 | 126 | 1 | 1.410 | | | | 170 | 123 | 159 | 129 | 1 | 3.280 | | | | 210 | 123 | 201 | 132 | 2 | 9.000 | | | | 250 | 123 | 241 | 132 | 4 | 15.690 | | | | 170 | 132 | 162 | 137 | 1 | 2.020 | | | | 187 | 133 | 178 | 140 | 1.5 | 5.050 | | | | 225 | 134 | 216 | 143 | 2 | 10.370 | | | | 270 | 134 | 262 | 147 | 4 | 19.750 | | | | | | | | | | | | | 178 | 142 | 172 | 147 | 1 | 2.250 | | | | 197 | 143 | 188 | 150 | 1.5 | 5.460 | | | | 240 | 144 | 231 | 154 | 2 | 12.600 | | | | 280 | 144 | 273 | 158 | 4 | 20.940 | | | | 188 | 152 | 182 | 157 | 1 | 2.410 | | | | 212 | 153 | 202 | 160 | 1.5 | 6.870 | | | | 250 | 154 | 242 | 165 | 2 | 13.320 | | | | | | | | | | | | | 198 | 162 | 192 | 167 | 1 | 2.500 | | | | 222 | 163 | 216 | 174 | 1.5 | 6.910 | | | | 270 | 164 | 262 | 177 | 3 | 17.250 | | | ### *d* 180∼304.8mm | | Boundary dimensions | | dynamic | Basic load ratings dynamic static dynamic | | static | Bearing
numbers | | |--------|---------------------|-------|------------------------|---|-------------------|------------|--------------------|---------| | | | mm | | ĺ | κN | ŀ | kgf | | | d | D | T | $r_{ m smin}$ | $C_{ m a}$ | C_{oa} | $C_{ m a}$ | C_{oa} | | | 180 | 220 | 22 | 1.0 | 160 | 715 |
16,300 | 72,500 | RT3615 | | 100 | 300 | 73 | 3.0 | 1,090 | 4,900 | 111,000 | 495,000 | 2RT3618 | | 190 | 270 | 62 | 2.5 | 745 | 2,780 | 76,000 | 284,000 | RT3812 | | | 330 | 70 | 4.0 | 1,260 | 5,900 | 129,000 | 600,000 | 2RT3811 | | | 340 | 75 | 5.0 | 1,320 | 6,150 | 134,000 | 630,000 | 2RT4028 | | 200 | 340 | 85 | 5.0 | 1,260 | 4,950 | 128,000 | 505,000 | 2RT4030 | | 200 | 370 | 85 | 4.0 | 1,760 | 7,400 | 179,000 | 755,000 | 2RT4024 | | | 400 | 122 | 5.0 | 2,230 | 8,250 | 227,000 | 840,000 | 2RT4032 | | 203.2 | 406.4 | 76.2 | 6.0 | 1,530 | 7,850 | 156,000 | 800,000 | 3RT4101 | | 210 | 250 | 25 | 1.5 | 133 | 635 | 13,600 | 64,500 | RT4206 | | | 270 | 25 | 1.0 | 217 | 1,060 | 22,100 | 109,000 | RT4411 | | 000 | 360 | 85 | outer 4.0
inner 2.0 | 1,380 | 5,950 | 140,000 | 610,000 | 2RT4416 | | 220 | 400 | 80 | 2.0 | 1,720 | 7,750 | 175,000 | 790,000 | 2RT4425 | | | 430 | 88 | 5.0 | 1,880 | 9,100 | 191,000 | 930,000 | 3RT4406 | | 202.25 | 520.7 | 114.3 | 4.0 | 5,100 | 20,500 | 520,000 | 2,090,000 | 2RT4426 | | 222.25 | 520.7 | 165 | 4.0 | 5,100 | 20,500 | 520,000 | 2,090,000 | 2RT4427 | | 0.40 | 320 | 45 | 2.0 | 670 | 3,350 | 6,800 | 340,000 | 2RT4814 | | 240 | 425 | 90 | 2.0 | 1,820 | 8,850 | 186,000 | 905,000 | 2RT4803 | | 254 | 457.2 | 95.25 | 6.0 | 2,360 | 12,100 | 240,000 | 1,240,000 | 3RT5107 | | 260 | 340 | 55 | 1.5 | 790 | 3,350 | 80,500 | 340,000 | RT5211 | | 270 | 540 | 105 | 5.0 | 3,100 | 15,800 | 315,000 | 1,610,000 | 3RT5404 | | 000 | 380 | 55 | 2.5 | 645 | 2,900 | 65,500 | 296,000 | RT5606 | | 280 | 520 | 109 | 4.0 | 2,900 | 13,200 | 296,000 | 1,340,000 | 2RT5610 | | 290 | 350 | 35 | 1.5 | 345 | 1,760 | 35,000 | 180,000 | RT5805 | | 304.8 | 457.2 | 95.25 | 6.0 | 1,770 | 8,250 | 181,000 | 840,000 | 2RT6108 | lacktriangle RT: single row, 2RT: double row, 3RT: triple row lacktriangle Smallest allowable dimension for chamfer dimension r. | Dimens | | | Abutment and fillet dimensions | | | | | |---------------|---------|-----|--------------------------------|--------------------|-----------|--|--| | | | | $D_{\rm a}$ | $r_{ m as}$ | kg | | | | d_1 | D_1 | min | max | max | (approx.) | | | | | | | | | | | | | 219 | 219 181 | | 187 | 1 | 1.77 | | | | 300 | 184 | 298 | 188 | 2.5 | 23.3 | | | | 270 | 195 | 264 | 196 | 2 | 11.0 | | | | | | | | _ | 11.9 | | | | 329.5 | 190.5 | 327 | 200 | 3 | 27.9 | | | | 340 | 340 201 | | 204 | 4 | 31.4 | | | | 340 | 202 | 332 | 212 | 4 | 35.0 | | | | 370 | 200.5 | 362 | 210 | 3 | 44.3 | | | | 396 | 204 | 388 | 216 | 4 | 80.3 | | | | 404.038 | 205.562 | 389 | 214 | 5 | 52.1 | | | | 250 | 210 | 243 | 217 | 1.5 | 2.51 | | | | 269 | 269 221 | | 234 | 1 | 3.16 | | | | 359 | 221 | 349 | 233 | outer 3
inner 2 | 38.1 | | | | 399 | 221 | 382 | 244 | 2 | 48.5 | | | | 430 | 222 | 418 | 230 | 4 | 64.6 | | | | E14.7 | 000 | E11 | 001 | 2 | 105 | | | | 514.7 | 228 | 511 | 231 | 3
3 | 135 | | | | 514.7 | 228 | 511 | 231 | 3 | 203 | | | | 316 | 244 | 313 | 247 | 2 | 10.4 | | | | 425 | 241 | 408 | 254 | 2 | 61.6 | | | | 456 | 256 | 453 | 261 | 5 | 76.0 | | | | 339.5 | 260.4 | 328 | 270 | 1.5 | 13.9 | | | | 530 | 277 | 530 | 282 | 4 | 125 | | | | 375 | 285 | 358 | 302 | 2 | 18.0 | | | | 520 | 280 | 501 | 309 | 3 | 113 | | | | 350 | 290 | 338 | 302 | 1.5 | 6.92 | | | | 454.8 | 307.2 | 450 | 318 | 5 | 60.0 | | | ### *d* 320∼560mm | | Bou | ndary dimens | ions | dynamic | Basic load ra | dynamic | static | Bearing numbers | |-----|-------------------|-----------------|----------------------|-------------------------|---------------------------|-------------------------------|-----------------------------------|---------------------------------| | | | mm | | | kN | ŀ | kgf | | | d | D | T | $r_{ m smin}^{lack}$ | $C_{ m a}$ | C_{oa} | $C_{ m a}$ | $C_{ m oa}$ | | | 320 | 380
440
600 | 30
95
115 | 1.5
3.0
5.0 | 274
1,670
4,100 | 1,510
7,100
20,600 | 28,000
171,000
415,000 | 154,000
725,000
2,110,000 | RT6405
RT6406
3RT6404 | | 360 | 610 | 120 | 5.0 | 3,800 | 18,200 | 390,000 | 1,860,000 | 2RT7205 | | 380 | 520 | 112 | 4.0 | 1,900 | 7,850 | 194,000 | 800,000 | RT7607 | | 400 | 500
540 | 63
85 | 4.0
4.0 | 1,300
1,970 | 6,400
10,100 | 132,000
200,000 | 650,000
1,030,000 | RT8009
RT8005 | | 425 | 650 | 110 | 4.0 | 3,500 | 19,200 | 360,000 | 1,960,000 | 2RT8502 | | 440 | 540 | 45 | 2.5 | 755 | 5,300 | 77,000 | 540,000 | 2RT8807 | | 540 | 705 | 100 | 5.0 | 2,240 | 11,700 | 228,000 | 1,200,000 | RT10802 | | 560 | 660
670
820 | 50
85
113 | 3.0
3.0
5.0 | 1,040
1,850
4,350 | 7,850
10,200
26,000 | 106,000
188,000
445,000 | 800,000
1,040,000
2,650,000 | 2RT11207
RT11204
2RT11208 | | | | | | | | | | | lacktriangle RT: single row, 2RT: double row, 3RT: triple row lacktriangle Smallest allowable dimension for chamfer dimension r. | Dimensions | | | | Abutment and fillet dimensions | | | | | |------------|-------|-------|------------|--------------------------------|-------------|-----------|--|--| | mm | | | | mm | | | | | | | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | kg | | | | | d_1 | D_1 | min | max | max | (approx.) | | | | | | | | | | | | | | | 379 | 321 | 368 | 336 | 1.5 | 6.64 | | | | | 435 | 325 | 428 | 334 | 2.5 | 44.0 | | | | | 600 | 321 | 584 | 336 | 4 | 162 | | | | | | | | | | | | | | 605 365 | | 598 | 378 | 4 | 157 | | | | | | | | | | | | | | | | 515 | 385 | 500 | 404 | 3 | 73.8 | | | | | | | | | | | | | | | 495 | 405 | 488 | 412 | 3 | 27.9 | | | | | 540 | 403 | 526 | 414 | 3 | 59.2 | | | | | | | | | | | | | | | 650 | 430 | 635 | 443 | 3 | 145 | | | | | | | | | | | | | | | 539 | 441 | 532 | 460 | 2 | 24.2 | | | | | | | | | | | | | | | 695 | 565 | 682 | 582 | 4 | 99.5 | | | | | | | | | | | | | | | 659 | 561 | 653 | 571 | 2.5 | 32.9 | | | | | 660 | 570 | 657 | 575 | 2.5 | 58.1 | | | | | 810 | 570 | 790 | 590 | 4 | 210 | | | | | | | | | | | | | Drawing B ### *d* 101.600∼254.000mm | | E | Boundary dimen | sions | | dynamic | Basic Io | oad ratings
dynamic | static | Bearing
numbers | |---------|-------------------------------|-----------------------------|-------------------|-------------------------------|-------------------------|---------------------------|-------------------------------|-----------------------------------|-------------------------------------| | | | mm | | | kN | | | gf | | | d | D | T | $r_{ m smin}$ | $r_{1\mathrm{s}\mathrm{min}}$ | $C_{ m a}$ | $C_{ m oa}$ | C_{a} | C_{oa} | | | 101.600 | 215.900
215.900 | 46.038
46.038 | 3.3
1.5 | 3.3
1.5 | 700
805 | 2,730
2,920 | 71,000
82,000 | 279,000
297,000 | * CRT2010
* CRT2014 | | 107.950 | 228.600 | 69.850 | 2 | 5.6 | 1,070 | 3,100 | 109,000 | 320,000 | * CRT2223 | | 114.300 | 250.825 | 53.975 | 4.06 | 4.06 | 995 | 3,750 | 102,000 | 380,000 | * CRT2301 | | 127.000 | 266.700 | 58.738 | 4 | 4 | 1,130 | 4,650 | 115,000 | 475,000 | * CRT2503 | | 130 | 225 | 55 | 2.1 | 2.1 | 640 | 2,590 | 65,500 | 264,000 | CRT2615 | | 145 | 190 | 31 | 1 | 1 | 216 | 815 | 22,000 | 83,000 | CRT2906 | | 152.400 | 317.500 | 69.850 | 6.4 | 6.4 | 1,520 | 6,250 | 155,000 | 640,000 | * CRT3018 | | 168.275 | 304.800
304.800 | 69.850
69.850 | 6.4
6.4 | 6.4
6.4 | 1,250
1,350 | 4,950
5,100 | 127,000
138,000 | 505,000
520,000 | * CRT3407
* CRT3409 | | 170 | 320 | 100 | 6 | 6 | 1,620 | 6,400 | 166,000 | 650,000 | CRT3410 | | 174.625 | 358.775 | 82.550 | 6.4 | 6.4 | 1,720 | 7,050 | 175,000 | 720,000 | * CRT3503 | | 177.800 | 368.300 | 82.550 | 8 | 8 | 2,190 | 8,900 | 223,000 | 910,000 | *CRT3617 | | 203.200 | 419.100
419.100
419.100 | 92.075
92.075
120.650 | 9.7
9.7
9.7 | 9.7
9.7
9.7 | 2,400
2,490
2,240 | 10,200
10,600
9,450 | 244,000
254,000
229,000 | 1,040,000
1,090,000
965,000 | * CRT4108
* CRT4112
* CRT4105 | | 220 | 370 | 90 | 4 | 4 | 1,690 | 7,250 | 172,000 | 740,000 | CRT4405 | | 227 | 325 | 50 | 2 | 2 | 610 | 2,720 | 62,000 | 277,000 | CRT4502 | | 228.600 | 482.600
482.600 | 104.775
104.775 | 11.2
11.2 | 11.2
11.2 | 3,450
3,250 | 15,600
14,300 | 350,000
330,000 | 1,590,000
1,460,000 | * CRT4604
* CRT4605 | | 234.950 | 546.100 | 127.000 | 16 | 16 | 5,700 | 27,900 | 580,000 | 2,850,000 | * CRT4707V | | 254.000 | 539.750 | 117.475 | 11.2 | 11.2 | 3,850 | 17,100 | 395,000 | 1,740,000 | * CRT5103 | | A Minim | سنام ملطميينمالم امم | nension for chamf | | | | | | | | ### Drawing C | Drawing no. | Dimensi | | Mass
kg | |-------------|----------------|----------------|-------------------| | | 111111 | | ĸy | | | D_1 | d_1 | (approx.) | | В | 101.6 | 215.9 | 9.06 | | Α | 102.591 | 215.138 | 8.23 | | В | 107.95 | 228.6 | 14.0 | | В | 114.3 | 250.825 | 13.9 | | В | 128.6 | 265.1 | 17.7 | | Α | 130.3 | 225 | 9.14 | | В | 147 | 188 | 2.30 | | В | 152.4 | 317.5 | 28.5 | | В | 168.275 | 304.8 | 24.6 | | Α | 168.275 | 302.5 | 22.2 | | Α | 170.5 | 320 | 39.4 | | В | 174.625 | 358.775 | 39.9 | | В | 177.8 | 368.3 | 45.0 | | Α | 203.2 | 416.7 | 60.9 | | B
B | 203.2
203.2 | 419.1
419.1 | 64.9
79.8 | | | 203.2 | 419.1 | 79.0 | | Α | 221 | 369 | 39.2 | | Α | 227 | 325 | 13.3 | | В | 230.6 | 480.6 | 101 | | Α | 230.6 | 480.6 | 93.2 | | С | 234.95 | 546.1 | 160 | | Α | 254 | 539.75 | 140 | Drawing A Drawing B ### **d** 260∼920mm | | В | Soundary dimer | nsions | | dynamic | Basic I | oad ratings
dynamic | static | Bearing
numbers | |---------|------------|----------------|---------------|------------------------------|------------------|-------------------|------------------------|----------------------|--------------------| | | | mm | | | kN | | , , | kgf | | | d | D | T | $r_{ m smin}$ | $r_{1\mathrm{smin}}^{ullet}$ | C_{a} | C_{oa} | $C_{ m a}$ | $C_{ m oa}$ | | | 060 | 000 | 00 | 0.4 | 0.4 | 000 | 0.050 | 04.000 | 400.000 | OPTION | | 260 | 360 | 60 | 2.1 | 2.1 | 890 | 3,950 | 91,000 | 400,000 | CRT5207 | | 279.400
 603.250 | 136.525 | 11.2 | 11.2 | 5,100 | 23,300 | 520,000 | 2,380,000 | * CRT5613 | | 290 | 395 | 80 | 3 | 3 | 1,330 | 5,150 | 136,000 | 525,000 | CRT5804 | | 320 | 580 | 155 | 7.5 | 7.5 | 4,800 | 18,900 | 490,000 | 1,920,000 | CRT6408 | | | 710 | 235 | 7.5 | 7.5 | 8,600 | 31,000 | 880,000 | 3,200,000 | CRT6401 | | 340 | 460 | 96 | 3 | 3 | 1,640 | 7,300 | 167,000 | 745,000 | CRT6803 | | 350 | 460 | 85 | 3 | 3 | 1,390 | 5,850 | 142,000 | 600,000 | CRT7012 | | 360 | 600 | 120 | 6.9 | 5.5 | 3,800 | 17,500 | 390,000 | 1,780,000 | CRT7207 | | 406.400 | 711.200 | 146.050 | 9.7 | 9.7 | 6,100 | 30,500 | 620,000 | 3,150,000 | *CRT8101 | | 406.4 | 711.2 | 166.5 | 5 | 5 | 8,250 | 33,500 | 840,000 | 3,400,000 | CRT8104 | | 450 | 570
750 | 100
145 | 4
8 | 4
8 | 1,560
6,350 | 7,750
31,500 | 159,000
645,000 | 790,000
3,200,000 | CRT9002
CRT9003 | | 500.000 | | | | | | | | | | | 508.000 | 990.600 | 196.850 | 12.7 | 12.7 | 12,100 | 62,500 | 1,230,000 | 6,400,000 | * CRT10202 | | 600 | 745 | 105 | 5 | 5 | 2,530 | 13,600 | 258,000 | 1,390,000 | CRT12002 | | 920 | 1,120 | 150 | 7.5 | 7.5 | 5,500 | 32,500 | 560,000 | 3,350,000 | CRT18401 | ### Drawing C | Drawing no. | Dime | ensions | Mass | |-------------|-------|---------|-----------| | | r | nm | kg | | | D_1 | d_1 | (approx.) | | | | | , , | | Α | 260.3 | 360 | 18.3 | | В | 279.4 | 603.25 | 205 | | Α | 291 | 395 | 27.8 | | В | 320.5 | 580 | 179 | | Α | 320 | 708 | 465 | | Α | 340 | 460 | 49.9 | | Α | 351 | 450 | 37.3 | | Α | 366 | 620 | 136 | | В | 406.4 | 711.2 | 245 | | Α | 409 | 709 | 301 | | Α | 452 | 570 | 60.3 | | В | 450.5 | 750 | 257 | | В | 508 | 990.6 | 701 | | Α | 600.5 | 745 | 101 | | Α | 922 | 1,118 | 295 | ### *d* 170∼550mm | | Boundary dimensions
mm | | ons | Basic lo
dynamic
kN | ad ratings
static
kgf | Bearing
numbers | | | Abutme
fillet dim
mr | ensions | | | Mass
kg | | |-----|---------------------------|------------|---------------|-------------------------------|-----------------------------|--------------------|----------------------|------------|----------------------------|------------|------------------|-------------|-------------------|------------| | d | D | T | $r_{ m smin}$ | $r_{1\mathrm{s}\mathrm{min}}$ | C_{a} | C_{a} | | D_1 | A | $d_{ m a}$ | D_{a} | $r_{\rm a}$ | $r_{1\mathrm{a}}$ | (approx.) | | 170 | 240 | 84 | 2.5 | 1 | 365 | 37,000 | CRTD3401 | 184 | 20 | 179 | 190 | 2 | 1 | 12 | | 180 | 280 | 90 | 2 | 1 | 645 | 65,500 | CRTD3618 | 196 | 20 | 189 | 202 | 2 | 1 | 20 | | 200 | 560 | 138 | 3 | 4 | 1,630 | 166,000 | CRTD4013 | 430 | 40 | 413 | 438 | 2.5 | 3 | 105 | | 212 | 300 | 96 | 2 | 1 | 435 | 44,000 | CRTD4203 | 236 | 22 | 228 | 242 | 2 | 1 | 19.5 | | 220 | 340 | 130 | 2 | 1.5 | 860 | 88,000 | CRTD4401 | 250 | 39 | 242 | 256 | 2 | 1.5 | 42.1 | | 240 | 320
380 | 96
105 | 2
1.5 | 0.6
1.5 | 405
840 | 41,500
85,500 | CRTD4802
CRTD4803 | 256
270 | 22
27 | 246
267 | 262
274 | 2
1.5 | 1
1.5 | 21
41.5 | | 250 | 360
380 | 96
100 | 1.5
2 | 0.6
1 | 635
905 | 64,500
92,000 | CRTD5007
CRTD5005 | 285
275 | 24
22 | 274
266 | 289
281 | 1.5
2 | 0.6
1 | 28
40 | | 260 | 360
400 | 92
120 | 2
3 | 1
1.5 | 580
920 | 59,500
93,500 | CRTD5216
CRTD5217 | 285
290 | 20
25 | 272
276 | 291
298 | 2
2.5 | 1
1.5 | 26
51.5 | | 300 | 420 | 100 | 2 | 2 | 880 | 89,500 | CRTD6001 | 330 | 23 | 320 | 335 | 2 | 2 | 38 | | 305 | 530 | 200 | 5 | 1.5 | 2,500 | 255,000 | CRTD6104 | 345 | 56 | 332 | 357 | 4 | 1.5 | 165 | | 320 | 440
470 | 108
130 | 3
3 | 2
2 | 980
1,390 | 100,000
142,000 | CRTD6406
CRTD6404 | 355
350 | 20
30 | 344
335 | 363
358 | 2.5
2.5 | 2
2 | 43
73 | | 350 | 490 | 130 | 3 | 1.1 | 1,150 | 118,000 | CRTD7012 | 390 | 30 | 375 | 398 | 2.5 | 1.5 | 72 | | 380 | 560 | 130 | 3 | 2 | 1,630 | 166,000 | CRTD7612 | 430 | 32 | 410 | 438 | 2.5 | 2 | 102 | | 410 | 560 | 160 | 5 | 2 | 1,660 | 169,000 | CRTD8201 | 440 | 40 | 428 | 446 | 4 | 2 | 111 | | 420 | 620 | 170 | 3 | 1.1 | 2,190 | 223,000 | CRTD8403 | 465 | 35 | 448 | 473 | 2.5 | 1 | 155 | | 440 | 645 | 167 | 5 | 2 | 2,070 | 211,000 | CRTD8802 | 500 | 50 | 470 | 495 | 2 | 2 | 176 | | 470 | 720 | 200 | 4 | 4 | 3,450 | 355,000 | CRTD9408 | 535 | 40 | 507 | 545 | 3 | 3 | 261 | | 550 | 760 | 230 | 4 | 2 | 2,910 | 296,000 | CRTD11002 | 610 | 50 | 577 | 622 | 4 | 2 | 296 | 1 Minimum allowable dimension for chamfer dimension r or r. Remarks: 1. C_a does not means allowable load ratings. Please contact NTN Engineering. B-244 ### *d* 100∼200mm | r. | mm | | • | Static | uynamic | Basic load ratings dynamic static dynamic static | | | | Bearing Dimension numbers | | | | |----------|---|--|--

--|---|--|--
---|---|---|---|--| | <i>P</i> | mm | | kN | | | kgf | | mm | | mm | | | | | D | T | $r_{ m smin}$ | $C_{ m a}$ | C_{oa} | $C_{ m a}$ | $C_{ m oa}$ | | D_1 | d_1 | B_1 | C | A | | | 170 | 42 | 1.5 | 345 | 1,160 | 35,500 | 118,000 | 29320 | 129 | 163 | 14 | 20.8 | 58 | | | 210 | 67 | 3 | 685 | 2,130 | 69,500 | 217,000 | 29420 | 146 | 200 | 24 | 32 | 62 | | | 190 | 48 | 2 | 445 | 1,500 | 45,000 | 152,000 | 29322 | 143 | 182 | 16 | 23 | 64 | | | 230 | 73 | 3 | 845 | 2,620 | 86,500 | 267,000 | 29422 | 162 | 220 | 26 | 35 | 69 | | | 210 | 54 | 2.1 | 535 | 1,770 | 54,500 | 181,000 | 29324 | 159 | 200 | 18 | 26 | 70 | | | 250 | 78 | 4 | 975 | 3,050 | 99,000 | 310,000 | 29424 | 174 | 236 | 29 | 37 | 74 | | | 225 | 58 | 2.1 | 615 | 2,100 | 62,500 | 215,000 | 29326 | 171 | 215 | 19 | 28 | 76 | | | 270 | 85 | 4 | 1,080 | 3,550 | 110,000 | 360,000 | 29426 | 189 | 255 | 31 | 41 | 81 | | | 240 | 60 | 2.1 | 685 | 2,360 | 70,000 | 241,000 | 29328 | 183 | 230 | 20 | 29 | 82 | | | 280 | 85 | 4 | 1,110 | 3,750 | 114,000 | 385,000 | 29428 | 199 | 268 | 31 | 41 | 86 | | | 215 | 39 | 1.5 | 340 | 1,340 | 34,500 | 136,000 | 29230 | 178 | 208 | 14 | 19 | 82 | | | 250 | 60 | 2.1 | 675 | 2,390 | 68,500 | 243,000 | 29330 | 194 | 240 | 20 | 29 | 87 | | | 300 | 90 | 4 | 1,280 | 4,350 | 131,000 | 445,000 | 29430 | 214 | 285 | 32 | 44 | 92 | | | 225 | 39 | 1.5 | 360 | 1,460 | 36,500 | 149,000 | 29232 | 188 | 219 | 14 | 19 | 86 | | | 270 | 67 | 3 | 820 | 2,860 | 84,000 | 292,000 | 29332 | 208 | 260 | 24 | 32 | 92 | | | 320 | 95 | 5 | 1,500 | 5,150 | 153,000 | 525,000 | 29432 | 229 | 306 | 34 | 45 | 99 | | | 240 | 42 | 1.5 | 425 | 1,770 | 43,500 | 180,000 | 29234 | 198 | 233 | 15 | 20 | 92 | | | 280 | 67 | 3 | 855 | 3,050 | 87,000 | 310,000 | 29334 | 216 | 270 | 23 | 32 | 96 | | | 340 | 103 | 5 | 1,660 | 5,750 | 169,000 | 590,000 | 29434 | 243 | 324 | 37 | 50 | 104 | | | 250 | 42 | 1.5 | 450 | 1,920 | 45,500 | 196,000 | 29236 | 208 | 243 | 15 | 20 | 97 | | | 300 | 73 | 3 | 995 | 3,600 | 102,000 | 365,000 | 29336 | 232 | 290 | 25 | 35 | 103 | | | 360 | 109 | 5 | 1,840 | 6,200 | 188,000 | 635,000 | 29436 | 255 | 342 | 39 | 52 | 110
 | | 270 | 48 | 2 | 530 | 2,230 | 54,000 | 227,000 | 29238 | 223 | 262 | 15 | 24 | 104 | | | 320 | 78 | 4 | 1,150 | 4,250 | 117,000 | 430,000 | 29338 | 246 | 308 | 27 | 38 | 110 | | | 380 | 115 | 5 | 2,010 | 6,800 | 205,000 | 695,000 | 29438 | 271 | 360 | 41 | 55 | 117 | | | 280 | 48 | 2 | 535 | 2,300 | 54,500 | 234,000 | 29240 | 236 | 271 | 15 | 24 | 108 | | | 340 | 85 | 4 | 1,280 | 4,600 | 131,000 | 470,000 | 29340 | 261 | 325 | 29 | 41 | 116 | | | 400 | 122 | 5 | 2,230 | 7,650 | 228,000 | 780,000 | 29440 | 286 | 380 | 43 | 59 | 122 | | | | 210 190 230 210 250 225 270 240 280 215 250 300 225 270 320 240 280 340 250 300 360 270 320 380 280 340 | 210 67 190 48 230 73 210 54 250 78 225 58 270 85 240 60 280 85 215 39 250 60 300 90 225 39 270 67 320 95 240 42 280 67 340 103 250 42 300 73 360 109 270 48 320 78 380 115 280 48 340 85 | 210 67 3 190 48 2 230 73 3 210 54 2.1 250 78 4 225 58 2.1 270 85 4 240 60 2.1 280 85 4 215 39 1.5 250 60 2.1 300 90 4 225 39 1.5 270 67 3 320 95 5 240 42 1.5 280 67 3 340 103 5 250 42 1.5 300 73 3 360 109 5 270 48 2 320 78 4 380 115 5 280 48 2 340 85 4 | 210 67 3 685 190 48 2 445 230 73 3 845 210 54 2.1 535 250 78 4 975 225 58 2.1 615 270 85 4 1,080 240 60 2.1 685 280 85 4 1,110 215 39 1.5 340 250 60 2.1 675 300 90 4 1,280 225 39 1.5 360 270 67 3 820 320 95 5 1,500 240 42 1.5 425 280 67 3 855 340 103 5 1,660 250 42 1.5 450 300 73 3 995 360 109 5 1,840 270 48 2 <td< th=""><th>210 67 3 685 2,130 190 48 2 445 1,500 230 73 3 845 2,620 210 54 2.1 535 1,770 250 78 4 975 3,050 225 58 2.1 615 2,100 270 85 4 1,080 3,550 240 60 2.1 685 2,360 280 85 4 1,110 3,750 215 39 1.5 340 1,340 250 60 2.1 675 2,390 300 90 4 1,280 4,350 225 39 1.5 360 1,460 270 67 3 820 2,860 320 95 5 1,500 5,150 240 42 1.5 425 1,770 280 67 3 855 3,050 340 103 5 1,660</th><th>210 67 3 685 2,130 69,500 190 48 2 445 1,500 45,000 230 73 3 845 2,620 86,500 210 54 2.1 535 1,770 54,500 250 78 4 975 3,050 99,000 225 58 2.1 615 2,100 62,500 270 85 4 1,080 3,550 110,000 240 60 2.1 685 2,360 70,000 280 85 4 1,110 3,750 114,000 215 39 1.5 340 1,340 34,500 250 60 2.1 675 2,390 68,500 300 90 4 1,280 4,350 131,000 225 39 1.5 360 1,460 36,500 270 67 3 820 2,860</th><th>210 67 3 685 2,130 69,500 217,000 190 48 2 445 1,500 45,000 152,000 230 73 3 845 2,620 86,500 267,000 210 54 2.1 535 1,770 54,500 181,000 250 78 4 975 3,050 99,000 310,000 225 58 2.1 615 2,100 62,500 215,000 270 85 4 1,080 3,550 110,000 360,000 240 60 2.1 685 2,360 70,000 241,000 280 85 4 1,110 3,750 114,000 385,000 215 39 1.5 340 1,340 34,500 136,000 250 60 2.1 675 2,390 68,500 243,000 300 90 4 1,280 4,350 131,000<!--</th--><th>210 67 3 685 2,130 69,500 217,000 29420 190 48 2 445 1,500 45,000 152,000 29322 230 73 3 845 2,620 86,500 267,000 29422 210 54 2.1 535 1,770 54,500 181,000 29324 250 78 4 975 3,050 99,000 310,000 29424 225 58 2.1 615 2,100 62,500 215,000 29326 270 85 4 1,080 3,550 110,000 360,000 29426 240 60 2.1 685 2,360 70,000 241,000 29328 280 85 4 1,110 3,750 114,000 385,000 29428 215 39 1.5 340 1,340 34,500 136,000 29230 250 60 2.1 <</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 190 48 2 445 1,500 45,000 152,000 29322 143 230 73 3 845 2,620 86,500 267,000 29422 162 210 54 2.1 535 1,770 54,500 181,000 29324 159 250 78 4 975 3,050 99,000 310,000 29326 171 270 85 4 1,080 3,550 110,000 360,000 29426 189 240 60 2.1 685 2,360 70,000 241,000 29328 183 280 85 4 1,110 3,750 114,000 385,000 29428 199 215 39 1.5 340 1,340 34,500 136,000 29230 178 250 60 2.1 675<!--</th--><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 <</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110</th></th></th></td<> | 210 67 3 685 2,130 190 48 2 445 1,500 230 73 3 845 2,620 210 54 2.1 535 1,770 250 78 4 975 3,050 225 58 2.1 615 2,100 270 85 4 1,080 3,550 240 60 2.1 685 2,360 280 85 4 1,110 3,750 215 39 1.5 340 1,340 250 60 2.1 675 2,390 300 90 4 1,280 4,350 225 39 1.5 360 1,460 270 67 3 820 2,860 320 95 5 1,500 5,150 240 42 1.5 425 1,770 280 67 3 855 3,050 340 103 5 1,660 | 210 67 3 685 2,130 69,500 190 48 2 445 1,500 45,000 230 73 3 845 2,620 86,500 210 54 2.1 535 1,770 54,500 250 78 4 975 3,050 99,000 225 58 2.1 615 2,100 62,500 270 85 4 1,080 3,550 110,000 240 60 2.1 685 2,360 70,000 280 85 4 1,110 3,750 114,000 215 39 1.5 340 1,340 34,500 250 60 2.1 675 2,390 68,500 300 90 4 1,280 4,350 131,000 225 39 1.5 360 1,460 36,500 270 67 3 820 2,860 | 210 67 3 685 2,130 69,500 217,000 190 48 2 445 1,500 45,000 152,000 230 73 3 845 2,620 86,500 267,000 210 54 2.1 535 1,770 54,500 181,000 250 78 4 975 3,050 99,000 310,000 225 58 2.1 615 2,100 62,500 215,000 270 85 4 1,080 3,550 110,000 360,000 240 60 2.1 685 2,360 70,000 241,000 280 85 4 1,110 3,750 114,000 385,000 215 39 1.5 340 1,340 34,500 136,000 250 60 2.1 675 2,390 68,500 243,000 300 90 4 1,280 4,350 131,000 </th <th>210 67 3 685 2,130 69,500 217,000 29420 190 48 2 445 1,500 45,000 152,000 29322 230 73 3 845 2,620 86,500 267,000 29422 210 54 2.1 535 1,770 54,500 181,000 29324 250 78 4 975 3,050 99,000 310,000 29424 225 58 2.1 615 2,100 62,500 215,000 29326 270 85 4 1,080 3,550 110,000 360,000 29426 240 60 2.1 685 2,360 70,000 241,000 29328 280 85 4 1,110 3,750 114,000 385,000 29428 215 39 1.5 340 1,340 34,500 136,000 29230 250 60 2.1 <</th> <th>210 67 3 685 2,130 69,500 217,000 29420 146 190 48 2 445 1,500 45,000 152,000 29322 143 230 73 3 845 2,620 86,500 267,000 29422 162 210 54 2.1 535 1,770 54,500 181,000 29324 159 250 78 4 975 3,050 99,000 310,000 29326 171 270 85 4 1,080 3,550 110,000 360,000 29426 189 240 60 2.1 685 2,360 70,000 241,000 29328 183 280 85 4 1,110 3,750 114,000 385,000 29428 199 215 39 1.5 340 1,340 34,500 136,000 29230 178 250 60 2.1 675<!--</th--><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 <</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110</th></th> | 210 67 3 685 2,130 69,500 217,000 29420 190 48 2 445 1,500 45,000 152,000 29322 230 73 3 845 2,620 86,500 267,000 29422 210 54 2.1 535 1,770 54,500 181,000 29324 250 78 4 975 3,050 99,000 310,000 29424 225 58 2.1 615 2,100 62,500 215,000 29326 270 85 4 1,080 3,550 110,000 360,000 29426 240 60 2.1 685 2,360 70,000 241,000 29328 280 85 4 1,110 3,750 114,000 385,000 29428 215 39 1.5 340 1,340 34,500 136,000 29230 250 60 2.1 < | 210 67 3 685 2,130 69,500 217,000 29420 146 190 48 2 445 1,500 45,000 152,000 29322 143 230 73 3 845 2,620 86,500 267,000 29422 162 210 54 2.1 535 1,770 54,500 181,000 29324 159 250 78 4 975 3,050 99,000 310,000 29326 171 270 85 4 1,080 3,550 110,000 360,000 29426 189 240 60 2.1 685 2,360 70,000 241,000 29328 183 280 85 4 1,110 3,750 114,000 385,000 29428 199 215 39 1.5 340 1,340 34,500 136,000 29230 178 250 60 2.1 675 </th <th>210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000</th> <th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 <</th> <th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500
181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110</th> | 210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000 | 210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 < | 210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110 | | Equivalent bearing load dynamic $P_a=F_a+1.2F_r$ static $P_{\text{oa}}=F_{\text{a}}+2.7F_{\text{r}}$ when $\frac{F_{\text{r}}}{F_{\text{a}}}\leq 0.55$ | Al
fille | Mass | | | |-------------|---|-------------|-----------| | $d_{ m a}$ | $egin{array}{c} m{mm} \ D_{\mathrm{a}} \end{array}$ | $r_{ m as}$ | kg | | min | max | max | (approx.) | | 130 | 150 | 1.5 | 3.94 | | 150 | 175 | 2.5 | 11.5 | | 145 | 165 | 2 | 5.78 | | 165 | 190 | 2.5 | 15 | | 160 | 180 | 2 | 7.92 | | 180 | 205 | 3 | 18.6 | | 170 | 195 | 2 | 9.76 | | 195 | 225 | 3 | 23.7 | | 185 | 205 | 2 | 11.4 | | 205 | 235 | 3 | 25.2 | | 179 | 196 | 1.5 | 4.56 | | 195 | 215 | 2 | 12 | | 220 | 250 | 3 | 30.5 | | 189 | 206 | 1.5 | 4.88 | | 210 | 235 | 2.5 | 15.9 | | 230 | 265 | 4 | 37 | | 201 | 218 | 1.5 | 6.02 | | 220 | 245 | 2.5 | 16.6 | | 245 | 285 | 4 | 45 | | 211 | 228 | 1.5 | 6.27 | | 235 | 260 | 2.5 | 21.2 | | 260 | 300 | 4 | 52.9 | | 225 | 245 | 2 | 8.8 | | 250 | 275 | 3 | 26 | | 275 | 320 | 4 | 62 | | 235 | 255 | 2 | 9.14 | | 265 | 295 | 3 | 31.9 | | 290 | 335 | 4 | 73.3 | ### *d* 220∼400mm | | Boundary dimensions | | al a | | ad ratings | -4-4- | Bearing | | Di | mensio | sions | | | |-----|---------------------|-----|---------------|------------------|-------------------|--------------|-------------------|---------|-------|--------|-------|----|-----| | | | mm | | dynamic
I | static
kN | dynamic
I | static
cgf | numbers | | | mm | | | | | | | | | | | | | | | | | | | d | D | T | $r_{ m smin}$ | C_{a} | C_{oa} | $C_{ m a}$ | C_{oa} | | D_1 | d_1 | B_1 | C | A | | | 300 | 48 | 2 | 555 | 2,480 | 56,500 | 253,000 | 29244 | 254 | 292 | 15 | 24 | 117 | | 220 | 360 | 85 | 4 | 1,390 | 5,200 | 141,000 | 530,000 | 29344 | 280 | 345 | 29 | 41 | 125 | | 220 | 420 | 122 | 6 | 2,300 | 8,100 | 235,000 | 825,000 | 29444 | 308 | 400 | 43 | 58 | 132 | | | 340 | 60 | 2.1 | 825 | 3,600 | 84,000 | 365,000 | 29248 | 283 | 330 | 19 | 30 | 130 | | 240 | 380 | 85 | 4 | 1,380 | 5,250 | 140,000 | 535,000 | 29348 | 300 | 365 | 29 | 41 | 135 | | | 440 | 122 | 6 | 2,400 | 8,700 | 245,000 | 885,000 | 29448 | 326 | 420 | 43 | 59 | 142 | | | 360 | 60 | 2.1 | 870 | 3,950 | 88,500 | 400,000 | 29252 | 302 | 350 | 19 | 30 | 139 | | 260 | 420 | 95 | 5 | 1,710 | 6,800 | 175,000 | 695,000 | 29352 | 329 | 405 | 32 | 45 | 148 | | | 480 | 132 | 6 | 2,740 | 10,000 | 279,000 | 1,020,000 | 29452 | 357 | 460 | 48 | 64 | 154 | | | 380 | 60 | 2.1 | 875 | 4,050 | 89,000 | 415,000 | 29256 | 323 | 370 | 19 | 30 | 150 | | 280 | 440 | 95 | 5 | 1,800 | 7,250 | 184,000 | 740,000 | 29356 | 348 | 423 | 32 | 46 | 158 | | | 520 | 145 | 6 | 3,350 | 12,400 | 340,000 | 1,270,000 | 29456 | 387 | 495 | 52 | 68 | 166 | | | 420 | 73 | 3 | 1,190 | 5,350 | 121,000 | 545,000 | 29260 | 353 | 405 | 21 | 38 | 162 | | 300 | 480 | 109 | 5 | 2,140 | 8,250 | 218,000 | 840,000 | 29360 | 379 | 460 | 37 | 50 | 168 | | | 540 | 145 | 6 | 3,450 | 13,200 | 350,000 | 1,340,000 | 29460 | 402 | 515 | 52 | 70 | 175 | | | 440 | 73 | 3 | 1,260 | 5,800 | 128,000 | 595,000 | 29264 | 372 | 430 | 21 | 38 | 172 | | 320 | 500 | 109 | 5 | 2,220 | 8,800 | 226,000 | 895,000 | 29364 | 399 | 482 | 37 | 53 | 180 | | | 580 | 155 | 7.5 | 3,700 | 14,200 | 375,000 | 1,440,000 | 29464 | 435 | 555 | 55 | 75 | 191 | | | 460 | 73 | 3 | 1,240 | 5,800 | 126,000 | 590,000 | 29268 | 395 | 445 | 21 | 37 | 183 | | 340 | 540 | 122 | 5 | 2,650 | 10,700 | 270,000 | 1,090,000 | 29368 | 428 | 520 | 41 | 59 | 192 | | | 620 | 170 | 7.5 | 4,400 | 17,500 | 445,000 | 1,790,000 | 29468 | 462 | 590 | 61 | 82 | 201 | | | 500 | 85 | 4 | 1,510 | 7,050 | 154,000 | 720,000 | 29272 | 423 | 485 | 25 | 44 | 194 | | 360 | 560 | 122 | 5 | 2,710 | 11,100 | 276,000 | 1,130,000 | 29372 | 448 | 540 | 41 | 59 | 202 | | | 640 | 170 | 7.5 | 4,500 | 18,500 | 460,000 | 1,890,000 | 29472 | 480 | 610 | 61 | 82 | 210 | | | 520 | 85 | 4 | 1,590 | 7,650 | 162,000 | 780,000 | 29276 | 441 | 505 | 27 | 42 | 202 | | 380 | 600 | 132 | 6 | 3,200 | 13,300 | 325,000 | 1,360,000 | 29376 | 477 | 580 | 44 | 63 | 216 | | | 670 | 175 | 7.5 | 4,900 | 19,700 | 500,000 | 2,010,000 | 29476 | 504 | 640 | 63 | 85 | 230 | | 400 | 540 | 85 | 4 | 1,620 | 7,950 | 165,000 | 810,000 | 29280 | 460 | 526 | 27 | 42 | 212 | | 400 | 620 | 132 | 6 | 3,400 | 14,500 | 345,000 | 1,480,000 | 29380 | 494 | 596 | 44 | 64 | 225 | | | 710 | 185 | 7.5 | 5,450 | 22,100 | 555,000 | 2,250,000 | 29480 | 534 | 680 | 67 | 89 | 236 | lacktriangledown Smallest allowable dimension for chamfer dimension r. Equivalent bearing load dynamic $P_a=F_a+1.2F_r$ static $P_{\text{oa}}=F_{\text{a}}+2.7F_{\text{r}}$ when $\frac{F_{\text{r}}}{F_{\text{a}}}\leq 0.55$ | | Abutment and fillet dimensions | | | | | | | | | |------------|--------------------------------|-------------|--------------|--|--|--|--|--|--| | | mm | | kg | | | | | | | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | | | | | | | | | min | max | max | (approx.) | | | | | | | | 260 | 275 | 2 | 9.94 | | | | | | | | 285 | 315 | 3 | 34.5 | | | | | | | | 310 | 355 | 5
5 | 34.3
77.8 | | | | | | | | 310 | 333 | 5 | 11.0 | | | | | | | | 285 | 305 | 2 | 17.5 | | | | | | | | 300 | 330 | 3 | 36.6 | | | | | | | | 330 | 375 | 5 | 82.6 | | | | | | | | 305 | 325 | 2 | 18.6 | | | | | | | | 330 | 365 | 4 | 52 | | | | | | | | 360 | 405 | 5 | 108 | | | | | | | | | | | | | | | | | | | 325 | 345 | 2 | 19.8 | | | | | | | | 350 | 390 | 4 | 54.6 | | | | | | | | 390 | 440 | 5 | 140 | | | | | | | | 355 | 380 | 2.5 | 30.9 | | | | | | | | 380 | 420 | 4 | 75.8 | | | | | | | | 410 | 460 | 5 | 147 | | | | | | | | 375 | 400 | 2.5 | 33.5 | | | | | | | | 400 | 440 | 4 | 79.9 | | | | | | | | 435 | 495 | 6 | 181 | | | | | | | | 400 | 490 | | 101 | | | | | | | | 395 | 420 | 2.5 | 34.4 | | | | | | | | 430 | 470 | 4 | 107 | | | | | | | | 465 | 530 | 6 | 230 | | | | | | | | 420 | 455 | 3 | 50.5 | | | | | | | | 450 | 495 | 4 | 112 | | | | | | | | 485 | 550 | 6 | 240 | | | | | | | | 440 | 475 | 0 | FO 4 | | | | | | | | 440 | 475 | 3 | 53.4 | | | | | | | | 480 | 525 | 5 | 143 | | | | | | | | 510 | 575 | 6 | 267 | | | | | | | | 460 | 490 | 3 | 55.8 | | | | | | | | 500 | 550 | 5 | 148 | | | | | | | | 540 | 610 | 6 | 321 | | | | | | | | | | | | | | | | | | ### d 420∼800mm | | Bounda | ary dime | nsions | dynamic | | oad ratings
dynamic | static | Bearing numbers | | Dir | mensior | ıs | | |-----|--------|----------|---------------|-----------------------|-------------------|------------------------|-------------|-----------------|-------|-------|---------|-----|-----| | | | mm | | | kN | | kgf | Hambers | | | mm | | | | d | D | T | $r_{ m smin}$ | $C_{ m a}$ | C_{oa} | $C_{ m a}$ | $C_{ m oa}$ | | D_1 | d_1 | B_1 | C | A | | 420 | 580 | 95 | 5 | 2,100 | 10,400 | 214,000 | 1,060,000 | 29284 | 489 | 564 | 30 | 46 | 225 | | | 650 | 140 | 6 | 3,600 | 15,500 | 365,000 | 1,580,000 | 29384 | 520 | 626 | 48 | 68 | 235 | | | 730 | 185 | 7.5 | 5,500 | 22,800 | 560,000 | 2,330,000 | 29484 | 556 | 700 | 67 | 89 | 244 | | 440 | 600 | 95 | 5 | 2,150 | 10,900 | 219,000 | 1,110,000 | 29288 | 508 | 585 | 30 | 49 | 235 | | | 680 | 145 | 6 | 3,800 | 16,400 | 385,000 | 1,680,000 | 29388 | 548 | 655 | 49 | 70 | 245 | | | 780 | 206 | 9.5 | 6,400 | 26,200 | 650,000 | 2,670,000 | 29488 | 588 | 745 | 74 | 100 | 260 | | 460 | 620 | 95 | 5 | 2,150 | 11,000 | 219,000 | 1,120,000 | 29292 | 530 | 605 | 30 | 46 | 245 | | | 710 | 150 | 6 | 4,200 | 18,500 | 430,000 | 1,880,000 | 29392 | 567 | 685 | 51 | 72 | 257 | | | 800 | 206 | 9.5 | 6,600 | 27,900 | 670,000 | 2,840,000 | 29492 | 608 | 765 | 74 | 100 | 272 | | 480 | 650 | 103 | 5 | 2,400 | 12,000 | 245,000 | 1,220,000 | 29296 | 556 | 635 | 33 | 55 | 259 | | | 730 | 150 | 6 | 4,200 | 18,700 | 430,000 | 1,910,000 | 29396 | 590 | 705 | 51 | 72 | 270 | | | 850 | 224 | 9.5 | 7,500 | 31,500 | 765,000 | 3,200,000 | 29496 | 638 | 810 | 81 | 108 | 280 | | 500 | 670 | 103 | 5 | 2,540 | 13,000 | 259,000 | 1,330,000 | 292/500 | 574 | 654 | 33 | 55 | 268 | | | 750 | 150 | 6 | 4,300 | 19,300 | 435,000 | 1,970,000 | 293/500 | 611 | 725 | 51 | 74 | 280 | | | 870 | 224 | 9.5 | 7,850 | 33,000 | 805,000 | 3,350,000 | 294/500 | 661 | 830 | 81 | 107 | 290 | | 530 | 710 | 109 | 5 | 2,720 | 14,000 | 278,000 | 1,430,000 | 292/530 | 610 | 692 | 39 | 55 | 288 | | | 800 | 160 | 7.5 | 5,000 | 23,300 | 510,000 | 2,380,000 | 293/530 | 648 | 772 | 54 | 76 | 295 | | | 920 | 236 | 9.5 | 8,650 | 36,000 | 880,000 | 3,700,000 | 294/530 | 697 | 880 | 86 | 115 | 308 | | 560 | 750 | 115 | 5 |
3,200 | 16,600 | 325,000 | 1,700,000 | 292/560 | 642 | 732 | 38 | 61 | 302 | | | 980 | 250 | 12 | 9,300 | 40,500 | 945,000 | 4,100,000 | 294/560 | 743 | 938 | 90 | 121 | 321 | | 600 | 800 | 122 | 5 | 3,500 | 18,300 | 355,000 | 1,870,000 | 292/600 | 686 | 780 | 40 | 63 | 321 | | | 1,030 | 258 | 12 | 10,200 | 44,500 | 1,040,000 | 4,550,000 | 294/600 | 785 | 978 | 90 | 125 | 360 | | 630 | 850 | 132 | 6 | 4,300 | 22,800 | 435,000 | 2,330,000 | 292/630 | 717 | 822 | 44 | 70 | 338 | | | 1,090 | 280 | 12 | 11,600 | 51,000 | 1,180,000 | 5,200,000 | 294/630 | 830 | 1,040 | 100 | 136 | 365 | | 670 | 1,150 | 290 | 15 | 12,900 | 57,000 | 1,320,000 | 5,850,000 | 294/670 | 880 | 1,105 | 106 | 138 | 387 | | 710 | 1,060 | 212 | 9.5 | 8,350 | 40,500 | 850,000 | 4,150,000 | 293/710 | 850 | 1,030 | 76 | 102 | 393 | | | 1,220 | 308 | 15 | 14,100 | 63,500 | 1,440,000 | 6,450,000 | 294/710 | 925 | 1,165 | 112 | 150 | 415 | | 750 | 1,280 | 315 | 15 | 15,700 | 69,000 | 1,600,000 | 7,000,000 | 294/750 | 983 | 1,220 | 116 | 152 | 436 | | 800 | 1,360 | 335 | 15 | 17,000
on for cham | | 1,730,000 | 8,050,000 | 294/800 | 1,040 | 1,300 | 120 | 162 | 462 | lacktriangledown Smallest allowable dimension for chamfer dimension r. Equivalent bearing load dynamic $P_a = F_a + 1.2F_r$ static $P_{oa} = F_a + 2.7F_r$ when $\frac{F_r}{F_a} \leq 0.55$ | | Abutment a | | Mass | |------------|--------------|-------------|------------| | | mm | | kg | | $d_{ m a}$ | $D_{\rm a}$ | $r_{ m as}$ | | | min | max | max | (approx.) | | 400 | 505 | 4 | 70.0 | | 490
505 | 525
575 | 4
5 | 76.6 | | 525
560 | 575
630 | 5
6 | 172
333 | | 360 | 630 | 0 | 333 | | 510 | 545 | 4 | 79.6 | | 550 | 600 | 5 | 195 | | 595 | 670 | 8 | 428 | | | | | | | 530 | 570 | 4 | 82.8 | | 575 | 630 | 5 | 221 | | 615 | 690 | 8 | 443 | | 555 | 595 | 4 | 98.6 | | 595 | 650 | 5 | 228 | | 645 | 730 | 8 | 552 | | | | | | | 575 | 615 | 4 | 102 | | 615 | 670 | 5 | 235 | | 670 | 750 | 8 | 569 | | 610 | 650 | 4 | 122 | | 655 | 710 | 6 | 288 | | 715 | 790 | 8 | 669 | | | | | | | 640 | 690 | 4 | 144 | | 755 | 835 | 10 | 815 | | | 705 | | | | 690 | 735 | 4 | 171 | | 800 | 885 | 10 | 897 | | 725 | 780 | 5 | 213 | | 845 | 935 | 10 | 1,110 | | | | | | | 895 | 990 | 12 | 1,280 | | 970 | 020 | 0 | 669 | | 870
950 | 930
1,050 | 8
12 | | | 300 | 1,000 | 14 | 1,520 | | 995 | 1,105 | 12 | 1,690 | | 1,060 | 1,175 | 12 | 2,040 | ## Bearings for special applications ### Contents | Split cylindrical roller bearings: Double-fractured | ·····C- 2 | 2 | |--|-----------|---| | Split spherical roller bearings: Double-fractured ······ | ·····C- 3 | 3 | | Double-fractured split cylindrical roller bearings: Continuous casting equipment | ·····C- 4 | ŀ | | Cylindrical roller bearings with self-aligning rings: Continuous casting equipment | ·····C- 5 | 5 | | Bearings for preparing rolls: Sendzimir rolling mills | ·····C- 6 | ; | | Enclosed-type tapered roller bearings for wheels: Sintering machines | ·····C- 8 | 3 | | Cylindrical roller bearings: Chain conveyors | ·····C- 9 |) | | Tapered roller thrust bearings: Screw down operations | ·····C-10 |) | | Tension leveler roll unit: Cartridge unit ······ | ·····C-14 | ŀ | | Tension lever roll unit: Backup unit | ·····C-15 | 5 | | Turn table bearings: 3–row cylindrical roller type | ·····C-16 | ò | | Sealed spherical roller bearings: Model WA | ·····C-18 | 3 | | Spherical surface slide bearings | ·····C-20 |) | # Bearings for special applications ### Split Cylindrical Roller Bearings: Double–Fractured NTN - Since the inner ring, outer ring and cage are split in two parts, it is possible to mount the bearing in places where a united bearing is difficult or impossible to mount. (ie. Places where mounting from the shaft end is impossible, an obstacle exists on the shaft, or the shaft is very long.) - Inspection and maintenance after mounting is easy. Drawing A Fixed side Drawing B Free side ### **d** 120∼770mm | | | Bounda | ary dimensi | ons | | dynamic
k | Basic lo
static | ad ratings
dynamic | static
kgf | Bearing [®] Dr
numbers | awing
no. | |-----|--------|--------|-------------|-------|-------|--------------|--------------------|-----------------------|---------------|------------------------------------|--------------| | d | D | В | C | r_1 | r_2 | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 120 | R254 | 125 | 60 | C4 | 4 | 450 | 510 | 46,000 | 52,000 | * RE2436
* RE2437 | B
A | | 127 | 254 | 114.3 | 63.5 | C5 | C2 | 555 | 720 | 56,500 | 73,500 | RE2512 | Α | | 160 | 240 | 76 | 38 | C3 | СЗ | 238 | 340 | 24,200 | 35,000 | RE3220
RE3221 | A
B | | 164 | 240 | 76 | 38 | C3 | СЗ | 238 | 340 | 24,200 | 35,000 | RE3308
RE3309 | A
B | | 170 | R340 | 120 | 56 | C3.5 | 3.5 | 435 | 565 | 44,500 | 57,500 | * RE3420
* RE3421 | A
B | | 180 | 285.75 | 109 | 55.5 | C3.5 | C3.5 | 415 | 580 | 42,500 | 59,000 | RE3617 | Α | | 190 | 290 | 92 | 46 | C3.5 | C3.5 | 350 | 510 | 36,500 | 52,000 | RE3812
RE3813 | A
B | | 200 | 311.15 | 109.5 | 60.3 | C3.2 | C3.2 | 480 | 760 | 49,000 | 77,500 | RE4022 | Α | | 210 | 360 | 92 | 46 | C3 | C3 | 370 | 595 | 37,500 | 60,500 | RE4206
RE4207 | A
B | | 230 | 360 | 92 | 46 | C3 | СЗ | 350 | 550 | 35,500 | 56,500 | RE4604
RE4605 | A
B | | 235 | 360 | 92 | 46 | С3 | СЗ | 350 | 550 | 35,500 | 56,500 | RE4702
RE4703 | A
B | | 260 | 360 | 92 | 46 | СЗ | СЗ | 350 | 550 | 35,500 | 56,500 | RE5209
RE5210 | A
B | | 280 | 400 | 92 | 48 | С3 | СЗ | 460 | 755 | 47,000 | 77,000 | RE5606
RE5607 | B
A | | 320 | 622.3 | 272 | 160.4 | C12 | C6 | 2,900 | 4,250 | 295,000 | 435,000 | RE6405 | Α | | 335 | 480 | 115 | 56 | C3 | С3 | 545 | 955 | 56,000 | 97,500 | RE6702
RE6703 | A
B | | 360 | R600 | 200 | 116 | C6 | 6 | 1,940 | 3,250 | 198,000 | 330,000 | * RE7203 | В | | 460 | 740 | 294 | 170 | C4 | C4 | 3,650 | 6,150 | 370,000 | 625,000 | RE9208 | В | | 500 | 850.9 | 360 | 210 | C12 | C6 | 5,250 | 9,050 | 535,000 | 525,000 | RE10013 | В | | 575 | 800 | 180 | 90 | C3 | С3 | 1,370 | 2,570 | 140,000 | 262,000 | RE11501
RE11502 | A
B | | 640 | 900 | 200 | 103 | C3 | СЗ | 1,650 | 3,150 | 168,000 | 325,000 | RE12801
RE12802 | A
B | | 670 | 900 | 200 | 103 | С3 | СЗ | 1,650 | 3,150 | 168,000 | 325,000 | RE13405
RE13406 | A
B | | 770 | 1,070 | 300 | 180 | C2.5 | C6 | 5,300 | 12,000 | 540,000 | 1,230,000 | RE15404
RE15405 | A
B | [●] The marked "*" bearings has a spherical surface of outer rings outside dia. Remarks: 1. The above drawings are typical examples. Please contact NTN Engineering. *d* 150∼1,400mm | <i>a</i> 130 | ~1,400mi | | dary dime | neione | | | Rasic | load ratings | | Bearing ⁰ | Drawing | |--------------|----------|-------|-----------|----------|-------|--------------|-------------|--------------|---------------|----------------------|---------| | | | Douil | mm | 11310113 | | dynamic
k | static
N | dynamic | static
kgf | numbers | no. | | d | D | В |
C | r_1 | r_2 | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | | | | | | | | | | | | | | 150 | 260 | 121 | 67 | 2.1 | 2.1 | 420 | 720 | 43,000 | 73,500 | 2PE3012 | A | | 190 | 290 | 150 | 90 | 2.1 | 2.1 | 785 | 1,440 | 80,000 | 147,000 | 2PE3801 | Α | | 200 | 340 | 152 | 90 | 3 | 3 | 935 | 1,620 | 95,000 | 165,000 | 2PE4002 | Α | | 240 | 400 | 173 | 104 | 4 | 4 | 1,070 | 1,990 | 109,000 | 203,000 | 2PE4802 | Α | | 315.9 | 530 | 210 | 133 | 5 | 5 | 2,130 | 4,150 | 218,000 | 420,000 | 2PE6301 | А | | 320 | 480 | 226 | 121 | 7.5 | 4 | 1,590 | 2,930 | 163,000 | 299,000 | 2PE6401 | А | | 360 | 540 | 212 | 134 | 3 | 5 | 2,270 | 4,350 | 231,000 | 445,000 | 2PE7202 | А | | 505 | 750 | 248 | 140 | 5 | 5 | 2,680 | 6,200 | 273,000 | 635,000 | 2PE10101 | А | | 530 | 750 | 248 | 140 | 5 | 5 | 2,680 | 6,200 | 273,000 | 633,000 | 2PE10601 | А | | 850 | 1,280 | 375 | 249 | 12 | 12 | 8,800 | 19,900 | 895,000 | 2,020,000 | 2PE17009 | А | | 1 120 | 1,540 | 525 | 355 | 7.5 | 7.5 | 14,200 | 43,500 | 1,450,000 | 4,400,000 | 2PE22401 | В | | 1 200 | 1,700 | 790 | 410 | _ | 9.5 | 17,200 | 44,000 | 1,750,000 | 4,500,000 | 2PE24004 | С | | 1 200 | 1,700 | 695 | 410 | _ | 9.5 | 15,600 | 44,000 | 1,590,000 | 4,500,000 | 2PE24005 | С | | 1 400 | 1,900 | 880 | 530 | _ | 12 | 22,900 | 65,500 | 2,340,000 | 6,650,000 | 2PE28001 | С | ## Double–Fractured Split Cylindrical Roller Bearings: Continuous Casting Equipment NTN - These bearings are designed to be a full complement roller type and have high rating load for heavy loads, ultra low speed rotation and space-saving. - These bearings provide a multi-seal with a labyrinth ring, seal ring and special rubber seal to prevent water from invading. - The clamping ring of the inner ring is not needed anymore and the structure of direct clamping is applied to make a compact bearing. - Bearings have a self-aligning nature due to the roll deflection since the outer ring outside diameter and the housing inner diameter are spherical. - Application of a water cooling jacket type housing controls rising bearing temperatures. ### d 100~230mm | | | Boundary dimensions mm | | | dynamic
k | static | ad ratings
dynamic
ky | static
gf | Bearing
numbers | Housing
No. | |-----|------------|------------------------|-------------------|-------------------|--------------|----------------|-----------------------------|--------------------|--------------------|----------------------------| | d | В | H | L | $D_{ m R}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | | 100 | 154
169 | 145
132 | 210
220 | 210
225 | 355
475 | 790
950 | 36,000
48,500 | 80,500
96,500 | RE2038V
RE2039V | SS2020
SS2021 | | 110 | 154
154 |
150
180
155 | 230
230
230 | 230
230
225 | 425
390 | 1,040
930 | 43,500
40,000 | 106,000
94,500 | RE2224V
RE2225V | SS2228
SS2230
SS2234 | | 115 | 173 | 220 | 240 | 240 | 505 | 940 | 51,500 | 95,500 | RE2306V | SS2304 | | 120 | 151 | 190 | 240 | 250 | 395 | 970 | 40,000 | 99,000 | RE2439V | SS2420 | | 130 | 154 | 190 | 270 | 270 | 430 | 1,110 | 43,500 | 113,000 | RE2628 | SS2637 | | 140 | 179
191 | 245
250 | 270
265 | 270
265 | 600
525 | 1,240
1,280 | 61,500
53,500 | 126,000
131,000 | RE2827V
RE2824V | SS2835
SS2825 | | 145 | 196
208 | 260
270 | 280
295 | 280
295 | 630
765 | 1,440
1,780 | 64,500
78,000 | 147,000
182,000 | RE2906V
RE2907V | SS2908
SS2907 | | 150 | 169 | 180 | 265 | 300 | 695 | 1,700 | 70,500 | 173,000 | RE3036V | SS3043 | | 165 | 228 | 280 | 320 | 320 | 930 | 2,210 | 95,000 | 225,000 | RE3311V | SS3303 | | 180 | 169
235 | 217.5
280 | 335
340 | 335
340 | 815
1,030 | 2,010
2,580 | 83,000
106,000 | 205,000
263,000 | RE3621V
RE3620V | SS3616
SS3415 | | 190 | 233 | 280 | 370 | 370 | 1,320 | 3,100 | 134,000 | 320,000 | RE3815V | SS3804 | | 230 | 239 | 300 | 450 | 450 | 1,590 | 3,700 | 162,000 | 380,000 | RE4606 | SS4601 | ## Ocylindrical Roller Bearings With Self-Aligning Rings: Continuous Casting Equipment NTN - These bearings are designed to be a full complement roller type and have high rating load. - Bearings have a self-aligning nature since the outer ring outside surface and aligning ring inside surface are spherical. #### *d* 55∼200mm | | Bound | dary dimen | sions | dynamic | Basic lo | ad ratings
dynamic | static | Bearing numbers | |-----|------------|------------|---------------|------------|--------------|-----------------------|--------------------|--------------------| | | | mm | | kN | | kį | gf | | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 55 | 90
100 | 32
25 | 1.1
1.5 | 85
94.5 | 203
146 | 8,700
9,650 | 20,700
14,900 | R11A11V
R11A12V | | 75 | 130 | 31 | 1.5 | 146 | 236 | 14,900 | 24,100 | R1564V | | 110 | 170
180 | 60
56 | 2
2 | 297
325 | 720
635 | 30,500
33,000 | 73,000
65,000 | R2260V
R2252V | | 120 | 200 | 80 | 2 | 450 | 980 | 46,000 | 100,000 | R2481V | | 130 | 200
210 | 69
80 | 2
2 | 405
495 | 935
1,090 | 41,500
50,500 | 95,500
112,000 | R2674V
R2677V | | 140 | 210
225 | 69
85 | 2
2.1 | 420
545 | 990
1,230 | 42,500
56,000 | 101,000
125,000 | R2858V
R2859V | | 150 | 250 | 100 | 2.1 | 710 | 1,620 | 72,500 | 165,000 | R3056V | | 160 | 270 | 109 | 2.1 | 855 | 1,830 | 87,500 | 186,000 | R3261V | | 170 | 260 | 90 | 2.1 | 635 | 1,510 | 65,000 | 154,000 | R3444V | | 180 | 280 | 100 | 2.1 | 785 | 1,870 | 80,500 | 191,000 | R3646V | | 200 | 340 | 112 | 3 | 1 160 | 2,470 | 119,000 | 252,000 | R4051V | | | | | | | | | | | lacktriangle Smallest allowable dimension for chamfer dimension r. ### Bearings for Preparing Rolls: Sendzimir Rolling Mills NTN - Since bearings are directly used in preparing rolls, the thickness of the outer ring is designed to be thicker than regular bearings. - Since high accuracy under heavy loads is required, these bearings are designed to have a capacity for heavy loads and high accuracy. - Several bearings are assembled on one shaft for operation, and the mutual difference of assembled thickness (Dimension H) of bearings on the same shaft is very minimal. - When the outer ring outside surface is worn, it is possible to recycle it by grinding it to a certain level. ### d 70∼180mm | | Bour | ndary dimen | sions | | | dynamic | static | ad ratings
dynamic | static | Bearing I
numbers | Orawing no. | |-----|--------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|--------------------------------------|---|---|-------------| | d | D | mm
B | C | $r_{ m smin}$ | $r_{ m ls\;min}$ | $C_{ m r}$ | ${\sf N}$ $C_{ m or}$ | kç $C_{ m r}$ | $C_{ m or}$ | | | | a | D | D | C | 7 s min | 7 ls min | $O_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$ | Cor | | | | 70 | 160
160 | 90
90 | 90
90 | 1.5
1.5 | 0.6
0.6 | 455
355 | 855
605 | 46,500
36,000 | 87,000
61,500 | 3RCS1414VUP
3RCS1418UP | C
B | | 90 | 220
220
220
200 | 96
120
120
130 | 94
120
120
130 | 3.0
2.0
2.0
2.0 | 1.1
0.3
1.5
1.5 | 470
775
650
675 | 695
1,510
1,150
1,260 | 48,000
79,000
66,000
69,000 | 71,000
154,000
118,000
128,000 | 2R1840LLUP-1
3R1827VUP
3R1829UP
3R1826UP | F
E
D | | 100 | 255 | 120 | 120 | 1.5 | 1.0 | 715 | 1,350 | 73,000 | 138,000 | 3RCS2035UP | А | | 130 | 300
300 | 160
172.6 | 159.5
172.6 | 1.5
1.5 | 2.0
2.0 | 1,480
1,580 | 2,700
2,930 | 151,000
161,000 | 275,000
299,000 | 3RCS2659UPV1
3RCS2629UP | A
A | | 180 | 406.4
406.4 | 171.04
224 | 171.04
224 | 2.5
1.45 | 4.0
4.0 | 2,060
2,350 | 3,800
4,500 | 210,000
240,000 | 390,000
460,000 | 3RCS3615UP
3RCS3618UP | B
B | | | ♪ Minimal al | llowable dime | nsion for char | mfer dime | asion v onsign | 7: | | | | | | Drawing E Drawing F | Sloping o | outer ring | Assembled thickness | Necessary
number | Mass | |-----------|------------|---------------------|---------------------|-----------| | m | m | mm | | kg | | a | f | Н | (P/C) | (approx.) | | 6 | 0.035 | 44.981 (±0.010) | 32 | 10.7 | | 6 | 0.035 | 44.981 (±0.010) | 32 | 10.7 | | 21 | 0.5 | 64.980 (±0.008) | 64 | 21.7 | | 6 | 0.035 | 64.978 (±0.008) | 32 | 27.6 | | 20.6 | 0.12 | 64.973 (0~-0.010) | 40 | 27.5 | | 6 | 0.1 | 64.960 (±0.008) | 40 | 29.8 | | 10 | 0.1 | 62.474 (0.010~0) | 32 | 28.0 | | 10 | 0.1 | 84.954 (±0.008) | 40 | 67.4 | | 10 | 0.1 | 84.954 (±0.008) | 40 | 73.0 | | 25 | 0.15 | 113.150 (±0.010) | 56 | 132 | | 25 | 0.15 | 113.150 (±0.010) | 40 | 170 | ### Enclosed-Type Tapered Roller Bearings for Wheels: **Sintering Machines** - The double lip contact seal, which has a tight seal, is installed with the bearing side face to prevent dust from entering the bearings. - Greasing the bearings is possible when a notch is positioned at the central part of inner ring. ### *d* 85∼130mm | | | E | Boundary di
mm | | | dynamic
ki | Basic load ratings dynamic static dynamic kN kgf | | | Bearing
numbers | |-----|-----|-------|--------------------------|---------------|------------------------------|---------------|--|------------|-------------|--------------------| | d | D | B_1 | C | $r_{ m smin}$ | $r_{1\mathrm{smin}}^{ullet}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | | | 85 | 180 | 115 | 115 | 2.5 | 0.6 | 440 | 715 | 45,000 | 73,000 | CRI-1760LL | | 95 | 180 | 100 | 100 | 3.0 | 1.0 | 530 | 835 | 54,500 | 85,500 | CRI-1959LL* | | 100 | 180 | 100 | 100 | 2.5 | 0.8 | 440 | 675 | 45,000 | 68,500 | CRI-2070LL | | 110 | 200 | 100 | 100 | 3.0 | 1.0 | 605 | 965 | 61,500 | 98,500 | CRI-2272LL | | 130 | 230 | 138 | 138 | 3.0 | 0.3 | 820 | 1,660 | 83,500 | 169,000 | CRI-2666LL | ### Cylindrical Roller Bearings: Chain Conveyors - Since the outer ring directly supports heavy loads, the thickness of outer ring is designed to be thicker than regular bearings. - For operation under heavy loads and extremely low speed rotation, these bearings are designed to be a full complement roller type and have high loads capacity. - To prevent foreign matter from entering the bearing, a labyrinth structure is applied, which has a narrower clearance between outer ring and rib ring. ### **d** 28.3∼56mm | | | Во | oundary dii | | ; | | dynamic | static | ead ratings
dynamic | static | Bearing numbers | |-------|----------|----------|-------------|----------|----------|----------|------------|------------|------------------------|------------------|--------------------| | | | | mm | | | | k | N | ŀ | cgf | | | d | d_1 | d_2 | D | В | C | T | C | $C_{ m o}$ | C | $C_{ m o}$ | | | 28.3 | 44.05 | 47 | 125 | 55 | 62 | 94 | 197 | 241 | 20,100 | 24,500 | R06A31V | | 38.4 | 60 | 66 | 150 | 90 | 99 | 138 | 390 | 585 | 40,000 | 59,500 | R08A31V | | 38.7 | 56 | 56 | 150 | 70 | 75 | 112 | 315 | 420 | 32,500 | 42,500 | R08A24V | | 41.75 | 64.16 | 71 | 175 | 80 | 85 | 125 | 395 | 575 | 40,500 | 59,000 | R08A02V | | 45 | 73 | 73 | 150 | 60 | 60 | 60 | 278 | 405 | 28,300 | 41,000 | R09A20V | | 46 | 73 | 73 | 150 | 60 | 60 | 60 | 278 | 405 | 28,300 | 41,000 | R09A21V | | 50 | 72 | 72 | 156 | 60 | 70 | 70 | 280 | 355 | 28,600 | 36,500 | R1099V | | 56 | 74
73 | 74
73 | 160
150 | 51
60 | 55
60 | 49
60 | 261
278 | 310
405 | 26,600
28,300 | 31,500
41,000 | R11A01V
R11A13V | ### Tapered Roller Thrust Bearings: Screw Down Operations NTN - These bearings are designed to be a full complement roller type and have high static rating load for large axial load applications. - Inner ring surface is spherical (convex or concave) to allow its circle center to meet the tip of the pressing screw. - For hoisting, bearings are designed to have a hole or bushing at the center of the inner ring, and a bushing on the outer ring. ### D 149.225~641.350mm | | Bound | ary dimensions | | | Basic load
stat | Bearing
numbers | | |---------|---------|----------------|---------|-------------------------------|--------------------|--------------------|----------| | | | mm | | | kN | kgf | | | D | d_1 | H | F | $r_{1\mathrm{s}\mathrm{min}}$ | C_{oa} | C_{oa} | | |
149.225 | 146.900 | 47.625 | 127.000 | 1.6 | 2,280 | 233,000 | CRT0402V | | 174.625 | 172.300 | 52.375 | 152.400 | 1.6 | 3,300 | 335,000 | CRT0503V | | 203.200 | 200.800 | 65.075 | 177.800 | 1.6 | 4,550 | 465,000 | CRT0607V | | 266.700 | 264.300 | 80.950 | 228.600 | 1.6 | 7,750 | 790,000 | CRT0701V | | 320.675 | 318.300 | 95.250 | 279.400 | 1.6 | 11,800 | 1,200,000 | CRT0814V | | 377.825 | 375.500 | 111.125 | 330.200 | 1.6 | 16,300 | 1,660,000 | CRT0908V | | 409.575 | 407.200 | 122.225 | 355.600 | 3.2 | 19,300 | 1,960,000 | CRT1006V | | 438.150 | 435.800 | 130.175 | 381.000 | 3.2 | 21,600 | 2,210,000 | CRT1104V | | 495.300 | 492.900 | 146.050 | 431.800 | 3.2 | 27,300 | 2,780,000 | CRT1209V | | 495.300 | 492.900 | 146.050 | 431.800 | 3.2 | 32,000 | 3,250,000 | CRT1212V | | 523.875 | 521.500 | 152.400 | 457.200 | 3.2 | 32,000 | 3,300,000 | CRT1409V | | 554.000 | 555.000 | 190.500 | 465.430 | 1.7 | 36,000 | 3,700,000 | CRT1206V | | 555.625 | 553.300 | 165.100 | 482.600 | 3.2 | 36,000 | 3,650,000 | CRT1516V | | 581.025 | 578.700 | 168.275 | 508.000 | 3.2 | 38,500 | 3,950,000 | CRT1610V | | 609.600 | 607.200 | 177.800 | 533.400 | 3.2 | 44,000 | 4,500,000 | CRT1806V | | 641.350 | 639.000 | 184.150 | 558.800 | 3.2 | 49,000 | 4,950,000 | CRT1807V | | | | | | | | | | lacktriangle Smallest allowable dimension for chamfer dimension r_i . | | Di | mensions | | | Mass | |------------|--------|----------|-----|------------|-----------| | | | mm | | | kg | | $R_{ m S}$ | b | U | V | $T_{ m h}$ | (approx.) | | 228.6 | 12.7 | 4.7 | 1.2 | M12 | 4.4 | | 228.6 | 12.7 | 4.7 | 1.2 | M12 | 6.7 | | 254 | 15.875 | 6.4 | 1.2 | M12 | 11 | | 304.8 | 19.05 | 7.9 | 2 | M20 | 24.1 | | 381 | 22.225 | 10.3 | 2.4 | M20 | 41.3 | | 457.2 | 25.4 | 10.3 | 2.4 | M24 | 73.7 | | 508 | 28.575 | 10.3 | 2.4 | M24 | 87.2 | | 508 | 31.75 | 13.5 | 3.2 | M24 | 105 | | 558.8 | 34.925 | 13.5 | 3.2 | M24 | 150 | | 1,270 | 34.925 | 13.5 | 3.2 | M24 | 150 | | 635 | 34.925 | 13.5 | 3.2 | M24 | 175 | | 1,270 | 50 | 9.5 | 6 | M24 | 245 | | 635 | 38.1 | 13.5 | 3.2 | M24 | 214 | | 711.2 | 38.1 | 13.5 | 3.2 | M24 | 238 | | 762 | 38.1 | 13.5 | 3.2 | M24 | 277 | | 762 | 38.1 | 13.5 | 3.2 | M24 | 317 | ### Tapered Roller Thrust Bearings: Screw Down Operations NTN - These bearings are designed to be a full complement roller type and have high static rating load for large axial load applications. - Inner ring surface is spherical (convex or concave) to allow its circle center to meet the tip of the pressing screw. - For hoisting, bearings are designed to have a hole or bushing at the center of the inner ring, and a bushing on the outer ring. #### D 149.225~641.350mm | | Bound | ary dimensions | 3 | | Basic load | Bearing
numbers | | |---------|---------|----------------|---------|-------------------------------|-------------------|--------------------|----------| | | | mm | | | kN | kgf | | | D | d_1 | Н | F | $r_{1\mathrm{s}\mathrm{min}}$ | C_{oa} | $C_{ m oa}$ | | | 149.225 | 146.900 | 80 | 127.000 | 1.6 | 2,280 | 233,000 | CRT0401V | | 174.625 | 172.300 | 61.392 | 152.400 | 1.6 | 3,300 | 335,000 | CRT0504V | | 203.200 | 200.800 | 75 | 177.800 | 1.6 | 4,650 | 475,000 | CRT0606V | | 266.700 | 264.300 | 94.412 | 228.600 | 1.6 | 7,750 | 790,000 | CRT0505V | | 320.675 | 318.300 | 110.973 | 279.400 | 1.6 | 11,800 | 1,200,000 | CRT0811V | | 377.825 | 375.500 | 129.007 | 330.200 | 1.6 | 16,300 | 1,660,000 | CRT0909V | | 409.575 | 407.200 | 140.767 | 355.600 | 3.2 | 19,300 | 1,960,000 | CRT1007V | | 438.150 | 435.800 | 150.673 | 381.000 | 3.2 | 21,600 | 2,210,000 | CRT1105V | | 482.600 | 480.212 | 145.542 | 419.100 | 3.2 | 27,200 | 2,770,000 | CRT1307V | | 495.300 | 492.900 | 170.612 | 431.800 | 3.2 | 32,000 | 3,250,000 | CRT1211V | | 523.875 | 521.500 | 174.35 | 457.200 | 3.2 | 32,500 | 3,350,000 | CRT1412V | | 533.400 | 533.400 | 177.8 | 457.200 | 1.6 | 33,500 | 3,400,000 | CRT1411V | | 555.625 | 553.300 | 190.856 | 482.600 | 3.2 | 36,000 | 3,650,000 | CRT1517V | | 581.025 | 578.700 | 193.78 | 508.000 | 3.2 | 39,000 | 4,000,000 | CRT1214V | | 581.225 | 578.700 | 193.777 | 508.000 | 3.2 | 38,500 | 3,950,000 | CRT1601V | | 609.600 | 607.240 | 202.167 | 533.400 | 3.2 | 44,500 | 4,550,000 | CRT1812V | | 641.350 | 639.000 | 212.674 | 558.800 | 3.2 | 49,000 | 4,950,000 | CRT1808V | | | | | | | | | | lacktriangle Smallest allowable dimension for chamfer dimension r_1 . | | Dimensions | | | | | | | | | | | | | |------------|------------|--------|-------|------|------------|--------------------|-----------|--|--|--|--|--|--| | | | mm | | | | | kg | | | | | | | | $R_{ m S}$ | $H_{ m s}$ | b | U | V | $T_{ m h}$ | $T_{ m h1}^{m{2}}$ | (approx.) | | | | | | | | 457.2 | 47.625 | 12.7 | 4.7 | 1.2 | M12 | _ | 6.6 | | | | | | | | 457.2 | 52.375 | 12.7 | 4.7 | 1.2 | M12 | _ | 10.1 | | | | | | | | 508 | 65.075 | 15.875 | 6.4 | 1.2 | M12 | M16 | 17 | | | | | | | | 609.6 | 80.950 | 19.05 | 7.9 | 2 | M20 | _ | 36.2 | | | | | | | | 762 | 95.250 | 22.225 | 10.3 | 2.4 | M20 | _ | 61.3 | | | | | | | | 914.4 | 111.125 | 25.4 | 10.3 | 2.4 | M24 | _ | 98.8 | | | | | | | | 1,016 | 122.225 | 28.575 | 10.3 | 2.4 | M24 | _ | 127 | | | | | | | | 1,016 | 130.175 | 31.75 | 13.5 | 3.2 | M24 | _ | 155 | | | | | | | | 1,905 | 130.175 | 38.1 | 13.5 | 3.2 | M24 | _ | 182 | | | | | | | | 1,066.8 | 146.050 | 34.925 | 13.5 | 3.2 | M24 | _ | 215 | | | | | | | | 1,270 | 152.400 | 34.925 | 13.49 | 3.18 | M24 | _ | 259 | | | | | | | | 1,981.2 | 161.925 | 31.75 | 9.5 | 9.5 | M24 | _ | 271 | | | | | | | | 1,270 | 165.100 | 38.1 | 13.5 | 3.2 | M24 | _ | 316 | | | | | | | | 1,320.8 | 166.880 | 38.1 | 13.5 | 6 | M24 | M42 | 350 | | | | | | | | 1,422.4 | 168.275 | 38.1 | 13.5 | 3.2 | M24 | _ | 350 | | | | | | | | 1,524 | 177.800 | 38.1 | 13.5 | 3.2 | M30 | M42 | 388 | | | | | | | | 1,524 | 184.150 | 38.1 | 13.5 | 3.2 | M24 | _ | 469 | | | | | | | ^{2 &}quot;—" means that is not prepared with a bush. ### Tension Leveler Roll Unit: Cartridge Unit NTN - This unit has a precision small diameter and a long scaled roll, with the surface roughness of the roll designed to be low. - Angular ball bearings are assembled in multiple rows in the cartridge to obtain high load capacity in both axial directions and at high speed. - This unit has established both low torque operation and tight sealing by a labyrinth structure and low-contact seals. #### **Cartrige Unit** #### **d** 8∼15mm | Bearing numbers | | | Allowable axiale load | | | | | | | |-------------------|----|----|-----------------------|-------|-------|-------|-------|-------|-----| | | | | | mm | | | | kN | kgf | | | d | D | L_1 | L_2 | L_3 | D_1 | L_4 | | | | CU8A01W+WK30/150 | 8 | 30 | 1,716 | 1,552 | 1,500 | 26 | 92 | 1.85 | 189 | | CU8A05W+WK50/185 | 8 | 50 | 2,066 | 1,902 | 1,850 | 26 | 92 | 1.85 | 189 | | CU8A05W+IM38/185 | 8 | 38 | 2,066 | 1,902 | 1,850 | 26 | 92 | 1.85 | 189 | | CU10B01W+WK25/220 | 10 | 25 | 2,433.5 | 2,280 | 2,200 | 24 | 80 | 0.715 | 73 | | CU10B01W+WK20/180 | 10 | 20 | 2,033.5 | 1,880 | 1,800 | 24 | 80 | 0.715 | 73 | | CU12B04W+WK40/150 | 12 | 40 | 1,716 | 1,566 | 1,500 | 32 | 92 | 2.02 | 206 | | CU12B07W+WK30/220 | 12 | 30 | 2,433.5 | 2,288 | 2,200 | 28 | 85 | 1.49 | 151 | | CU12B07W+IM38/180 | 12 | 38 | 2,033.5 | 1,888 | 1,800 | 28 | 85 | 1.49 | 151 | | CU12B08W+WK40/210 | 12 | 40 | 2,332 | 2,170 | 2,100 | 38 | 100 | 2.02 | 206 | | CU15A04W+IM60/220 | 15 | 60 | 2,433.5 | 2,270 | 2,200 | 38 | 94 | 3.78 | 380 | - This unit has established both low torque operation and tight sealing by a labyrinth structure and low-contact seals. - When further low torque is requested, the roll unit (Model BUB), which uses only the deep groove ball bearings, is available. - Since the unit is used as a backup roll, the accuracy and its surface roughness are designed to be low. ### **Backup Unit** Type NKZ Type BUB #### **d** 13∼70mm | Bearing numbers | Boundary dimensions | | | | dynamic | Mass | | | | |--------------------|---------------------|------|-----|-------|------------|-------------|------------|-------------|-----------| | | mm | | kN | | kgf | | kg | | | | | d | D | L | L_1 | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | (approx.) | | NKZ 13×34×190-2 | 13 | 34 | 190 | 150 | 42 | 68 | 4,300 | 6,900 | 1 | | NKZ 16×38×192 | 16 | 38 | 192 | 170 | 35.5 | 55.5 | 3,600 | 5,650 | 1.4 | | NKZ 20×50×153-1 | 20 | 50 | 153 | 115 | 77.5 | 116 | 7,900 | 11,900 | 1.9 | | BUB 24×63.5×150-01 | 24 | 63.5 | 190 | 140 | 26.6 | 23.4 | 2,710 | 2,390 | 2.4 | | NKZ 24×65×205-6 | 24 | 65 | 205 | 155 | 82.5 | 122 | 8,450 | 12,500 | 3.9 | | NKZ 24×65×294 | 24 | 65 | 294 | 244 | 98 | 153 | 10,000 | 15,600 | 5.8 | | NKZ 24×65×314-4 | 24 | 65 | 314 | 275 | 84 | 150 | 8,600 | 15,300 | 6.5 | | BUB 24×65×320-03 | 24 | 65 | 320 | 274 | 19.2 | 14.8 | 1,950 | 1,510 | 6.5 | | NKZ 26×75×208-5 | 26 | 75 | 208 | 160 | 112 | 163 | 11,400 | 16,700 | 5.1 | | NKZ 28×75×150 | 28 | 75 | 150 | 108 | 112 | 163 | 11,400 | 16,700 | 3.6 | | NKZ 30×65×196 | 30 | 65 | 196 | 146 | 114 | 186 | 11,600 | 18,900 | 3.8 | | NKZ 30×75×150-24 | 30 | 75 | 150 | 110 | 125 | 187 | 12,700 | 19,000 | 3.7 | | NKZ 30×75×230-19 | 30 | 75 | 230 | 180 | 151 | 228 | 15,400 | 23,200 | 5.8 | | NKZ 30×75×326-12 | 30 | 75 | 326 | 276 | 151 | 228 | 15,400 | 23,200 | 8.5 | | NKZ 40×90×195 | 40 | 90 | 195 | 145 | 128 | 214 | 13,000 | 21,900 | 7 | | NKZ 70×150×345-4 | 70 | 150 | 345 | 250 | 515 | 905 | 52,500 | 92,500 | 34.5 | ### Turn Table Bearings: 3–Row Cylindrical Roller Type NTN - These are compound type bearings which unite the double row thrust roller bearing and the radial roller bearing. - These bearings are designed so that rollers in each row support axial and moment loads respectively, and high rigidity and long life can be obtained since the rolling parts make line contact. - They are suitable for tunnel excavating machines or cranes with frequent turns. **Drawing A** ### D_i 1,104~4,000mm | | Bound | lary dime | nsions | • | Gear | spec | | | Settii | ng hole | s (inr | ner ring) | |
; | Settin | g hole | s (oute | er rin | g) | |---|------------------|------------------|--------|-------|---------|----------|------------|------------|----------------|------------|-------------|------------|------------|-------------|----------------|------------|---------|------------|------------| | | | | | m | odule r | number o | f gear tee | eth | | | | | | | | | | | | | | D_{i} | D_{a} | Н | mz | m | z | b | $L_{ m i}$ | $z_{ m i}$ (n) | $d_{ m i}$ | $S_{\rm i}$ | $m_{ m i}$ | $t_{ m i}$ | $L_{\rm a}$ | $z_{ m a}$ (n) | $d_{ m a}$ | S_{0} | $t_{ m o}$ | $m_{ m o}$ | | - | 1,104 | 1,510 | 175 | 1,128 | 12 | 94 | 140 | 1,230 | 36 | φ 26 | 30 | M24X3 | 45 | 1,460 | 36 | φ 26 | 108 | 52 | M24X3 | | - | 1,400 | 1,850 | 220 | 1,428 | 14 | 102 | 120 | 1,520 | 48 | φ 26 | 30 | M24X3 | 50 | 1,795 | 48 | φ 26 | _ | _ | _ | | - | 1,620 | 2,180 | 260 | 1,656 | 18 | 92 | 180 | 1,800 | 40 | φ 33 | 30 | M30X3.5 | 60 | 2,115 | 40 0 | φ 33 | _ | _ | _ | | 2 | 2,172 | 2,660 | 230 | 2,196 | 12 | 183 | 170 | 2,300 | 48 | φ 33 | 35 | M30X3.5 | 60 | 2,595 | 48 | φ 33 | _ | _ | _ | | 2 | 2,784 | 3,305 | 240 | 2,808 | 12 | 234 | 140 | 2,910 | 42 | φ 33 | 30 | M30X3.5 | 55 | 3,240 | 42 | φ 33 | _ | _ | _ | | 4 | 1,000 | 4,700 | 348 | 4,032 | 16 | 252 | 210 | 4,175 | 88 | φ 42 | 50 | M39X4 | 70 | 4,615 | 88 | φ 42 | 226 | 80 | M39X4 | Drawing B Unit mm | Bearing I | Draw | ing | Di | mension | s | | | | | Basic loa | d ratings | | | Mass | |----------------|------|-------|------------|-------------|----|----|----|---------------------|--------------------|-------------|---------------------|--------------------|-------------|-----------| | numbers | no | | | | | | | | static | | | static | | | | | | | | | | | | | kN | | | Tonf | | kg | | | | 0 | $U_{ m i}$ | $U_{\rm a}$ | R | K | C | main
thrust line | sub
thrust line | radial line | main
thrust line | sub
thrust line | radial line | (approx.) | | K2N-RTD22602PX | I A | 1,306 | 1,284 | 1,166 | 15 | 15 | 20 | 11,500 | 6,700 | 1,410 | 1,170 | 680 | 143 | 930 | | K2N-RTD28601PX | ΙВ | 1,618 | 1,576 | 1,475 | 20 | 15 | 85 | 20,500 | 10,800 | 2,200 | 2,100 | 1,110 | 225 | 1,550 | | K2N-RTD33102PX | В | 1,902 | 1,844 | 1,710 | 20 | 25 | 55 | 28,900 | 14,600 | 3,050 | 2,950 | 1,490 | 310 | 2,650 | | K2N-RTD43902PX | ΙВ | 2,391 | 2,364 | 2,235 | 30 | 20 | 40 | 27,500 | 18,600 | 2,280 | 2,800 | 1,900 | 233 | 2,600 | | K2N-RTD56205PX | ΙВ | 3,034 | 3,000 | 2,846 | 20 | 15 | 85 | 36,500 | 22,000 | 4,500 | 3,700 | 2,240 | 460 | 3,850 | | K2N-RTD80602PX | I A | 4.321 | 4.219 | 4.085 | 20 | 52 | 86 | 114.000 | 50.500 | 17.000 | 11,600 | 5.150 | 1.740 | 10.300 | ### Sealed Spherical Roller Bearings: Model WA - Special contact type rubber seal prevents foreign matter from entering the bearings. - Compact design enables bearings to be mounted with the standard type of plummer blocks (SN5, SN2). - Greasing bearings is possible since lubrication grooves and holes are provided on the outer ring. - Bearings are prelubricated with grease and can be directly mounted on machines. Cylindrical bore Tapered bore taper 1:12 #### d 60∼160mm | | Boun | dary dimer | nsions | dynamic | Basic loa
static | d ratings
dynamic | static | Bearing | ı numbers | |-----|------|------------|---------------|------------|---------------------|----------------------|-------------|------------------|-----------------| | | | mm | | , kl | N | k | gf | | | | d | D | В | $r_{ m smin}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | Cylindrical bore | Tapered bore | | 60 | 110 | 36 | 1.5 | 115 | 147 | 11,700 | 15,000 | LH-WA22212BLLS | LH-WA22212BLLSK | | 65 | 120 | 39 | 1.5 | 143 | 179 | 14,600 | 18,300 | LH-WA22213BLLS | LH-WA22213BLLSK | | 70 | 125 | 39 | 1.5 | 154 | 201 | 15,700 | 20,500 | LH-WA22214BLLS | LH-WA22214BLLSK | | 75 | 130 | 39 | 1.5 | 166 | 223 | 16,900 | 22,800 | LH-WA22215BLLS | LH-WA22215BLLSK | | 80 | 140 | 41 | 2 | 179 | 239 | 18,300 | 24,400 | LH-WA22216BLLS | LH-WA22216BLLSK | | 85 | 150 | 44 | 2 | 206 | 272 | 21,000 | 27,800 | LH-WA22217BLLS | LH-WA22217BLLSK | | 90 | 160 | 50.4 | 2 | 256 | 345 | 26,200 | 35,000 | LH-WA22218BLLS | LH-WA22218BLLSK | | 95 | 170 | 51 | 2.1 | 294 | 390 | 30,000 | 39,500 | WA22219BLLS | WA22219BLLSK | | 100 | 180 | 60.3 | 2.1 | 315 | 415 | 32,000 | 42,500 | WA22220BLLS | WA22220BLLSK | | 110 | 200 | 69.8 | 2.1 | 410 | 570 | 42,000 | 58,000 | WA22222BLLS | WA22222BLLSK | | 120 | 215 | 76 | 2.1 | 485 | 700 | 49,500 | 71,500 | WA22224BLLS | WA22224BLLSK | | 130 | 230 | 80 | 3 | 570 | 790 | 58,000 | 80,500 | WA22226BLLS | WA22226BLLSK | | 140 | 250 | 88 | 3 | 685 | 975 | 70,000 | 99,500 | WA22228BLLS | WA22228BLLSK | | 150 | 270 | 96 | 3 | 775 | 1,160 | 79,000 | 119,000 | WA22230BLLS | WA22230BLLSK | | 160 | 290 | 104 | 3 | 870 | 1,290 | 88,500 | 132,000 | WA22232BLLS | WA22232BLLSK | [●] Smallest allowable dimension for chamfer dimension r. ② "K" indicates bearings have tapered bore with a taper ratio of 1: 12. Equivalent bearing load dynamic $P_r = XF_r + YF_a$ | | $\frac{F_{\rm a}}{F_{\rm r}}$ | ≦ e | $\frac{F_a}{F_1}$ | ;>e | |---|-------------------------------|------------|-------------------|-------| | 1 | X | Y | X | Y | | | 1 | Y_1 | 0.67 | Y_2 | static Por=Fr+YoFa For values of e, Y_2 and Y_0 see the table below. | Abut | tment and fi | llet dimension | ons | Constant | Ах | ial load facto | ors | Mass (approx.) | | | |------|----------------|------------------|-----------------|----------|-------|----------------|-------|--------------------------|------|--| | min | $d_{ m a}$ max | M $D_{ m a}$ max | $r_{ m as}$ max | e | Y_1 | Y_2 | Y_0 | k
Cylindrical
bore | - | | | 68.5 | 74.5 | 101.5 | 1.5 | 0.27 | 2.49 | 3.71 | 2.44 | 1.41 | 1.37 | | | 73.5 | 80 | 111.5 | 1.5 | 0.28 | 2.42 | 3.60 | 2.37 | 1.80 | 1.76 | | | 78.5 | 84 | 116.5 | 1.5 | 0.26 | 2.55 | 3.80 | 2.50 | 1.91 | 1.86 | | | 83.5 | 89.5 | 121.5 | 1.5 | 0.24 | 2.81 | 4.19 | 2.75 | 2.06 | 2.00 | | | 90 | 94.5 | 130 | 2 | 0.26 | 2.64 | 3.93 | 2.58 | 2.51 | 2.45 | | | 95 | 101 | 140 | 2 | 0.26 | 2.60 | 3.88 | 2.55 | 3.08 | 3.01 | | | 100 | 107 | 150 | 2 | 0.26 | 2.55 | 3.80 | 2.49 | 4.08 | 3.97 | | | 107 | 114 | 158 | 2 | 0.26 | 2.63 | 3.92 | 2.57 | 4.71 | 4.59 | | | 112 | 119 | 168 | 2 | 0.26 | 2.55 | 3.80 | 2.49 | 6.01 | 5.83 | | | 122 | 133 | 188 | 2 | 0.27 | 2.51 | 3.74 | 2.46 | 8.87 | 8.60 | | | 132 | 147 | 203 | 2 | 0.27 | 2.47 | 3.68 | 2.42 | 11.2 | 10.9 | | | 144 | 154 | 216 | 2.5 | 0.28 | 2.39 | 3.56 | 2.33 | 12.5 | 12.1 | | | 154 | 168 | 236 | 2.5 | 0.28 | 2.39 | 3.55 | 2.33 | 16.9 | 16.3 | | | 164 | 185 | 256 | 2.5 | 0.27 | 2.46 | 3.66 | 2.40 | 22.6 | 21.9 | | | 174 | 197 | 276 | 2.5 | 0.28 | 2.42 | 3.60 | 2.37 | 28.0 | 27.2 | | - These are self-aligning sliding bearings: the sliding parts form a spherical surface. The bearings also can support radial loads and axial loads in either direction. - A lubricant (oil or grease) should be used since the sliding parts are steel on steel. - These bearings are suitable for swinging and aligning movements, and used in joint-movement parts for industrial and construction machines. #### Grease up type **Drawing B** Divided by 2 place (outer ring) ### d 110~420mm | | В | • | limension | s | α | dynamic
k | Basic load
static
N | d ratings
dynamic
kg | static | Bearing
numbers | |-----|------------|-----------|------------------|------------|---------|------------------------|----------------------------------|-----------------------------------|------------------------|--------------------| | d | D | В | C | K | (deg.) | $C_{ m d}$ | $C_{ m s}$ | $C_{ m d}$ | $C_{ m s}$ | | | 110 | 180
180 | 85
100 | 70
75 | 160
160 | 6
10 | 1,100,000
1,180,000 | 6,600,000
7,050,000 | 112,000
120,000 | 670,000
720,000 | W2222
W2225 | | 180 | 260 | 105 | 60 | 225 | 12 | 1,110,000 | 6,670,000 | 113,000 | 680,000 | W3617 | | 200 | 290 | 130 | 120 | 250 | 2 | 2,550,000 | 15,300,000 | 260,000 | 1,560,000 | W4029 | | 260 | 430 | 215 | 195 | 375 | 3 | 6,350,000 | 38,000,000 | 645,000 | 3,900,000 | W52A07 | | 280 | 350
430 | 69
220 | 69
140 | 320
375 | _
10 | 2,170,000
4,900,000 | 13,000,000
29,600,000 | 221,000
500,000 | 1,320,000
3,010,000 | W5605
W5613 | | 300 | 440 | 190 | 150 | 380 | 6 | 5,000,000 | 30,500,000 | 510,000 | 3,050,000 | W6022 | | 320 | 440 | 160 | 120 | 380 | 6 | 4,200,000 | 25,300,000 | 430,000 | 2,580,000 | W6415 | | 380 | 480 | 100 | 100 | 430 | _ | 4,200,000 | 25,300,000 | 430,000 | 2,580,000 | W7601 | | 420 | 540 | 120 | 120 | 480 | _ | 5,650,000 | 34,000,000 | 575,000 | 3,450,000 | W8407 | Drawing C Divided by 1 place (outer ring) Plastic sealed Drawing D Divided by 2 place (outer ring) Retaining ring (shrinkage fit) type (D ≧ 500mm) | | Drawing no. | Mass | Remarks | |---|-------------|--------------|---| | | | kg | | | | | (approx.) | | | | A
C | 9.42
10.3 | | | | Α | 16.1 | Inner ring outside dia. with oil groove | | | В | 33.0 | Inner ring outside dia. with oil groove | | • | В | 140 | Inner ring outside dia. with oil groove | | | B
B | 18.7
106 | Without oil hole, oil groove
Inner ring outside dia. with oil groove | | | В | 101 | Inner ring outside dia. with oil groove | | • | В | 72 | Inner ring outside dia. with oil groove | | | В | 52.9 | Without oil hole, oil groove | | • | D | 85.0 | Without oil hole, oil groove | # **Catalog List & Appendix Table** | CATALOG TITLES | CATALOG No. | |--|----------------| | ●BALL AND ROLLER BEARINGS | | | Ball and Roller Bearings | 2202/C/E/I/P/S | | Large Bearings | 2250/E/P | | Miniature and Extra Small
Ball Bearings | 3013/E | | Miniature Molded Rubber Bearings | 3014/E | | Ball Bearings Shield and Seal Types | 3015/E | | Care and Maintenance of Bearings | 3017/E/S/P | | HL Bearings | 3020/E | | Bearings with Solid Grease | 3022/E/S/P | | Large Size, Long Operating Life Bearing-EA type | 3024/E/P | | Tapered Roller Bearings ECO-Top | 3026/E/S/C | | Self-Aligning Spherical Roller Bearings LH Series | 3027/E/S/C | | Bearings for Clean Environment | 3028/E | | Insulated Bearings-Resin Coated Type | 3204/E | | Type E Spherical Roller Bearings | 3701/E | | Sealed Self-Aligning Roller Bearings-WA Type | 3702/E/S | | Spherical Roller Bearings-UA Type | 3710/E | | HUB BEARINGS | 4601/E | | Aerospace Bearings | 8102/E | | Precision Rolling Bearings for Machine Tools | 8401/E | | Super High-speed Precision Bearings for Main Spindles of Machine Tools | 8403/E | | •NEEDLE ROLLER BEARINGS | | | Needle Roller Bearings | 2300/E/I/P/S | | Miniature Cam Followers | 3601/E | | ● CONSTANT VELOCITY JOINTS | | | Constant Velocity Joints for Automobiles | 5601/JE | | TRI-Ball Joint / Constant Velocity Joints | 5602/E | | Constant Velocity Joints for Industrial Machines | 5603/E | | BEARING UNITS | | | Bearing Units | 2400/E/I/S | | Bearing Units with Ductile Cast Iron Housing | 3901/E | | Bearing Units Steel Series | 3902/E | | Bearing Units Stainless Series | 3903/E | | Bearing Units Plastic Housing Series | 3904/E | | Triple-Sealed Bearings for Bearing Units | 3905/E | | CATALOG TITLES | CATALOG No. | |--|--------------| | •PLUMMER BLOCKS | | | Plummer Blocks | 2500E/S | | PRECISION BALL SCREWS | | | Precision Ball Screws | 6000/E | | Rolled Ball Screws | 6206/E | | ●PARTS FEEDER | | | Parts Feeder | 7018/E | | NTN Parts Feeder with Standard Attachments (for Bolts or Washer) | 7016/E | | OCLUTCHES | | | One-way Clutches (Overrunning Clutches) | 6402/E | | PLAIN BEARINGS | | | "BEAREE" NTN Engineering Plastics | 5100/E | | Miniature Plastic Sliding Screws | 5112/E | | NTN "BEARPHITE" Oil Impregnated Sintered Bearings | 5202/E | | Spherical Plain Bearings | 5301/E | | ● HANDBOOK | | | Bearing Units Handbook | 9011/E/S | | Rolling Bearings Handbook | 9012/E | | Needle Roller Bearings Handbook | 9013/E | | ● GUIDE BOOK | | | Parts Feeder Guide Book | 7019/E | | Automotive Products Guide Book | 8021/E/D/F/C | | New Products Guide | 9208/E/C | | Food Machinery Component Guide | 9209/E | | Product Catalog for Paper Manufacturing Machinery | 9210/E | | Steel Manufacturing Machinery Product Guide Book | 9211/E | | •ELECTRONIC CATALOG | | | NTN Electronic Catalog (CD-ROM for Windows) | 7903/E | | NTN Autoparts Catalog (CD-ROM for Windows) | 7905/E | | Reference Kit Program -Bearing Interchange- (CD-ROM for Windows) | 7907/E | | • OTHERS | | | Bearing Handling | 9103/E/P/S | C:Chinese E:English F:French D:Germany I:Italian K:Korean S:Spanish T:Thai TC: Taipei Chinese Note : The above are basic numbers. Renewal of the suffix by a revision. Appendix table 1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-1 | Sing | e row | radial | 67 | | | | Ĺ | | 68 | | | | | | Ŭ | · · | | | 69
79 | ei L | | | | | | | | | 160 | 60 | | | | | | | | |------------------|----------------------------|--------------------|------|------------|------------------------|---------------------------------|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|-----------------------|--------------------|------------|----------------|-----------------|-------------------|----------------|-------------------|----------------|-------------------|-------------------|-------------------|----------------------|----------------|-------------------|----------------|----------------|----------------|----------------|------------|----------------------------|------------------| | Doub
ball b | earing
le row
earing | radial
s | 0, | | | | | | 78 | | | | | | | | | | 79 | | | | | | | | | | | 70 | | | | | | | | | bear | drical
ngs
lle rolle | | | | | | | | | N28 | N38 | - | | | | | | | N19 | N29 | NN39 | | 11450 | 114.00 | | | | | | N10 | N20 | NN30 | NN40 | | | | | | Sphe | ngs
rical re | | | | | | | | | | | NA48 | | | | | | | | | 239 | | NA59 | NA69 | | | | | | | | 230 | 240 | | | | | | Non
bea | ninal
ring | Dia | amet | ter se | eries | 7 | | | Dia | ame | ter se | eries | 8 | | | _ | | | | Di: | | | ries | 9 | | | | | | [| Diam | | serie | es O |)
) | | | | l bo | re
neter | Nominal
outside | Dim | nensi | on se | eries | Nominal
outside | | | D | imen | sion | serie | s | | | Nominal
outside | | | | Dim | ensi | on se | ries | | | | Nominal
outside | | | | | sion | | | | | | N | Di | diameter
of | 17 | 27 | 37 | 17~37 | diameter | 08 | 18 | 28 | 38 | 48 | 58 | 68 | 08 | 18~68 | diamete | 09 | 19 | 29 | 39 | 49 | 59 | 69 | 09 | 19~39 | 49~69 | diameter
of | 00 | 10 | 20 | 30 | 40 | 50 | 60 | 00 10 |
0∼60 | | Number | Dimension | bearing D | Nomi | nal wi | $\operatorname{dth} B$ | Chamfer
dimension
y s min | bearing D | | N | omir | nal w | idth. | В | | ldime | mfer | bearing D | | N | lomii | nal w | idth | В | | dir | hamf | on | bearing D | | | Non | ninal | widt | hB | | Cham | sion | | | 0.6 | 2 | 0.8 | _ | _ | 0.05 | 2.5 | _ | 1 | _ | 1.4 | _ | _ | _ | <u>γ</u> s | min
0.05 | _ | _ | _ | _ | _ | _ | _ | _ | _ | s mi
— | _ | _ | _ | _ | _ | _ | _ | _ | _ | γs m | | | 1 | 1.5 | | 1 | _ | 1.8 | 0.05 | 4 | _ | 1.2 | _ | 1.5 | _ | _ | _ | _ | 0.05 | 5 | = | 1.6 | = | 2.3 | _ | _ | _ | | 0.1
0.15 | | 6 | = | 2.5 | _ | 3 | _ | _ | = | _ o | 0.15 | | _ | 2.5 | | 1.2 | _ | 2
2.3 | 0.05
0.08 | | _ | 1.5
1.8 | _ | 2.3
2.6 | _ | _ | _ | _ | 0.08 | | _ | 2.3
2.5 | = | 3
3.5 | _ | _ | _ | | 0.15
0.15 | | 7
8 | = | 2.8
2.8 | _ | 3.5 | _ | _ | - | |).15
).15 | | 3 | | | 2 | 2.5
2.5 | 3 | 0.08 | | _ | 2
2.5 | 3.5 | 3
4 | | _ | _ | _ | 0.1 | 8
11 | _ | 3 | _ | 4
5 | _ | _ | _ | _ | 0.15
0.15 | | 7
12 | | 3
4 | _ | 5
6 | | _ | | <u> </u> |).15
).2 | | 5 | 5 | 8 | 2.5 | 2.5 | 3
3.5 | 0.08
0.1 | | _ | 3.5 | 4 5 | 5
6 | _ | _ | _ | _ | 0.15
0.15 | 13 | _ | 4
5 | _ | 6
7 | 10
10 | _ | _ | _ | 0.2 | 0.15
0.15 | 14
17 | | 5
6 | _ | 7
9 | _ | _ | - | — lo | 0.2 | | 7 | 7 | 11 | 2.5 | 3 | 3.5 | 0.1 | 14 | _ | 3.5 | 5 | 6 | - | _ | _ | _ | 0.15 | | _ | 5 | _ | 7 | 10 | _ | _ | _ | 0.3 | 0.15 | 19 | - | 6 | 8 | 10 | _ | _ | - | | 0.3 | | 8 | | 12
14 | 2.5 | _ | 3.5
4.5 | 0.1 | 16
17 | _ | 4 | 5
5 | 6
6 | 8 | = | = | | 0.2
0.2 | 19
20 | _ | 6 | = | 9 | 11
11 | _ | _ | = | 0.3 | 0.2
0.3 | 22
24 | | 7
7 | 9
10 | 11
12 | 14
15 | 19
20 | 25
27 | — lo | 0.3
0.3 | | 00
01 | 12 | 15
18 | 3 | _ | 4.5
5 | 0.1 | 19
21 | = | 5
5 | 6 | 7 7 | 9 | \equiv | \equiv | _ | 0.3 | 22
24 | _ | 6 | 8
8 | 10
10 | 13
13 | 16
16 | 22
22 | _ | 0.3 | 0.3
0.3 | 26
28 | 7 | 8
8 | 10
10 | 12
12 | 16
16 | 21
21 | 29
29 | 0.3 | 0.3
0.3 | | 02 | | 21 | 4 | | 5 | 0.2 | 24 | | 5 | 6 | 7 | 9 | | _ | | 0.3 | 28 | | 7 | 8.5 | 10 | 13 | 18 | 23 | _ | 0.3 | 0.3 | 32 | 8 | 9 | 11 | 13 | 17 | 23 | | | 0.3 | | 03 | 20 | 23
27 | 4 | _ | 5
5 | 0.2 | 32 | 4 | 5
7 | 6
8 | 7
10 | 9
12 | 16 | 22 | 0.3 | | 30 | 7 | 7
9 | 8.5
11
11 | 10 | 13
17
17 | 18
23 | 23
30 | 0.3 | | 0.3 | 35
42 | 8 | 10 | 12 | 16 | 18
22 | 30 | 40 | 0.3 0 | 0.6 | | /22
05
/28 | 25 | 32 | 4_ | | 5 | 0.2 | 34
37
40 | 4
4
4 | 7
7
7 | 8 | 10
10
10 | 12 | 16
16
16 | 22
22
22 | 0.3
0.3
0.3 | 0.3 | 39
42
45 | 7 7 7 | 9 | 11 | 13
13
13 | 17
17
17 | 23
23
23 | 30
30
30 | 0.3
0.3
0.3 | 0.3 | 0.3
0.3
0.3 | 44
47
52 | 8
8
8 | 12
12
12 | 14
14
15 | 16
16
18 | 22
22
24 | 30
30
32 | 40 | 0.3 0
0.3 0
0.3 0 | 0.6 | | 06 | | 37 | 4 | _ | 5 | 0.2 | 42 | 4 | 7 | 8 | 10 | 12 | 16 | 22 | 0.3 | | 47 | 7 | 9 | 11 | 13 | 17 | 23 | 30 | 0.3 | | 0.3 | 55 | 9 | 13 | 16 | 19 | 25 | 34 | | 0.3 1 | | | /32 | | _ | 5 | _ | _ | 0.3 | 44 | 4 | 7
7 | 8 | 10 | 12 | 16
16 | 22 | 0.3 | 0.3 | 52
55 | 7 | 10
10 | 13 | 15
15 | 20
20 | 27
27 | 36
36 | 0.3 | | 0.6 | 58
62 | 9 | 13
14 | 16
17 | 20
20 | 26
27 | 35
36 | 47 | 0.3 1
0.3 1 | | | 08
09 | | | | | = | | 52
58 | 4
4 | 7
7 | 8 | 10
10 | 12
13 | 16
18 | 22
23 | 0.3 | 0.3 | 62
68 | 8
8 | 12
12 | 14
14 | 16
16 | 22
22 | 30
30 | 40
40 | 0.3 | 0.6
0.6 | 0.6
0.6 | 68
75 | 9
10 | 15
16 | 18
19 | 21
23 | 28
30 | 38
40 | 50 | 0.3 1
0.3 1 | | | 10 | | | _ | _ | _ | _ | 65 | 5 | 7 | 10 | 12 | 15 | 20 | 27 | 0.3 | | 72 | 8 | 12 | 14 | 16 | 22 | 30 | 40 | 0.3 | | 0.6 | 80 | 10 | 16 | 19 | 23 | 30 | 40 | | 0.6 | | | 11 | | _ | | | = | = | 72
78 | 7
7
7 | 9
10
10 | 11
12
13 | 13
14 | 17
18
20 | 23
24
27 | 30
32
36 | 0.3 | 0.3 | 80
85
90 | 9 9 | 13 | 16
16
16 | 19
19
19 | 25
25
25 | 34
34
34 | 45
45
45 | 0.3
0.3
0.6 | 1 | 1 1 | 90
95
100 | 11 | 18
18
18 | 22
22
22 | 26
26
26 | 35
35
35 | 46
46
46 | 63 | 0.6 1 | .1 | | 13
14 | | | = | = | = | = | 85
90 | 7
8 | 10 | 13 | 15
15 | 20 | 27 | 36 | 0.3 | | 100 | 10 | 13
16 | 19 | 23 | 30 | 40 | 54 | | i | 1 | 110 | 11
13 | 20 | 24 | 30 | 40 | 54 | | | .1 | | 15
16 | | | _ | _ | _ | _ | 95
100 | 8
8 | 10
10 | 13
13 | 15
15 | 20
20 | 27
27 | 36
36 | 0.3
0.3 | | 105
110 | 10
10 | 16
16 | 19
19 | 23
23 | 30
30 | 40
40 | 54
54 | 0.6 | 1 | 1 | 115
125 |
13
14 | 20
22 | 24
27 | 30
34 | 40
45 | 54
60 | | | l.1 | | 17 | 85 | _ | _ | _ | _ | = | 110
115 | 9 | 13
13 | 16
16 | 19
19 | 25
25 | 34
34 | 45
45 | 0.3 | 1 | 120
125 | 11 | 18
18 | 22 | 26
26 | 35
35 | 46
46 | 63
63 | 0.6 | | 1.1 | 130
140 | 14
16 | 22
24 | 27
30 | 34
37 | 45
50 | 60
67 | | 0.6 1 | .1 | | 19 | 95 | - | _ | _ | _ | _ | 120 | 9 | 13 | 16 | 19 | 25 | 34 | 45 | 0.3 | 1 | 130 | 11 | 18 | 22 | 26 | 35 | 46 | 63 | 0.6 | 1.1 | 1.1 | 145 | 16 | 24 | 30 | 37 | 50 | 67 | 90 | | .5 | | 20
21 | 105 | = | = | = | _ | = | 125
130 | 9 | 13
13 | 16
16 | 19
19 | 25
25 | 34
34 | 45
45 | 0.3 | 1 | 140
145 | 13
13 | 20
20 | 24
24 | 30
30 | 40
40 | 54
54 | 71
71 | 0.6 | 1.1 | 1.1
1.1 | 150
160 | 16
18 | 24
26 | 30
33 | 37
41 | 50
56 | 67
75 | 109 | | .5 | | 24 | 120 | | = | = | _ | = | 140
150 | 10
10
11 | 16
16 | 19 | 23 | 30 | 40
40 | 54
54 | 0.6 | 1 | 150
165 | 13 | 20 | 24 | 30
34 | 40
45 | 54
60 | 71
80 | | 1.1 | 1.1 | 170 | 19 | 28
28 | 36
36 | 45
46 | 60
60 | | 109 | 1 2
1 2
1 2
1.1 2 | | | 26
28 | | | | | | | 165
175 | 11 | 18
18 | 22 | 26
26 | 35
35 | 46
46 | 63
63 | 0.6 | | 180 | 16 | 24
24 | 30 | 37 | 50
50 | 67 | 90 | | 1.5 | | 200 | 22 | 33 | 42
42 | 52
53 | 69
69 | 95
65 | | 1.1 2 | | | 30 | 150 | | _ | | _ | _ | 190
200 | 13
13 | 20 | 24 | 30 | 40
40 | 54
54 | 71
71 | 0.6
0.6 | 1.1 | 210
220 | 19 | 28
28 | 36
36 | 45
45 | 60
60 | 80 | 109
109 | 1 | 2 | 2 | 225
240 | 24 | 35
38 | 45
48 | 56
60 | 75
80 | 100 | 136 | | 2.1 | | 34 | 170 | <u> </u> | _ | _ | _ | _ | 215
225 | 14
14 | 22 | 27
27 | 34
34 | 45
45 | 60
60 | 80
80 | 0.6 | 1.1 | 230
250 | 19
22 | 28
33 | 36
42 | 45
52 | 60
69 | 80 | 109
125 | 1 | 2 | 2 | 260
280 | 28
31 | 42
46 | 54
60 | 67 | 90 | 122 | 160
180 | 1.5 2 | 2.1
2.1 | | 38 | | | _ | _ | _ | _ | 240 | 16 | 24 | 30 | 37 | 50 | 67 | 90 | 1 | 1.5 | 260 | 22 | 33 | 42 | 52 | 69 | 95 | 125 | | 2 | 2 | 290 | 31 | 46 | 60 | | | | 180 | 2 2 | 2.1 | | 44 | 200
220 | _ | = | = | _ | = | 250
270 | 16
16 | 24
24 | 30
30 | 37
37 | 50
50 | 67
67 | 90
90 | 1 | 1.5
1.5 | 280
300 | 25
25 | 38
38 | 48
48 | 60
60 | 80 | 109 | 145
145 | | 2.1 | 2.1 | 310
340 | 34
37 | 51
56 | 66
72 | 90 | 118 | 160 | 200
218 | 2 2 2 | 2.1 | | | 240
260 | | = | = | _ | = | 300
320 | 19
19 | 28
28 | 36
36 | 45
45 | 60
60 | 80
80 | 100
100 | 1 | 2 | 320
360 | 25
31 | 38
46 | 48
60 | 60
75 | | 109
136 | 145
180 | | | 2.1
2.1 | 360
400 | 37
44 | 56
65 | 72
82 | | | | 218
250 | | ŕ | | | 280
300 | | _ | _ | _ | _ | 350 | 22 | 33
38 | 42
48 | 52
60 | 69
80 | 95
109 | 125 | 1.1 | 2 1 | 380
420 | 31
37 | 46
56 | 60 | 75
90 | 100 | 136 | 180 | 2 2 1 | 2.1 | 2.1
3 | 420
460 | 44
50 | 65
74 | 82
95 | 106 | 140 | 190 | 250
290 | | | | 64 | 320
340 | _ | _ | _ | _ | _ | 380
400
420 | 25
25
25 | 38
38 | 48
48 | 60
60 | 80 | 109
109 | 145 | 1.5 | 2.1 | 440
460 | 37
37 | 56
56 | 72
72
72 | 90 | 118
118 | 160
160
160 | 218
218 | 2.1 | 3 | з | 480
520 | 50
57 | 74 | 95 | 121 | 160 | 218 | 290
325 | 4 4 | , | | | 360 | | _ | _ | _ | _ | 440 | 25 | 38 | 48 | 60 | 80 | 109 | 145 | 1.5 | 2.1 | 480 | 37 | 56 | 72 | 90 | 118 | 160 | 218 | 2.1 | 3 | | 540 | 57 | 82 | 106 | 134 | 180 | 243 | 325 | 4 5 | , | | 80 | 380
400 | _ | | _ | = | = | 480
500 | 31
31 | 46
46 | 60
60 | | 100 | 136 | 180 | 2 | 2.1 | 520
540 | 44
44 | 65
65 | 82
82 | 106 | 140 | 190 | 250 | | 4 | 4 | 560
600 | 57
63 | 90 | 118 | 148 | 180
200 | 272 | 355 | 4 5 5 | , | | 88 | 420
440
460 | _ | | _ | = | Ξ | 520
540
580 | 31
31
37 | 46
46
56 | 60
60
72 | 75 | 100
100 | 136 | 180 | 2 2 1 | 2.1
2.1 | 560
600 | 50
50 | 65
74
74 | 95
95 | 118 | 160 | 190
218
218 | 250
290 | 4 | 4 | 4 | 620
650 | 63
67
71 | 94 | 122 | 157 | 212 | 280 | | 5 6 | , | | | 480 | | | _ | | | 600 | 37 | 56 | 72 | | 118
118 | | | | | 620
650 | 50 | 78 | | | | 230 | | | 4
5 | 4
5 | 700 | | | | | | | 400 | | | | /500 | 500
530 | _ | | | _ | _ | 620
650 | 37
37 | 56
56 | 72
72 | 90 | 118
118 | 160 | 218 | 21 | 3 | 670
710 | 54
57 | 78
82 | 100
106 | 128
136 | 170
180 | 230
243 | 308
325 | 4 | 5
5 | 5 | 720
780 | 71
80 | 100
112 | 128
145 | 167
185 | 218
250 | 300
335 | 400
450 | 5 6 | ; | | /560 | 560
600 | _ | _ | = | _ | _ | 680
730 | 37
42 | 56
60 | 72
78 | 90 | 118
128 | 160 | 218
236 | 2.1 | 3
3 | 750
800 | 60
63 | 85 | 112 | 140 | 190 | 258
272 | 345 | 5 | 5
5 | | 820
870 | 82 | 115 | 150 | 195 | 258 | 355 | 462
488 | 6 6 | ; | | /630 | 630 | | _ | _ | _ | _ | 780 | 48 | 69 | 88 | 112 | 150 | 200 | 272 | 3 | 4 | 850 | | | | | | 300
308 | | | 6 | 6 | 920 | 92 | 128 | 170 | 212 | 290 | 388 | 515
560 | | 7.5
7.5 | | /710 | 670
710 | | | | = | | 820
870 | 48
50 | 69
74 | 88
95 | 118 | 150
160 | 218 | 290 | | 4
4 | 900 | 78 | 106 | 140 | 180 | 243 | 325 | 438 | 5 | 6 | | 1030 | 103 | 140 | 185 | 236 | 315 | 438 | 580 | 6 7 | 7.5 | | | 750
800 | | _ | _ | = | = | 920
980 | 54
57 | 78
82 | 100 | 128
136 | 180 | 230
243 | 308
325 | 4 | 4
5
5 | 1000
1060 | 82 | 115 | 145
150 | 195 | 250
258 | 335
355 | 450
462 | 6
6 | 6
6 | 6
6 | 1150 | 112 | 155 | 200 | 250
258 | 335
345 | 462
475 | 615
630 | 7.5 7
7.5 7 | 7.5
7.5 | | | 850
900 | | | _ | _ | _ | 1030
1090 | 57
60 | 82
85 | 106
112 | 136
140 | 180
190 | 243
258 | 325
345 | 4
5 | 5 | 1120
1180 | 85
88 | 118
122 | 155
165 | 200 | 272
280 | 365
375 | 488
500 | 6 | 6
6 | 6
6 | 1220 | 118
122 | 165
170 | 212
218 | 272
280 | 365
375 | 500
515 | 670
690 | 7.5 7
7.5 7 | .5 | | /950 | 950
1000 | _ | | | = | | 1150
1220 | 63
71 | 63 | 118 | 150 | 200 | 272 | 355 | 5 | 5
5
5
6
6 | 1250 | 95
103 | 132 | 175 | 224 | 300 | 400
438 | 545 | 6 | 7.5
7.5 | 7.5 | 1300 | 132 | 180 | 236 | 300 | 412 | 560 | 730 | 7.5 7 | .5
7.5
7.5 | | /1060 | 1060 | - | _ | _ | - | _ | 1280 | 71 | | | 165
165 | | | | | | 1400 | 109 | 150 | 195 | 250 | 335 | 462 | 615 | 7.5 | 7.5 | 7.5 | 1500 | 140 | 195 | 250 | 325 | 438 | 600 | 800 | 9.5 | 9.5 | | /1180 | 1120
1180 | _ | | | = | = | 1360
1420 | 78
78 | 106 | 140 | 180
180 | 243 | 325 | 438 | 5 | 6
6 | 1540 | 109
115 | 160 | 206 | 272 | 355 | 488 | 650 | | 7.5 | 7.5 | 1660 | 155 | 212 | 272 | 355 | 475 | 615
650 | 825
875 | 9.5
9.5
9 | 9.5 | | /1320 | 1250 | _ | | | _ | | 1500
1600 | 88 | 122 | 165 | 185
206 | 280 | 375 | 500 | 6 | 6
6
6
7.5 | 1720 | 122
128 | 175 | 230 | 300 | 400 | 515
545 | 690
710 | 7.5 | | 7.5
7.5 | 1750
1850 | | 218
230 | 290
300 | 375
400 | 500
530 | _ | - | — 9
— 1 | 9.5
 2 | | | 1400
1500 | | | | | | 1700
1820 | 95 | | | 224 | | 400 | 545 | 6 | | 1820
1950 | | | | 315
335 | | | | | 9.5
9.5 | | 1950
2120 | | 243
272 | | | | | | | 2 | | /1600 | 1600
1600
1700 | _ | | | _ | | 1950
2060 | | 155 | 200 | 265
272 | 345 | _ | Ξ | _ | 7.5 | 2060
2180 | _ | 200 | 265 | 335
345
355 | 462 | | = | _ | 9.5
9.5
9.5 | 9.5 | 2120
2240
2360 | | 272
280
290 | 365 | 475 | 630 | | | — 1 | 2 | | /1800 | 1800
1900 | _ | | | Ξ | _ | 2180
2300 | | | 218 | 290 | 375 | _ | Ξ | — | 9.5 | 2300
2430 | _ | 218 | 290 | 375
400 | 500 | | = | _ | 12
12 | | 2500 | | 308 | | | | \equiv | | | 5 | | | 2000 | | _ | _ | _ | | 2430 | _ | | | 325 | | _ | _ | | 9.5 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | | | | | | | | - | _ | Appendix table 1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-2 | ball b | e row
earing | ıs | | | | | | | | | | 62
72 | | 1,22 | 1,32 | | | | | | 63
73 | | 623
43 | 633
53 | | | | 64
74 | | | |-----------------|---------------------------|--------------------------------|----------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------------------|--------------------------------|----------------|-------------------|----------------|-------------------|----------------------|-------------------|---------------------|------------------------|--------------------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------|--------------------------------|-------------------|--------------------|---------------------------------| | Cylin
beari | earing
drical i
ngs | is
roller | | | | NN31 | | | | | | 12
N2 | | 22 | 32
N32 | | | | | | 13
N3 | | 23 | 33
N33 | | | | N4 | | | | beari | rical re | | | | | 231 | 241 | | | | | | | 222 | 232 | | | | | | 213 | | 223 | | | | | | | | | Non
bea | ninal
ring
re | | | Dian | nete | | ies 1 | ı | | | | Dia | ame | ter s | | 2 | | | | Dia | ame | er s | | 3 | | | Diar | nete | | | | diam | ι | Nominal
outside
diameter | 01 | | | | serie | | | Nominal
outside
diameter | 00 | 00 | | nensi | | | 00 | 00 40 | Nominal
outside
diameter | 00 | | - · · | | serie | | 00 00 | Nominal
outside
diameter | | nensi | | | Number | Dimension | of
bearing | 01 |
11
Non | 21
ninal | 31
widt | $oxed{f 41}$ th B | 01 | 11~41
Chamfer
dimension | of
bearing | 82 | 02
Non | 12
nina | 22
I wid | $oxed{132}$ th B | 42 | Cha | 02~42
mfer
nsion | of
bearing | 83
N | 03
Iomir | 13
nal w | 23
ridth | 33
B | Cha | 03~33
Imfer
nsion | bearing | Non
wig | 24
linal
oth | Chamfer
dimension
y s min | | | _ | <i>D</i> | | = | | | | | ys min | <i>D</i> | | | | _ | | | γs
— | min | <i>D</i> | _ | | | | | γs
— | min | <i>D</i> | _ | <u> </u> | _ | | 2 | = | _ | _ | = | _ | = | _ | _ | _ | _ | = | _ | = | _ | = | = | = | _ | _ | _ | _ | _ | = | _ | = | _ | _ | _ | _ | = | | 3 | 3 | | _ | _ | _ | _ | _ | _ | | 10 | 2.5 | 4 | _ | _ | 5 | _ | 0.1 | 0.15 | 13 | _ | 5 | _ | _ | 7 | _ | 0.2 | _ | _ | _ | _ | | 4
5
6 | 4
5
6 | | _ | Ξ | _ | = | _ | _ | = | 13
16
19 | 3
3.5
4 | 5
5
6 | = | _ | 7
8
10 | = | 0.15
0.15
0.2 | | 16
19
22 | = | 5
6
7 | = | _
_
11 | 9
10
13 | = | 0.3
0.3
0.3 | _ | _ | _ | = | | 7 | 7 | _ | _ | _ | _ | _ | _ | _ | _ | 22 | 5 | 7 | _ | _ | 11 | _ | 0.3 | 0.3 | 26 | - | 9 | _ | 13 | 15 | _ | 0.3 | _ | _ | _ | _ | | 8
9
00 | 8
9
10 | | _ | Ξ | = | | _ | _ | = | 24
26
30 | 5
6
7 | 8
8
9 | Ξ | | 12
13
14.3 | | 0.3
0.3
0.3 | 0.3
0.3
0.6 | 28
30
35 | 9 | 9
10
11 | = | 13
14
17 | 15
16
19 | 0.3 | 0.3
0.6
0.6 | 30
32
37 | 10
11
12 | 14
15
16 | 0.6
0.6
0.6 | | 01
02 | 12
15 | _ | _ | = | _ | = | _ | _ | _ | 32
35 | 7
8 | 10
11 | = | | 15.9
15.9 | | 0.3 | 0.6
0.6 | 37
42 | 9 | 12
13 | _ | 17
17 | 19
19 | 0.3 | 1 | 42
52 | 13
15 | 19
24 | 1.1 | | 03
04
/22 | 17
20
22 | _ | _ | _ | _ | | _ | _ | _ | 40
47
50 | 8
9
9 | 12
14
14 | = | 18 | 20.6 | 27 | 0.3 | 0.6 | 47
52
56 | 10
10
11 | 14
15 | _ | 19
21
21 | 22.2 | 0.6 | 1.1 | 62
72 | 17
19 | 29
33 | 1.1
1.1 | | 05
/28 | 25
28 | | | Ξ | | | | _ | = | 52
58 | 10
10 | 15
16 | Ξ | | 20.6
20.6
23 | | 0.3
0.3
0.6 | 1
1
1 | 62
68 | 12
13 | 16
17
18 | | 24
24 | 25
25.4
30 | 0.6
0.6
0.6 | 1.1
1.1
1.1 | 80 | 21 | 36 | 1.5 | | 06
/32 | 30
32 | _ | _ | _ | _ | _ | _ | _ | _ | 62
65 | 10
11 | 16
17 | _ | | 23.8
25 | 32
33 | 0.6
0.6 | 1 | 72
75 | 13
14 | 19
20 | _ | 27
28 | 30.2
32 | 0.6 | 1.1
1.1 | 90 | 23 | 40 | 1.5 | | 07
08
09 | 35
40
45 | | | Ξ | = | | | _ | _ | 72
80
85 | 12
13
13 | 17
18
19 | Ξ | 23 | 27
30.2
30.2 | | 0.6
0.6
0.6 | 1.1
1.1
1.1 | 80
90
100 | 14
16
17 | 21
23
25 | | 31
33
36 | | 0.6
1
1 | 1.5
1.5
1.5 | 100
110
120 | 25
27
29 | 43
46
50 | 1.5
2
2 | | 10 | 50 | _ | _ | _ | _ | _ | _ | _ | _ | 90 | 13 | 20 | _ | 23 | 30.2 | 40 | 0.6 | 1.1 | 110 | 19 | 27 | _ | 40 | 44.4 | 1 1 | 2 | 130 | 31 | 53 | 2.1
2.1 | | 11
12
13 | 55
60
65 | _ | _ | Ξ | = | = | _ | _ | = | 100
110
125 | 14
16
18 | 21
22
23 | Ξ | 25
28
31 | 38.1 | 50
56 | 1
1
1 | 1.5
1.5
1.5 | 120
130
140 | 24 | 29
31
33 | = | 43
46
48 | 54
58.7 | 1.1 | 2
2.1
2.1 | 140
150
160 | 33
35
37 | 64 | 2.1
2.1 | | 14
15 | 70
75 | | | _ | _ | | | _ | | 125 | 18 | 24
25 | _ | 31 | 39.7 | 56
56 | 1 | 1.5 | 150
160 | 25
27 | 35 | _ | 51
55 | 63.5
68.3 | | 2.1 | 180 | 42
45 | 74
77 | 3 | | 16
17
18 | 80
85
90 | 150 | _ | Ξ | _ | _ | 60 | _ | _
_
2 | 140
150
160 | 19
21
22 | 26
28
30 | = | 36 | 44.4
49.2
52.4 | 65 | 1
1.1
1.1 | 2 2 2 | 170
180
190 | 28
30
30 | 39
41
43 | _ | 58
60
64 | 68.3
73
73 | | 2.1
3
3 | 200
210
225 | 48
52
54 | 80
86
90 | 3
4
4 | | 19 | 95 | 160 | _ | _ | _ | _ | 65 | _ | 2 | 170 | 24 | 32 | _ | 43 | 55.6 | 75 | 1.1 | 2.1 | 200 | 33 | 45 | _ | 67 | 77.8 | 2 | 3 | 240 | 55 | 95 | 4 | | 20
21
22 | 100
105
110 | 175 | 21
22
22 | 30
33
33 | 39
42
42 | 52
56
56 | 65
69
69 | 1.1
1.1
1.1 | 2 2 | 180
190
200 | 25
27
28 | 34
36
38 | = | 50 | 60.3
65.1
69.8 | 85 | 1.5
1.5
1.5 | 2.1
2.1
2.1 | 215
225
240 | 36
37
42 | 47
49
50 | 51
53
57 | 77 | 87.3
92.1 | | 3 3 | 250
260
280 | 58
60
65 | 98
100
108 | 4 4 4 | | 24
26 | | 200
210 | 25
25 | 38
38 | 48
48 | 62
64 | 80
80 | 1.5
1.5 | 2 | 215
230 | = | 40
40 | 42
46 | | 76
80 | 95
100 | = | 2.1 | 260
280 | 44
48 | 55
58 | 62
66 | 86
93 | | 3 | 3 | 310
340 | 72
78 | 118
128 | 5
5 | | 28
30
32 | | 225
250
270 | 27
31
34 | 40
46 | 50
60 | 68
80 | 85
100 | 1.5 | 2.1 | 250
270
290 | = | 42
45 | 50
54 | 73 | 88
96
104 | 109
118 | = | 3
3
3 | 300
320 | 50 | 62
65 | 70
75 | 102
108 | 118
128 | 4_ | 4 | 360
380 | 82
85
88 | 132
138 | 5 | | 34
36 | 170 | 280 | 34
37 | 51
51
56 | 66
66
72 | 86
88
96 | 109
109
118 | 2
2
2.1 | 2.1
2.1
3 | 310
320 | = | 48
52
52 | 58
62
62 | 86 | 110
112 | 128
140
140 | = | 4 | 340
360
380 | _ | 68
72
75 | 79
84
88 | 114
120
126 | 136
140
150 | = | 4
4
4 | 400
420
440 | 92
95 | 142
145
150 | 5
5
6 | | 38
40 | | 320
340 | 42
44 | 60
65 | 78
82 | 104
112 | 128
140 | 3 | 3 | 340
360 | _ | 55
58 | 65
70 | | 120
128 | 150
160 | _ | 4 | 400
420 | _ | 78
80 | 92
97 | 132
138 | 155
165 | _ | 5
5 | 460
480 | 98
102 | 155
160 | 6 | | 44
48
52 | | 370
400
440 | 48
50
57 | 69
74
82 | 88
95
106 | 120
128
144 | 150
160
180 | 3
4
4 | 4
4
4 | 400
440
480 | = | 65
72
80 | 78
85
90 | 120 | 144
160
174 | 180
200
218 | | 4
4
5 | 460
500
540 | = | 88
95
102 | 106
114
123 | 145
155
165 | 180
195
206 | | 5
5
6 | 540
580
620 | 115
122
132 | 180
190
206 | 6
6
7.5 | | 56 | 280 | 460 | 57 | 82 | 106 | 146 | 180 | 4 | 5 | 500 | _ | 80 | 90 | 130 | 176 | 218 | _ | 5 | 580 | _ | 108 | 132 | 175 | 224 | _ | 6 | 670 | 140 | 224 | 7.5 | | | 320 | 500
540
580 | | 100 | 118
128
140 | 176 | | 5
5
5 | 5
5
5 | 540
580
620 | = | 92
92 | 105
118 | 140
150
165 | 208
224 | 243
258
280 | = | 5
5
6 | 620
670
710 | | 112 | 140
155
165 | 200 | 258 | = | 7.5 | 710
750
800 | 155 | 250 | | | | 360 | 600 | | | 140
140 | | 243 | 5 | 5 | 650
680 | _ | 95
95 | 122 | 170
175 | 232 | 300 | _ | 6 | 750
780 | _ | | 170
175 | | 300 | _ | | 850
900 | | 300 | 9.5 | | 80
84 | 400 | 650
700 | 80
88 | 112
122 | | 200
224 | 250
280 | | 6 | 720
760
790 | | 103 | 140
150 | 185
195
200 | 256
272 | 315
335
345 | | 6
7.5 | 820
850
900 | | 136
136 | 185
190
200 | 243
250 | 308
315 | | 7.5
9.5 | 950
980
1030 | 200
206 | 315
325 | 12
12 | | 92 | 460 | 760 | 95 | 132 | 175 | 240 | 300 | 6 | 7.5 | 830 | _ | 118 | 165 | 212 | 296 | 365 | _ | 7.5 | 950 | _ | 155 | 212 | 280 | 365 | _ | 9.5 | 1060 | 218 | 345 | 12 | | /500
/530 | 500
530 | 790
830
870 | 106
109 | 145
150 | 190
195 | 264
272 | 325
335 | 6
7.5
7.5 | 7.5
7.5 | 920
980 | Ξ | 125
136
145 | 185
200 | 224
243
258 | 336
355 | 388
412
450 | | 7.5
9.5 | 980
1030
1090 | | 170
180 | 218
230
243 | 300
325 | 388
412 | | 12
12 | 1150
1220 | 230
236
250 | 375
400 | 15
15 | | /560 | 560 | 920
980 | 115 | 160 | 206 | 280 | 355 | 7.5
7.5 | 7.5 | 1030
1090 | = | 150
155 | | 272
280 | | 475
488 | = | | 1150
1220 | = | 190
200 | 258
272 | | | = | | | 258
272 | | 15
15 | | /670 | 670 | 1030
1090 | 136 | 185 | 243 | 336 | 412 | 7.5
7.5 | 7.5 | 1150
1220
1280 | = | 175 | 243 | 300
315
325 | 438 | 515
545 | = | | 1280
1360 | _ | 206
218 | 300 | 400 | 515 | = | 15 | 1420
1500 | 280
290 | | 15
15 | | /750 | 750 | 1150
1220
1280 | 150 | 206 | 272 | 365 | 475 | 9.5
9.5
9.5 | 9.5 | 1280
1360
1420 | | 195 | 265 | 325
345
355 | 475 | 560
615
615 | | 12
15
15 | 1420
1500
1600 | | 224
236
258 | 325 | 438 | 560 | | 15
15
15 | | | | | | /850 | 850 | 1360
1420 | 165 | 224 | 290 | 400 | 500 | 12
12 | 12 | 1500
1580 | = | 206
218 | 280
300 | 375
388 | 515
515 | 650
670 | _ | 15
15 | 1700
1780 | _ | | 375 | 488 | 630 | _ | 19
19 | _ | _ | _ | _ | | /950
/1000 | 950
1000 | 1500
1580
1660 | 175
185 | 243
258 | 315
335 | 438
462 | 545
580 | 12
12
12 | 12 | 1660
1750 | = | 230
243 | 315 | 412
425 | 530 | 710
750 | | 15
15 | 1850
1950 | = | 290 | 400
412 | 515 | 670
710 | | 19 | _ | = | = | | | /1120 | 1120 | 1750 | _ | 280 | 365 | 475 | 630 | _ | 15 | _ | | /1250
/1320 | 1180
1250
1320 | 1950
2060 | _ | 290
308
325 | 400
425 | 500
530
560 | 710
750 | = | 15
15
15 | | Ξ | _ | Ξ | = | | = | | = | = | = | | | | = | | | _ | | = | | | /1400 | 1400 | | | 345 | | 580 | 775 | _ | 19
19 | | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | | | _ | | | | | _ | _ | | . 300 |
 | ## Appendix table 2: Comparison of SI, CGS and gravity units-1 | Unit system Quantity | Length ${\cal L}$ | Mass M | Time T | Acceleration | Force | Stress | Pressure | Energy | |----------------------|-------------------|------------|--------|--------------|-------|---------|----------|---------| | SI | m | kg | S | m/s² | N | Pa | Pa | J | | CGS system | cm | g | s | Gal | dyn | dyn/cm² | dyn/cm² | erg | | Gravitation system | m | kgf · s²/m | S | m/s² | kgf | kgf/m² | kgf/m² | kgf · m | ## Appendix table 3: SI-customary unit conversion table-1 | Quantity | Unit designation | Symbol | Conversion rate to SI | SI unit designation | Symbol | |-------------------------|--|-----------------------|--------------------------|-----------------------------------|------------------------| | | Degree | • | π/180 | | | | Angle | Minute | , | π/10 800 | Radian | rad | | | Second | " (sec) | π /648 000 | | | | | Meter | m | 1 | | | | Length | Micron | μ | 10 ⁻⁶ | Meter | m | | | Angstrom | Å | 10 ⁻¹⁰ | | | | | Square meter | m² | 1 | | | | Area | Are | а | 10 ² | Square meter | m² | | | Hectare | ha | 10⁴ | · | | | | Cubic meter | m³ | 1 | | | | Volume | Liter | R.L | 10 ⁻³ | Cubic meter | m³ | | | Kilogram | kg | 1 | | | | Mass | Ton | t t | 10 ³ | Kilogram | kg | | Mass | Kilogram force / square second per meter | kgf·s²/m | 9.806 65 | - Kilogram | l "s | | | Second | kyi s/iii
S | 1 | | | | | Minute | min | 60 | | | | Time | Hour | | 3 600 | Second | s | | | | h
d | 86 400 | | | | | Day | | 86 400 | | | | Speed | Meters per second | m/s | 1 050/0 000 | Meters per second | m/s | | | Knot | kn | 1 852/3 600 | | | | Frequency and vibration | | s ⁻¹ (pps) | 1 | Hertz | Hz | | | Revolutions per minute (rpm) | rpm(r/min) | 1/60 | Per second | S ⁻¹ | | Angular speed | Radians per second | rad/s | 1 | Radians per second | rad/s | | Acceleration | Meters per square second | m/s² | 1 | Meters per second square | m/s² | | | G | G | 9.806 65 | · | | | | Kilogram force | kgf | 9.806 65 | | | | Force | Ton force | tf | 9 806.65 | Newton | N | | | Dyne | dyn | 10.5 | | | | | Kilogram force / meter | kgf · m | 9.806 65 | Newton meter | N·m | | Inertia moment | Kilogram force / meter / square second | kgf·m·s² | 9.806 65 | Kilogram / square meter | kg · m² | | Stress | Kilogram force per square meter | kgf/m² | 9.806 65 | Pascal or newton per square meter | Pa or N/m ² | | | Kilogram force per square meter | kgf/m² | 9.806 65 | | | | | Meter water column | mH₂O | 9 806.65 | | | | Pressure | Meter of mercury | mHg | 101 325/0.76 | Pascal | Pa | | riessuie | Torr | Torr | 101 325/760 | r ascai | Fa | | | Atmosphere | atm | 101 325 | | | | | Bar | bar | 10 ⁵ | | | | | Erg | erg | 10 ⁻⁷ | | | | | IT calorie | саlıт | 4.186 8 | | | | Energy | Kilogram force / meter | kgf · m | 9.806 65 | Joule | J | | - 3, | Kilowatt hour | kW · h | 3.600×10 ⁶ | | | | | Metric horsepower per hour | PS · h | 2.647 79×10 ⁶ | | | | | Watt | W | 1 | | | | Power rate and power | Metric horsepower | PS | 735.5 | Watt | W | | 1 Ovor rate and power | Kilogram force / meter per second | kgf · m/s | 9.806 65 | Trans | | | | miogram force / meter per second | ryi III/S | 0.000 00 | | | ## Appendix table 2: Comparison of SI, CGS and gravity units-2 | Unit system Quantity | Power rate | Temperature | Viscosity | Dynamic viscosity | Magnetic flux | Flux density | Magnetic field strength | |----------------------|------------|-------------|------------|-------------------|---------------|--------------|-------------------------| | SI | W | K | Pa · s | m²/s | Wb | Т | A/m | | CGS system | erg/s | °C | Р | St | Mx | Gs | Oe | | Gravitation system | kgf · m/s | °C | kgf · s/m² | m²/s | _ | _ | _ | ## Appendix table 3: SI-customary unit conversion table-2 | Quantity | Unit designation | Symbol | Conversion rate to SI | SI unit designation | Symbol | |-------------------------|--|------------|-----------------------|-------------------------|--------| | | Poise | Р | 10 ⁻¹ | | | | Viscosity | Centipoise | сР | 10 ⁻³ | Pascal second | Pa · s | | | Kilogram force / square second per meter | kgf · s/m² | 9.806 65 | | | | Dynamic viscosity | Stoke | St | 10 ⁻⁴ | Square meter per second | m²/s | | Dynamic viscosity | Centistoke | cSt | 10 ⁻⁶ | Square meter per second | 11175 | | Temperature | Degree | °C | +273.15 | Kelvin | К | | Radioactive | Curie | Ci | 3.7×10 ¹⁰ | Becquerel | Bq | | Dosage | Roentgen | R | 2.58×10 ⁻⁴ | Coulombs per kilogram | C/kg | | Absorption dosage | Rad | rad | 10 ⁻² | Gray | Gy | | Dosage equivalent | Rem | rem | 10 ⁻² | Sievert | Sv | | Magnetic flux | Maxwell | Mx | 10 ⁻⁸ | Weber | Wb | | Flux density | Gamma | γ | 10 ⁻⁹ | Tesla | т. | | riux derisity | Gauss | Gs | 10 ⁻⁴ | i esia | ' | | Magnetic field strength | Oersted | Oe | $10^{3}/4 \pi$ | Amperes per meter | A/m | | Quantity of electricity | Coulomb | С | 1 | Coulomb | С | | Potential difference | Volt | V | 1 | Volt | V | | Electric resistance | Ohm | Ω | 1 | Ohm | Ω | | Current | Ampere | Α | 1 | Ampere | A | ## Appendix table 4: Tenth power multiples of SI unit | Multiples of | Pre | efix | Multiples of | Pre | efix | |------------------|-------|--------|-------------------|-------|--------| | unit | Name | Symbol | unit | Name | Symbol | | 10 ¹⁸ | Exa | E | 10 ⁻¹ | Deci | d | | 10 ¹⁵ | Peta | P | 10 ⁻² | Centi | С | | 10 ¹² | Tera | T | 10 ⁻³ | Mili | m | | 10° | Giga | G | 10 ⁻⁶ | Micro | μ | | 10 ⁶ | Mega | M | 10 ⁻⁹ | Nano | n | | 10 ³ | Kilo | k | 10 ⁻¹² | Pico | р | | 10 ² | Hecto | h | 10 ⁻¹⁵ | Femto | f | | 10 | Deca | da | 10 ⁻¹⁸ | Ato | а | ## Appendix table 5: Dimensional tolerance for shafts | div | meter
ision | a13 | c12 | d6 | e6 | e13 | f5 | f6 | g5 | g6 | |------------|----------------|------------------------------|--|-----------|------------------|------------------|--------------------|--------------------------|----------|------------------------| | over | nm
incl. | high low | 3 | 6 | - 270 - 450 | - 70 - 190 | | - 20 - 28 | | | - | | | | 6 | 10 | | | | | - 25 - 245 | | | | | | 10 | 18 | | | | | - 32 - 302 | | | | | | 18 | 30 | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | -20 -29 | <u> </u> | - 7 -16 | − 7 − 20 | | 30 | 40 | – 310 – 700 | | _ 80 _ 96 | _ 50 _ 66 | - 50 - 440 | -25 -36 | _ 25 _ 41 | _ 9 _20 | - 9 - 25 | | 40 | 50 | <u> </u> | | 00 00 | 00 00 | 00 440 | 20 00 | 20 11 | 0 20 | 0 20 | | 50 | 65 | - 340 - 800 | -140 - 440 | -100 -119 | - 60 - 79 | - 60 - 520 | -30 - 43 | - 30 - 49 | -10 -23 | -10 - 29 | | 65 | 80 | <u> </u> | <u>-150 - 450</u> | 100 110 | 00 70 | 00 020 | 33 .3 | | | | | 80 | 100 | | -170 - 520 | -120 -142 | - 72 - 94 | - 72 - 612 | -36 -51 | - 36 - 58 | -12 -27 | -12 - 34 | | 100 | 120 | <u> </u> | <u>-180 - 530</u> | 1.2 | | | | | | | | 120 | 140 | - 460 -1 090 | -200 - 600 | 445 470 | 05 440 | 05 745 | 40 04 | 40 00 | | 4.4 | | 140 | 160 | - 520 -1 150 | | -145 -170 | - 85 -110 | - 85 - 715 | -43 -61 | - 43 - 68 | -14 -32 | -14 - 39 | | 160 | 180 | <u> </u> | -230 - 630 | | | | | | | | | 180
200 | 200 | - 660 -1 380 | $\begin{vmatrix} -240 & -700 \\ -260 & -720 \end{vmatrix}$ | 170 100 | 100 100 | 100 000 | F0 70 | F0 70 | 15 05 | 45 44 | | 200 | 225
250 | - 740 -1 460
- 820 -1 540 | $\begin{vmatrix} -260 & -720 \\ -280 & -740 \end{vmatrix}$ | -170 -199 | - 100 - 129 | -100 - 820 | -50 -70 | - 50 - 79 | -15 -35 | -15 - 44 | | 250 | 280 | - 920 -1 730 | -300 - 820 | | | | | | | | | 280 | 315 | -1 050 -1 860 | -330 - 850 | -190 -222 | -110 -142 | -110 - 920 | -56 - 79 | - 56 - 88 | -17 -40 | -17 - 49 | | 315 | 355 | -1 200 -2 090 | -360 - 930 | | | | | | | | | 355 | 400 | -1 350 -2 240 | -400 - 970 | -210 -246 | -125 -161 | -125 -1 015 | -62 −87 | - 62 - 98 | -18 -43 | -18 - 54 | | 400 | 450 | -1 500 -2 470 | -440 -1 070 | | | | | | | | | 450 | 500 | -1 650 -2 620 | | -230 -270 | -135 -175 | -135 -1 105 | -68 -95 | − 68 − 108 | -20 -47 | -20 - 60 | | 500 | 560 | . 555 2 525 | 100 1110 | | | | | | | | | 560 | 630 | | | -260 -304 | -145 -189 | | | − 76 − 120 | | -22 - 66 | | 630 | 710 | | | 000 611 | 100 615 | | | 00 400 | | 0.4 =: | | 710 | 800 | | | -290 -340 | -160 -210 | | | - 80 -130 | | -24 - 74 | | 800 | 900 | | | 000 070 | 170 000 | | | 00 110 | | 00 00 | | 900 | 1 000 | | | -320 -376 | -170 -226 | | | − 86 − 142 | | -26 - 82 | | 1 000 | 1 120 | | | 050 440 | 105 001 | | | 00 101 | | 00 04 | | 1 120 | 1 250 | | | -350 -416 | -195 -261 | | | − 98 − 164 | | -28 - 94 | | 1 250 | 1 400 | | | -300 -469 | -220 -298 | | | -110 -188 | | -30 -109 | | 1 400 | 1 600 | _ | | 390 -468 | -220 -298 | | | -110 -188 | | -30 - 108 | | | meter
ision | | j5 | j | s5 | j | j6 | j | s6 | | j7 | k4 | 1 | k | 5 | k(| 6 | m | 15 | |-------------------|-------------------|------|------------|-------|-------|------|-----|-------|--------------|------|------------|------|-----|------|-----|------|-----|------|-----| | over n | nm
incl. | high | low | 3 | 6 | +3 | - 2 | + 2.5 | - 2.5 | + 6 | - 2 | + 4 | – 4 | + 8 | – 4 | + 5 | +1 | + 6 | +1 | + 9 | +1 | + 9 | + 4 | | 6 | 10 | +4 | - 2 | + 3 | - 3 | + 7 | - 2 | + 4.5 | - 4.5 | +10 | - 5 | + 5 | +1 | + 7 | +1 | +10 | +1 | +12 | + 6 | | 10 | 18 | +5 | - 3 | + 4 | - 4 | + 8 | - 3 | + 5.5 | - 5.5 | +12 | - 6 | + 6 | +1 | + 9 | +1 | +12 | +1 | +15 | + 7 | | 18 | 30 | +5 | - 4 | + 4.5 | - 4.5 | + 9 | - 4 | + 6.5 | - 6.5 | +13 | – 8 | + 8 | +2 | +11 | +2 | +15 | +2 | +17 | + 8 | | 30
40 | 40
50 | +6 | - 5 | + 5.5 | - 5.5 | +11 | - 5 | + 8 | - 8 | +15 | -10 | + 9 | +2 | +13 | +2 | +18 | +2 | +20 | + 9 | | 50
65 | 65
80 | +6 | — 7 | + 6.5 | - 6.5 | +12 | - 7 | + 9.5 | - 9.5 | +18 | -12 | +10 | +2 | +15 | +2 | +21 | +2 | +24
| +11 | | 80
100 | 100
120 | +6 | – 9 | + 7.5 | - 7.5 | +13 | - 9 | +11 | -11 | +20 | —15 | +13 | +3 | +18 | +3 | +25 | +3 | +28 | +13 | | 120
140
160 | 140
160
180 | +7 | -11 | + 9 | - 9 | +14 | -11 | +12.5 | -12.5 | +22 | —18 | +15 | +3 | +21 | +3 | +28 | +3 | +33 | +15 | | 180
200
225 | 200
225
250 | +7 | -13 | +10 | -10 | +16 | -13 | +14.5 | -14.5 | +25 | -21 | +18 | +4 | +24 | +4 | +33 | +4 | +37 | +17 | | 250
280 | 280
315 | +7 | -16 | +11.5 | -11.5 | +16 | -16 | +16 | -16 | +26 | -26 | +20 | +4 | +27 | +4 | +36 | +4 | +43 | +20 | | 315
355 | 355
400 | +7 | -18 | +12.5 | -12.5 | +18 | -18 | +18 | -18 | +29 | -28 | +22 | +4 | +29 | +4 | +40 | +4 | +46 | +21 | | 400
450 | 450
500 | +7 | -20 | +13.5 | -13.5 | +20 | -20 | +20 | -20 | +31 | -32 | +25 | +5 | +32 | +5 | +45 | +5 | +50 | +23 | | 500
560 | 560
630 | _ | _ | _ | _ | _ | _ | +22 | -22 | _ | _ | _ | _ | _ | _ | +44 | 0 | _ | _ | | 630
710 | 710
800 | _ | _ | - | _ | _ | _ | +25 | -25 | _ | _ | _ | _ | _ | _ | +50 | 0 | _ | _ | | 800
900 | 900
1 000 | _ | _ | _ | | _ | _ | +28 | -28 | _ | _ | _ | _ | _ | _ | +56 | 0 | _ | _ | | 1 000
1 120 | 1 120
1 250 | _ | _ | _ | _ | _ | _ | +33 | -33 | _ | _ | _ | _ | _ | _ | +66 | 0 | _ | _ | | 1 250
1 400 | 1 400
1 600 | _ | _ | _ | _ | _ | _ | +39 | -39 | _ | _ | _ | _ | _ | _ | +78 | 0 | _ | _ | | Unit | μm | |------|----------| |------|----------| | | h4 | | h | 5 | | h6 | | h7 | | h8 | | h9 | | h10 | | h11 | | h13 | | js4 | Diamete
m | r division | |-----|-------------------|------|------|-------------------|------|-------------------|-------------|----------------------|-------|----------------------|------|----------------------|------|----------------------|------|----------------------|------|----------------------|---------------------|---------------------|-------------------|-------------------| | hig | gh low | v r | nigh | low | higl | h low | high | low | higl | n low | high | low | over | incl. | | 0 | - 4
- 4
- 5 | . | • | - 5
- 6
- 8 | 0 | - 8
- 9
-11 | 0
0
0 | - 12
- 15
- 18 | 0 0 0 | - 18
- 22
- 27 | 0 0 | - 30
- 36
- 43 | 0 0 | - 48
- 58
- 70 | 0 0 | - 75
- 90
-110 | 0 0 | -180
-220
-270 | + 2
+ 2
+ 2.5 | - 2
- 2
- 2.5 | 3
6
10 | 6
10
18 | | 0 | - 6 | - 1 | - | - 9 | 0 | -13 | 0 | - 21 | 0 | - 33 | 0 | - 52 | 0 | - 84 | 0 | -130 | 0 | -330 | + 3 | - 3 | 18 | 30 | | 0 | - 7 | , | 0 - | - 11 | 0 | -16 | 0 | - 25 | 0 | - 39 | 0 | - 62 | 0 | -100 | 0 | -160 | 0 | -390 | + 3.5 | - 3.5 | 30
40 | 40
50 | | 0 | – 8 | 3 | 0 - | -13 | 0 | -19 | 0 | - 30 | 0 | - 46 | 0 | - 74 | 0 | -120 | 0 | -190 | 0 | -460 | + 4 | - 4 | 50
65 | 65
80 | | 0 | -10 |) | 0 - | -15 | 0 | -22 | 0 | - 35 | 0 | - 54 | 0 | - 87 | 0 | -140 | 0 | -220 | 0 | -540 | + 5 | - 5 | 80
100 | 100
120 | | 0 | -12 | 2 | 0 - | -18 | 0 | -25 | 0 | - 40 | 0 | – 63 | 0 | -100 | 0 | -160 | 0 | -250 | 0 | -630 | + 6 | - 6 | 120
140
160 | 140
160
180 | | 0 | -14 | ļ. | 0 - | -20 | 0 | -29 | 0 | - 46 | 0 | - 72 | 0 | -115 | 0 | -185 | 0 | -290 | 0 | -720 | + 7 | - 7 | 180
200
225 | 200
225
250 | | 0 | -16 | 5 | 0 - | -23 | 0 | -32 | 0 | - 52 | 0 | - 81 | 0 | -130 | 0 | -210 | 0 | -320 | 0 | -810 | + 8 | - 8 | 250
280 | 280
315 | | 0 | -18 | 3 | 0 - | -25 | 0 | -36 | 0 | - 57 | 0 | - 89 | 0 | -140 | 0 | -230 | 0 | -360 | 0 | -890 | + 9 | - 9 | 315
355 | 355
400 | | 0 | -20 |) | 0 - | -27 | 0 | -40 | 0 | – 63 | 0 | - 97 | 0 | -155 | 0 | -250 | 0 | -400 | 0 | -970 | +10 | -10 | 400
450 | 450
500 | | _ | _ | | _ | _ | 0 | -44 | 0 | - 70 | 0 | -110 | 0 | -175 | 0 | -280 | 0 | -440 | 0 | _ | _ | _ | 500
560 | 560
630 | | _ | _ | | _ | _ | 0 | -50 | 0 | - 80 | 0 | -125 | 0 | -200 | 0 | -320 | 0 | -500 | 0 | _ | _ | _ | 630
710 | 710
800 | | _ | - | | - | - | 0 | -56 | 0 | - 90 | 0 | -140 | 0 | -230 | 0 | -360 | 0 | -560 | 0 | _ | _ | _ | 800
900 | 900
1 000 | | _ | - | | - | - | 0 | -66 | 0 | -105 | 0 | -165 | 0 | -260 | 0 | -420 | 0 | -660 | 0 | _ | _ | _ | 1 000
1 120 | 1 120
1 250 | | _ | _ | | _ | _ | 0 | -78 | 0 | -125 | 0 | -195 | 0 | -310 | 0 | -500 | 0 | -780 | 0 | _ | _ | _ | 1 250
1 400 | 1 400
1 600 | Unit μm | | m6 | n | 5 | ne | 6 | p | 5 | ŗ | 06 | r6 | | r7 | ı | Basic t | oleran | се | Diameter division mm | | |-----------------------------|----------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|--|-----|--|------------------------|----------------------|------------------|----------------------|----------------------|---------------------| | high | low | high low | , | high low | IT2 | IT3 | IT5 | IT7 | over | incl. | | + 12
+ 18
+ 18
+ 2 | 5 + 6
3 + 7 | +13
+16
+20
+24 | + 8
+10
+12
+15 | + 16
+ 19
+ 23
+ 28 | + 8
+10
+12
+15 | +17
+21
+26
+31 | +12
+15
+18
+22 | + 20
+ 24
+ 29
+ 35 | + 12
+ 15
+ 18
+ 22 | + 23 + 15
+ 28 + 15
+ 34 + 23
+ 41 + 28 | 9 | + 27 + 15
+ 34 + 19
+ 41 + 23
+ 49 + 28 | 1.5
1.5
2
2.5 | 2.5
2.5
3
4 | 5
6
8
9 | 12
15
18
21 | 3
6
10
18 | 6
10
18
30 | | + 2 | 5 + 9 | +28 | +17 | + 33 | +17 | +37 | +26 | + 42 | + 26 | + 50 + 34 | 4 | + 59 + 34 | 2.5 | 4 | 11 | 25 | 30
40 | 40
50 | | + 30 | +11 | +33 | +20 | + 39 | +20 | +45 | +32 | + 51 | + 32 | + 60 + 4
+ 62 + 43 | - 1 | + 71 + 41
+ 73 + 43 | 3 | 5 | 13 | 30 | 50
65 | 65
80 | | + 39 | 5 +13 | +38 | +23 | + 45 | +23 | +52 | +37 | + 59 | + 37 | + 73 + 5 ²
+ 76 + 5 ⁴ | - 1 | + 86 + 51
+ 89 + 54 | 4 | 6 | 15 | 35 | 80
100 | 100
120 | | + 40 | +15 | +45 | +27 | + 52 | +27 | +61 | +43 | + 68 | + 43 | + 88 + 68
+ 90 + 68
+ 93 + 68 | 5 | +103 + 63
+105 + 65
+108 + 68 | 5 | 8 | 18 | 40 | 120
140
160 | 140
160
180 | | + 46 | 5 +17 | +51 | +31 | + 60 | +31 | +70 | +50 | + 79 | + 50 | +106 + 77
+109 + 80
+113 + 84 | 0 | +123 + 77
+126 + 80
+130 + 84 | 7 | 10 | 20 | 46 | 180
200
225 | 200
225
250 | | + 52 | 2 +20 | +57 | +34 | + 66 | +34 | +79 | +56 | + 88 | + 56 | +126 + 94
+130 + 98 | | +146 + 94
+150 + 98 | 8 | 12 | 23 | 52 | 250
280 | 280
315 | | + 5 | 7 +21 | +62 | +37 | + 73 | +37 | +87 | +62 | + 98 | + 62 | +144 +108
+150 +114 | - 1 | +165 +108
+171 +114 | 9 | 13 | 25 | 57 | 315
355 | 355
400 | | + 60 | 3 +23 | +67 | +40 | + 80 | +40 | +95 | +68 | +108 | + 68 | +166 +126
+172 +132 | | +189 +126
+195 +132 | 10 | 15 | 27 | 63 | 400
450 | 450
500 | | + 70 | +26 | _ | _ | + 88 | +44 | _ | - | +122 | + 78 | +194 +156
+199 +156 | | +220 +150
+225 +155 | - | _ | _ | 70 | 500
560 | 560
630 | | + 80 | +30 | _ | _ | +100 | +50 | _ | _ | +138 | + 88 | +225 +175
+235 +185 | | +255 +175
+265 +185 | - | _ | _ | 80 | 630
710 | 710
800 | | + 90 | +34 | _ | _ | +112 | +56 | _ | - | +156 | +100 | +266 +210
+276 +220 | | +300 +210
+310 +220 | _ | _ | _ | 90 | 800
900 | 900
1 000 | | +106 | 6 +40 | _ | - | +132 | +66 | - | - | +186 | +120 | +316 +250
+326 +260 | - 1 | +355 +250
+365 +260 | _ | - | - | 105 | 1 000
1 120 | 1 120
1 250 | | +126 | +48 | _ | - | +156 | +78 | _ | - | +218 | +140 | +378 +300
+408 +330 | | +425 +300
+455 +330 | ı | - | _ | 125 | 1 250
1 400 | 1 400
1 600 | Appendix table 6: Dimensional tolerance for housing bore | Diam
divis | ion | E7 | | E ⁻ | 10 | E | 11 | Е | 12 | F | - 6 | F | 7 | F | 8 | G | 6 | G | 7 | H6 | |--------------------|---------------------|--------------------------------------|----------|------------------------------|--------------|------------------------------|--------------|--------------|--------------|------|------------------------------|--------------|------------------------------|--------------|------------------------------|------------------------------|------------|------------------------------|--------------------------|----------------------------------| | over | | high lov | v | high | low low | | 3
6
10
18 | 6
10
18
30 | + 32 +
+ 40 +
+ 50 +
+ 61 + | 25
32 | + 68
+ 83
+102
+124 | + 25
+ 32 | + 95
+115
+142
+170 | + 25
+ 32 | +175
+212 | + 25
+ 32 | | + 10
+ 13
+ 16
+ 20 | + 28
+ 34 | + 10
+ 13
+ 16
+ 20 | + 35
+ 43 | + 10
+ 13
+ 16
+ 20 | + 12
+ 14
+ 17
+ 20 | + 5
+ 6 | + 16
+ 20
+ 24
+ 28 | + 4
+ 5
+ 6
+ 7 | + 8 0
+ 9 0
+11 0
+13 0 | | 30
40 | 40
50 | + 75 + | 50 | +150 | + 50 | +210 | + 50 | +300 | + 50 | + 41 | + 25 | + 50 | + 25 | + 64 | + 25 | + 25 | + 9 | + 34 | + 9 | +16 0 | | 50
65 | 65
80 | + 90 + | 60 | +180 | + 60 | +250 | + 60 | +360 | + 60 | + 49 | + 30 | + 60 | + 30 | + 76 | + 30 | + 29 | +10 | + 40 | +10 | +19 0 | | 80
100 | 100
120 | +107 + | 72 - | +212 | + 72 | +292 | + 72 | +422 | + 72 | + 58 | + 36 | + 71 | + 36 | + 90 | + 36 | + 34 | +12 | + 47 | +12 | +22 0 | | 120
140
160 | 140
160
180 | +125 + | 35 | +245 | + 85 | +335 | + 85 | +485 | + 85 | + 68 | + 43 | + 83 | + 43 | +106 | + 43 | + 39 | +14 | + 54 | +14 | +25 0 | | 180
200
225 | 200
225
250 | +146 +1 | 00 - | +285 | +100 | +390 | +100 | +560 | +100 | + 79 | + 50 | + 96 | + 50 | +122 | + 50 | + 44 | +15 | + 61 | +15 | +29 0 | | 250
280 | 280
315 | +162 +1 | 10 | +320 | +110 | +430 | +110 | +630 | +110 | + 88 | + 56 | +108 | + 56 | +137 | + 56 | + 49 | +17 | + 69 | +17 | +32 0 | | 315
355 | 355
400 | +182 +1 | 25 | +355 | +125 | +485 | +125 | +695
 +125 | + 98 | + 62 | +119 | + 62 | +151 | + 62 | + 54 | +18 | + 75 | +18 | +36 0 | | 400
450 | 450
500 | +198 +1 | 35 - | +385 | +135 | +535 | +135 | +765 | +135 | +108 | + 68 | +131 | + 68 | +165 | + 68 | + 60 | +20 | + 83 | +20 | +40 0 | | 500
560 | 560
630 | +215 +1 | 45 | _ | - | - | _ | _ | _ | +120 | + 76 | +146 | + 76 | +186 | + 76 | + 66 | +22 | + 92 | +22 | +44 0 | | 630
710 | 710
800 | +240 +1 | 60 | _ | - | ı | _ | _ | _ | +130 | + 80 | +160 | + 80 | +205 | + 80 | + 74 | +24 | +104 | +24 | +50 0 | | 800
900 | 900
1 000 | +260 +1 | 70 | - | - | ı | _ | _ | _ | +142 | + 86 | +176 | + 86 | +226 | + 86 | + 82 | +26 | +116 | +26 | +56 0 | | 1 000
1 120 | | +300 +1 | 95 | - | - | | _ | - | _ | +164 | + 98 | +203 | + 98 | +263 | + 98 | + 94 | +28 | +133 | +28 | +66 0 | | 1 250
1 400 | | +345 +2 | 20 | _ | _ | _ | _ | _ | _ | +188 | +110 | +235 | +110 | +305 | +110 | +108 | +30 | +155 | +30 | +78 0 | | 1 600
1 800 | 1 800
2 000 | +390 +2 | 40 | - | - | ı | - | _ | - | +212 | +120 | +270 | +120 | +350 | +120 | +124 | +32 | +182 | +32 | +92 0 | Unit μ m Diameter K6 K7 M6 M7 N7 P6 **P7** R6 R7 N6 division high low high high high high high high high over incl high low low low low high low low low low low 20 24 29 23 28 ++ 5 7 9 6 7 9 10 18 +212 15 15 18 16 20 21 26 9 25 31 5 10 3 4 19 12 16 13 34 10 9 23 16 20 12 0 5 15 18 30 24 31 37 17 21 15 18 30 40 40 +3 -13+ 7 18 20 0 25 -12 28 8 33 21 37 17 42 29 25 50 35 60 50 65 30 65 54 21 5 0 30 -14 33 9 39 26 45 21 32 80 37 56 62 100 44 66 38 73 +4 - 18+10 25 -1045 30 52 24 6 28 0 35 -16 38 59 100 120 47 69 41 76 120 140 56 81 48 88 +4 -21 +1228 8 33 0 40 -20 45 12 52 36 61 28 58 83 68 160 180 61 86 53 93 -106 -109 68 97 60 180 200 200 225 100 71 +13 +5-2433 8 37 0 46 -22 51 -1460 - 41 - 70 33 225 250 104 67 113 75 250 280 85 280 -117-126+5 -27+16 36 9 41 0 52 -25 57 -14 66 47 79 36 -130 89 315 -121 78 97 -133 87 **-144** 315 355 +17 40 -10 46 0 57 41 -29-26 62 73 87 +7-1651 355 400 103 93 -139 150 103 400 113 -166 450 -153+8 -32+18 -10 50 0 63 -27 -17 55 95 - 45 -108450 500 119 -159 109 -172 500 560 560 150 -194-150 -2200 0 70 -26 70 -26 96 -44 -122 78 -4488 -44-11478 -148630 155 199 155 225 630 710 175 225 175 225 0 -500 - 80 -3080 -30 -100-50 -100-50 -13088 -13888 800 710 185 -235 185 265 900 210 -266 210 -300-56 0 - 90 -34 90 34 124 -56 -112-156100 -190-56 -146100 900 1 000 220 276 220 310 250 316 250 -355 1 000 1 120 0 -660 -105-40-106-40 -145-66 -132-66 -171120 -186120 -2251 120 1 250 260 326 260 365 300 300 -4251 250 1 400 378 -780 -125-48-126-48 -173 -78 140 -213140 -265-156**-78** -2031 400 1 600 330 408 330 455 1 600 1 800 370 -462 -370 -520 -920 -150-58-150-58 -208-92-184-92-242170 -262-170 - 3201 800 2 000 400 -492 -400 -550 | Unit μ m | |--------------| |--------------| | H7 | H8 | Н9 | H10 | H11 | H13 | J6 | Js6 | J7 | Js7 | K5 | Diameter
division
mm | |--------------------------------------|--------------------------------------|--------------------------------------|----------|--------------------------------------|--------------------------------------|----------|--|----------|-------------|--|-------------------------------| | high low over incl. | | + 12 0
+ 15 0
+ 18 0
+ 21 0 | + 18 0
+ 22 0
+ 27 0
+ 33 0 | + 30 0
+ 36 0
+ 43 0
+ 52 0 | + 58 0 | + 75 0
+ 90 0
+110 0
+130 0 | +180 0
+220 0
+270 0
+330 0 | + 6 -5 | + 4 - 4
+ 4.5 - 4.5
+ 5.5 - 5.5
+ 6.5 - 6.5 | +10 - 8 | + 7.5 - 7.5 | $ \begin{array}{r} 0 - 5 \\ +1 - 5 \\ +2 - 6 \\ +1 - 8 \end{array} $ | 3 6
6 10
10 18
18 30 | | + 25 0 | + 39 0 | + 62 0 | +100 0 | +160 0 | +390 0 | +10 -6 | + 8 - 8 | +14 -11 | +12.5 -12.5 | +2 - 9 | 30 40
40 50 | | + 30 0 | + 46 0 | + 74 0 | +120 0 | +190 0 | +460 0 | +13 -6 | + 9.5 - 9.5 | +18 -12 | +15 -15 | +3 -10 | 50 65
65 80 | | + 35 0 | + 54 0 | + 87 0 | +140 0 | +220 0 | +540 0 | +16 -6 | +11 -11 | +22 -13 | +17.5 -17.5 | +2 -13 | 80 100
100 120 | | + 40 0 | + 63 0 | +100 0 | +160 0 | +250 0 | +630 0 | +18 -7 | +12.5 -12.5 | +26 -14 | +20 -20 | +3 -15 | 120 140
140 160
160 180 | | + 46 0 | + 72 0 | +115 0 | +185 0 | +290 0 | +720 0 | +22 -7 | +14.5 -14.5 | +30 -16 | +23 -23 | +2 -18 | 180 200
200 225
225 250 | | + 52 0 | + 81 0 | +130 0 | +210 0 | +320 0 | +810 0 | +25 -7 | +16 -16 | +36 -16 | +26 -26 | +3 -20 | 250 280
280 315 | | + 57 0 | + 89 0 | +140 0 | +230 0 | +360 0 | +890 0 | +29 -7 | +18 -18 | +39 -18 | +28.5 -28.5 | +3 -22 | 315 355
355 400 | | + 63 0 | + 97 0 | +155 0 | +250 0 | +400 0 | +970 0 | +33 -7 | +20 -20 | +43 -20 | +31.5 -31.5 | +2 -25 | 400 450
450 500 | | + 70 0 | +110 0 | +175 0 | +280 0 | +440 0 | - 0 | | +22 -22 | | +35 -35 | | 500 560
560 630 | | + 80 0 | +125 0 | +200 0 | +320 0 | +500 0 | - 0 | | +25 -25 | | +40 -40 | | 630 710
710 800 | | + 90 0 | +140 0 | +230 0 | +360 0 | +560 0 | - 0 | | +28 -28 | | +45 -45 | | 800 900
900 1 000 | | +105 0 | +165 0 | +260 0 | +420 0 | +660 0 | - 0 | | +33 -33 | | +52.5 -52.5 | | 1 000 1 120
1 120 1 250 | | +125 0 | +195 0 | +310 0 | +500 0 | +780 0 | - 0 | | +39 -39 | | +62.5 -62.5 | | 1 250 1 400
1 400 1 600 | | +150 0 | +230 0 | +370 0 | +600 0 | +920 0 | - 0 | | +46 -46 | | +75 -75 | | 1 600 1 800
1 800 2 000 | # Appendix table 7: Basic tolerance Unit μ m | reperions | | | | | | | | | | | Onit μ ni | |-----------|-------------------|-----|-----|-----|--------|---------------|-------|-----|-----|-----|---------------| | | er division
mm | | | | IT bas | sic tolerance | class | | | | | | over | incl. | IT1 | IT2 | IT3 | IT4 | IT5 | IT6 | IT7 | IT8 | IT9 | IT10 | | _ | 3 | 0.8 | 1.2 | 2 | 3 | 4 | 6 | 10 | 14 | 25 | 40 | | 3 | 6 | 1 | 1.5 | 2.5 | 4 | 5 | 8 | 12 | 18 | 30 | 48 | | 6 | 10 | 1 | 1.5 | 2.5 | 4 | 6 | 9 | 15 | 22 | 36 | 58 | | 10 | 18 | 1.2 | 2 | 3 | 5 | 8 | 11 | 18 | 27 | 43 | 70 | | 18 | 30 | 1.5 | 2.5 | 4 | 6 | 9 | 13 | 21 | 33 | 52 | 84 | | 30 | 50 | 1.5 | 2.5 | 4 | 7 | 11 | 16 | 25 | 39 | 62 | 100 | | 50 | 80 | 2 | 3 | 5 | 8 | 13 | 19 | 30 | 46 | 74 | 120 | | 80 | 120 | 2.5 | 4 | 6 | 10 | 15 | 22 | 35 | 54 | 87 | 140 | | 120 | 180 | 3.5 | 5 | 8 | 12 | 18 | 25 | 40 | 63 | 100 | 160 | | 180 | 250 | 4.5 | 7 | 10 | 14 | 20 | 29 | 46 | 72 | 115 | 185 | | 250 | 315 | 6 | 8 | 12 | 16 | 23 | 32 | 52 | 81 | 130 | 210 | | 315 | 400 | 7 | 9 | 13 | 18 | 25 | 36 | 57 | 89 | 140 | 230 | | 400 | 500 | 8 | 10 | 15 | 20 | 27 | 40 | 63 | 97 | 155 | 250 | | 500 | 630 | 9 | 11 | 16 | 22 | 30 | 44 | 70 | 110 | 175 | 280 | | 630 | 800 | 10 | 13 | 18 | 25 | 35 | 50 | 80 | 125 | 200 | 320 | | 800 | 1 000 | 11 | 15 | 21 | 29 | 40 | 56 | 90 | 140 | 230 | 360 | | 1 000 | 1 250 | 13 | 18 | 24 | 34 | 46 | 66 | 105 | 165 | 260 | 420 | | 1 250 | 1 600 | 15 | 21 | 29 | 40 | 54 | 78 | 125 | 195 | 310 | 500 | | 1 600 | 2 000 | 18 | 25 | 35 | 48 | 65 | 92 | 150 | 230 | 370 | 600 | | 2 000 | 2 500 | 22 | 30 | 41 | 57 | 77 | 110 | 175 | 280 | 440 | 700 | | 2 500 | 3 150 | 26 | 36 | 50 | 69 | 93 | 135 | 210 | 330 | 540 | 860 | ## Appendix table 8: Viscosity conversion table | Kinematic
viscosity
mm ² /s | Saybolt
SUS (second) | Redwood
R"(second) | Engler
E (degree) | |--|-------------------------|-----------------------|----------------------| | 2.7 | 35 | 32.2 | 1.18 | | 4.3 | 40 | 36.2 | 1.32 | | 5.9 | 45 | 40.6 | 1.46 | | 7.4 | 50 | 44.9 | 1.60 | | 8.9 | 55 | 49.1 | 1.75 | | 10.4 | 60 | 53.5 | 1.88 | | 11.8 | 65 | 57.9 | 2.02 | | 13.1 | 70 | 62.3 | 2.15 | | 14.5 | 75 | 67.6 | 2.31 | | 15.8 | 80 | 71.0 | 2.42 | | 17.0 | 85 | 75.1 | 2.55 | | 18.2 | 90 | 79.6 | 2.68 | | 19.4 | 95 | 84.2 | 2.81 | | 20.6 | 100 | 88.4 | 2.95 | | 23.0 | 110 | 97.1 | 3.21 | | 25.0 | 120 | 105.9 | 3.49 | | 27.5 | 130 | 114.8 | 3.77 | | 29.8 | 140 | 123.6 | 4.04 | | 32.1 | 150 | 132.4 | 4.32 | | 34.3 | 160 | 141.1 | 4.59 | | 36.5 | 170 | 150.0 | 4.88 | | 38.8 | 180 | 158.8 | 5.15 | | 41.0 | 190 | 167.5 | 5.44 | | 43.2 | 200 | 176.4 | 5.72 | | 47.5 | 220 | 194.0 | 6.28 | | 51.9 | 240 | 212 | 6.85 | | 56.5 | 260 | 229 | 7.38 | | 60.5 | 280 | 247 | 7.95 | | 64.9 | 300 | 265 | 8.51 | | 70.3 | 325 | 287 | 9.24 | | 75.8 | 350 | 309 | 9.95 | | 81.2 | 375 | 331 | 10.7 | | 86.8 | 400 | 353 | 11.4 | | 92.0 | 425 | 375 | 12.1 | | 97.4 | 450 | 397 | 12.8 | | Kinematic | Saybolt | Redwood | Engler | |--------------------|----------------|----------------|------------| | viscosity
mm²/s | SUS (second) | R"(second) | E (degree) | | 103 | 475 | 419 | 13.5 | | 108 | 500 | 441 | 14.2 | | 119 | 550 | 485 | 15.6 | | 130 | 600 | 529 | 17.0 | | 141 | 650 | 573 | 18.5 | | 152 | 700 | 617 | 19.9 | | 163 | 750 | 661 | 21.3 | | 173 | 800 | 705 | 22.7 | | 184 | 850 | 749 | 24.2 | | 195 | 900 | 793 | 25.6 | | 206 | 950 | 837 | 27.0 | | 217 | 1 000 | 882 | 28.4 | | 260 | 1 200 | 1 058 | 34.1 | | 302 | 1 400 | 1 234 | 39.8 | | 347 | 1 600 | 1 411 | 45.5 | | 390 | 1 800 | 1 587 | 51 | | 433 | 2 000 | 1 763 | 57 | | 542 | 2 500 | 2 204 | 71 | | 650 | 3 000 | 2 646 | 85 | | 758 | 3 500 | 3 087 | 99 | | 867 | 4 000 | 3 526 | 114 | | 974 | 4 500 | 3 967 | 128 | | 1 082 | 5 000 | 4 408 | 142 | | 1 150 | 5 500 | 4 849 | 156
170 | | 1 300 | 6 000 | 5 290 | | | 1 400 | 6 500 | 5 730 | 185 | | 1 510
1 630 | 7 000
7 500 | 6 171
6 612 | 199
213 | | 1 740 | 8 000 | 7 053 | 213 | | 1 850 | 8 500 | 7 494 | 242 | | 1 960 | 9 000 | 7 494 | 256 | | 2 070 | 9 500 | 7 934
8 375 | 270 | | 2 200 | 10 000 | 8 816 | 284 | | 2 200 | 10 000 | 0.010 | 204 | | | | | | | | | | | Appendix table 9: Kgf to N conversion table | 11. | | | | | | | | | |--------|--------|--------|--------|----|--------|--------------|----|---------------| | kgf | | N | kgf | | N | kgf | | N | | 0.1020 | 1 | 9.8066 | 3.4670 | 34 | 333.43 | 6.8321 | 67 | 657.04 | | 0.2039 | 2 | 19.613 | 3.5690 | 35 | 343.23 | 6.9341 | 68 | 666.85 | | 0.3059 | 3 | 29.420
| 3.6710 | 36 | 353.04 | 7.0361 | 69 | 676.66 | | 0.4079 | 4 | 39.227 | 3.7730 | 37 | 362.85 | 7.1380 | 70 | 686.46 | | 0.5099 | 5 | 49.033 | 3.8749 | 38 | 372.65 | 7.2400 | 71 | 696.27 | | 0.6118 | 6 | 58.840 | 3.9769 | 39 | 382.46 | 7.3420 | 72 | 706.08 | | 0.7138 | 7 | 68.646 | 4.0789 | 40 | 392.27 | 7.4440 | 73 | 715.88 | | 0.8158 | 8 | 78.453 | 4.1808 | 41 | 402.07 | 7.5459 | 74 | 725.69 | | 0.9177 | 9 | 88.260 | 4.2828 | 42 | 411.88 | 7.6479 | 75 | 735.50 | | 1.0197 | 10 | 98.066 | 4.3848 | 43 | 421.68 | 7.7499 | 76 | 745.30 | | 1.1217 | 11 | 107.87 | 4.4868 | 44 | 431.49 | 7.8518 | 77 | 755.11 | | 1.2237 | 12 | 117.68 | 4.5887 | 45 | 441.30 | 7.9538 | 78 | 764.92 | | 1.3256 | 13 | 127.49 | 4.6907 | 46 | 451.10 | 8.0558 | 79 | 774.72 | | 1.4276 | 14 | 137.29 | 4.7927 | 47 | 460.91 | 8.1578 | 80 | 784.53 | | 1.5296 | 15 | 147.10 | 4.8946 | 48 | 470.72 | 8.2597 | 81 | 794.34 | | 1.6316 | 16 | 156.91 | 4.9966 | 49 | 480.52 | 8.3617 | 82 | 804.14 | | 1.7335 | 17 | 166.71 | 5.0986 | 50 | 490.33 | 8.4637 | 83 | 813.95 | | 1.8355 | 18 | 176.52 | 5.2006 | 51 | 500.14 | 8.5656 | 84 | 823.76 | | 1.9375 | 19 | 186.33 | 5.3025 | 52 | 509.94 | 8.6676 | 85 | 833.56 | | 2.0394 | 20 | 196.13 | 5.4045 | 53 | 519.75 | 8.7696 | 86 | 843.37 | | 2.1414 | 21 | 205.94 | 5.5065 | 54 | 529.56 | 8.8716 | 87 | 853.18 | | 2.2434 | 22 | 215.75 | 5.6085 | 55 | 539.36 | 8.9735 | 88 | 862.98 | | 2.3454 | 23 | 225.55 | 5.7104 | 56 | 549.17 | 9.0755 | 89 | 872.79 | | 2.4473 | 24 | 235.36 | 5.8124 | 57 | 558.98 | 9.1775 | 90 | 882.60 | | 2.5493 | 25 | 245.17 | 5.9144 | 58 | 568.78 | 9.2794 | 91 | 892.40 | | 2.6513 | 26 | 254.97 | 6.0163 | 59 | 578.59 | 9.3814 | 92 | 902.21 | | 2.7532 | 27 | 264.78 | 6.1183 | 60 | 588.40 | 9.4834 | 93 | 912.02 | | 2.8552 | 28 | 274.59 | 6.2203 | 61 | 598.20 | 9.5854 | 94 | 921.82 | | 2.9572 | 29 | 284.39 | 6.3223 | 62 | 608.01 | 9.6873 | 95 | 931.63 | | 3.0592 | 30 | 294.20 | 6.4242 | 63 | 617.82 | 9.7893 | 96 | 941.44 | | 3.1611 | 31 | 304.01 | 6.5262 | 64 | 627.62 | 9.8913 | 97 | 951.24 | | 3.2631 | 32 | 313.81 | 6.6282 | 65 | 637.43 | 9.9932 | 98 | 961.05 | | 3.3651 | 33 | 323.62 | 6.7302 | 66 | 647.24 | 10.0952 | 99 | 970.86 | | (1.1 | -1-1-2 | |
 | | | - | | 1kaf-0 90665N | (How to read the table) If for example you want to convert 10 kgf to N, find "10" in the middle column of the first set of columns on the right. Look in the N column directly to the right of "10," and you will see that 10 kgf equals 98.066 N. Oppositely, to convert 10 N to kgf, look in the kgf column to the right of "10" and you will see that 10 N equals 1.0197 kgf. 1kgf = 9.80665N1N=0.101972kgf Appendix table 10: Inch-millimetre conversion table | į | nch | 011 | 411 | 0.11 | 0.11 | 411 | =" | O.II | | 0.11 | 011 | |------------------------------|--|----------------------------------|--|--|--|---|---|---|---|---|---| | fraction | decimal | 0" | 1" | 2" | 3" | 4" | 5" | 6" | 7" | 8" | 9" | | 1/64
1/32
3/64
1/16 | 0.015625
0.031250
0.046875
0.062500 | 0.397
0.794
1.191
1.588 | 25.400
25.797
26.194
26.591
26.988 | 50.800
51.197
51.594
51.991
52.388 | 76.200
76.597
76.994
77.391
77.788 | 101.600
101.997
102.394
102.791
103.188 | 127.000
127.397
127.794
128.191
128.588 | 152.400
152.797
153.194
153.591
153.988 | 177.800
178.197
178.594
178.991
179.388 | 203.200
203.597
203.994
204.391
204.788 | 228.600
228.997
229.394
229.791
230.188 | | 5/64 | 0.078125 | 1.984 | 27.384 | 52.784 | 78.184 | 103.584 | 128.984 | 154.384 | 179.784 | 205.184 | 230.584 | | 3/32 | 0.093750 | 2.381 | 27.781 | 53.181 | 48.581 | 103.981 | 129.381 | 154.781 | 180.181 | 205.581 | 230.981 | | 7/64 | 0.109375 | 2.778 | 28.178 | 53.578 | 78.978 | 104.378 | 129.778 | 155.178 | 180.578 | 205.978 | 231.378 | | 1/ 8 | 0.125000 | 3.175 | 28.575 | 53.975 | 79.375 | 104.775 | 130.175 | 155.575 | 180.975 | 206.375 | 231.775 | | 9/64 | 0.140625 | 3.572 | 28.972 | 54.372 | 79.772 | 105.172 | 130.572 | 155.972 | 181.372 | 206.772 | 232.172 | | 5/32 | 0.156250 | 3.969 | 29.369 | 54.769 | 80.169 | 105.569 | 130.969 | 156.369 | 181.769 | 207.169 | 232.569 | | 11/64 | 0.171875 | 4.366 | 29.766 | 55.166 | 80.566 | 105.966 | 131.366 | 156.766 | 182.166 | 207.566 | 232.966 | | 3/16 | 0.187500 | 4.762 | 30.162 | 55.562 | 80.962 | 106.362 | 131.762 | 157.162 | 182.562 | 207.962 | 233.362 | | 13/64 | 0.203125 | 5.159 | 30.559 | 55.959 | 81.359 | 106.759 | 132.159 | 157.559 | 182.959 | 208.359 | 233.759 | | 7/32 | 0.218750 | 5.556 | 30.956 | 56.356 | 81.756 | 107.156 | 132.556 | 157.956 | 183.356 | 208.756 | 234.156 | | 15/64 | 0.234375 | 5.953 | 31.353 | 56.753 | 82.153 | 107.553 | 132.953 | 158.353 | 183.753 | 209.153 | 234.553 | | 1/ 4 | 0.250000 | 6.350 | 31.750 | 57.150 | 82.550 | 107.950 | 133.350 | 158.750 | 184.150 | 209.550 | 234.950 | | 17/64 | 0.265625 | 6.747 | 32.147 | 57.547 | 82.947 | 108.347 | 133.747 | 159.147 | 184.547 | 209.947 | 235.347 | | 9/32 | 0.281250 | 7.144 | 32.544 | 57.944 | 83.344 | 108.744 | 134.144 | 159.544 | 184.944 | 210.344 | 235.744 | | 19/64 | 0.296875 | 7.541 | 32.941 | 58.341 | 83.741 | 109.141 | 134.541 | 159.941 | 185.341 | 210.741 | 236.141 | | 5/16 | 0.312500 | 7.938 | 33.338 | 58.738 | 84.138 | 109.538 | 134.938 | 160.338 | 185.738 | 211.138 | 236.538 | | 21/64 | 0.328125 | 8.334 | 33.734 | 59.134 | 84.534 | 109.934 | 135.334 | 160.734 | 186.134 | 211.534 | 236.934 | | 11/32 | 0.343750 | 8.731 | 34.131 | 59.531 | 84.931 | 110.331 | 135.731 | 161.131 | 186.531 | 211.931 | 237.331 | | 23/64 | 0.359375 | 9.128 | 34.528 | 59.928 | 85.328 | 110.728 | 136.128 | 161.528 | 186.928 | 212.328 | 237.728 | | 3/8 | 0.375000 | 9.525 | 34.925 | 60.325 | 85.725 | 111.125 | 136.525 | 161.925 | 187.325 | 212.725 | 238.125 | | 25/64 | 0.390625 | 9.922 | 35.322 | 60.722 | 86.122 | 111.522 | 136.922 | 162.322 | 187.722 | 213.122 | 238.522 | | 13/32 | 0.406250 | 10.319 | 35.719 | 61.119 | 86.519 | 111.919 | 137.319 | 162.719 | 188.119 | 213.519 | 238.919 | | 27/64 | 0.421875 | 10.716 | 36.116 | 61.516 | 86.916 | 112.316 | 137.716 | 163.116 | 188.516 | 213.916 | 239.316 | | 7/16 | 0.437500 | 11.112 | 36.512 | 61.912 | 87.312 | 112.721 | 138.112 | 163.512 | 188.912 | 214.312 | 239.712 | | 29/64 | 0.453125 | 11.509 | 36.909 | 62.309 | 87.709 | 113.109 | 138.509 | 163.909 | 189.309 | 214.709 | 240.109 | | 15/32 | 0.468750 | 11.906 | 37.306 | 62.706 | 88.106 | 113.506 | 138.906 | 164.306 | 189.706 | 215.106 | 240.506 | | 31/64 | 0.484375 | 12.303 | 37.703 | 63.103 | 88.503 | 113.903 | 139.303 | 164.703 | 190.103 | 215.503 | 240.903 | | 1/ 2 | 0.500000 | 12.700 | 38.100 | 63.500 | 88.900 | 114.300 | 139.700 | 165.100 | 190.500 | 215.900 | 241.300 | | 33/64 | 0.515625 | 13.097 | 38.497 | 63.897 | 89.297 | 114.697 | 140.097 | 165.497 | 190.897 | 216.297 | 241.697 | | 17/32 | 0.531250 | 13.494 | 38.894 | 64.294 | 89.694 | 115.094 | 140.494 | 165.894 | 191.294 | 216.694 | 242.094 | | 35/64 | 0.546875 | 13.891 | 39.291 | 64.691 | 90.091 | 115.491 | 140.891 | 166.291 | 191.691 | 217.091 | 242.491 | | 9/16 | 0.562500 | 14.288 | 39.688 | 65.088 | 90.488 | 115.888 | 141.283 | 166.688 | 192.088 | 217.488 | 242.888 | | 37/64 | 0.578125 | 14.684 | 40.084 | 65.484 | 90.884 | 116.284 | 141.684 | 167.084 | 192.484 | 217.884 | 243.284 | | 19/32 | 0.593750 | 15.081 | 40.481 | 65.881 | 91.281 | 116.681 | 142.081 | 167.481 | 192.881 | 218.281 | 243.681 | | 39/64 | 0.609375 | 15.478 | 40.878 | 66.278 | 91.678 | 117.078 | 142.478 | 167.878 | 193.278 | 218.678 | 244.078 | | 5/ 8 | 0.625000 | 15.875 | 41.275 | 66.675 | 92.075 | 117.475 | 142.875 | 168.275 | 193.675 | 219.075 | 244.475 | | 41/64 | 0.640625 | 16.272 | 41.672 | 67.072 | 92.472 | 117.872 | 143.272 | 168.672 | 194.072 | 219.472 | 244.872 | | 21/32 | 0.656250 | 16.669 | 42.069 | 67.469 | 92.869 | 118.269 | 143.669 | 169.069 | 194.469 | 219.869 | 245.269 | | 43/64 | 0.671875 | 17.066 | 42.466 | 67.866 | 93.266 | 118.666 | 144.066 | 169.466 | 194.866 | 220.266 | 245.666 | | 11/16 | 0.687500 | 17.462 | 42.862 | 68.262 | 93.662 | 119.062 | 144.462 | 169.862 | 195.262 | 220.662 | 246.062 | | 45/64 | 0.703125 | 17.859 | 43.259 | 68.659 | 94.059 | 119.459 | 144.859 | 170.259 | 195.659 | 221.056 | 246.459 | | 23/32 | 0.718750 | 18.256 | 43.656 | 69.056 | 94.456 | 119.856 | 145.256 | 170.656 | 196.056 | 221.456 | 246.856 | | 47/64 | 0.734375 | 18.653 | 44.053 | 69.453 | 94.853 | 120.253 | 145.653 | 171.053 | 196.453 | 221.853 | 247.253 | | 3/4 | 0.750000 | 19.050 | 44.450 | 69.850 | 95.250 | 120.650 | 146.050 | 171.450 | 196.850 | 222.250 | 247.650 | | 49/64 | 0.765625 | 19.447 | 44.847 | 70.247 | 95.647 | 121.047 | 146.447 | 171.847 | 197.247 | 222.647 | 248.047 | | 25/32 | 0.781250 | 19.844 | 45.244 | 70.644 | 96.044 | 121.444 | 146.844 | 172.244 | 197.644 | 223.044 | 248.444 | | 51/64 | 0.796875 | 20.241 | 45.641 | 71.041 | 96.441 | 121.841 | 147.241 | 172.641 | 198.041 | 223.441 | 248.841 | | 13/16 | 0.812500 | 20.638 | 46.038 | 71.438 | 96.838 | 122.238 | 147.638 | 173.038 | 198.438 | 223.838 | 249.238 | | 53/64 | 0.828125 | 21.034 | 46.434 | 71.834 | 97.234 | 122.634 | 148.034 | 173.434 | 198.834 | 224.234 | 249.634 | | 27/32 | 0.843750 | 21.431 | 46.831 | 72.231 | 97.631 | 123.031 | 148.431 | 173.831 | 199.231 | 224.631 | 250.031 | | 55/64 | 0.859375 | 21.828 | 47.228 | 72.628 | 98.028 | 123.428 | 148.828 | 174.228 | 199.628 | 225.028 | 250.428 | | 7/ 8 | 0.875000 | 22.225 | 47.625 | 73.025 | 98.425 | 123.825 |
149.225 | 174.625 | 200.025 | 225.425 | 250.825 | | 57/64 | 0.890625 | 22.622 | 48.022 | 73.422 | 98.822 | 124.222 | 149.622 | 175.022 | 200.422 | 225.822 | 251.222 | | 39/32 | 0.906250 | 23.019 | 48.419 | 73.819 | 99.219 | 124.619 | 150.019 | 175.419 | 200.819 | 226.219 | 251.619 | | 59/64 | 0.921875 | 23.416 | 48.816 | 74.216 | 99.616 | 125.016 | 150.416 | 175.816 | 201.216 | 226.616 | 252.016 | | 15/16 | 0.937500 | 23.812 | 49.212 | 74.612 | 100.012 | 125.412 | 150.812 | 176.212 | 201.612 | 227.012 | 252.412 | | 61/64 | 0.953125 | 24.209 | 49.609 | 75.009 | 100.409 | 125.809 | 151.209 | 176.609 | 202.009 | 227.409 | 252.809 | | 31/32 | 0.968750 | 24.606 | 50.006 | 75406 | 100.806 | 126.206 | 151.606 | 177.006 | 202.406 | 227.806 | 253.206 | | 63/64 | 0.984375 | 25.003 | 50.403 | 75.803 | 101.203 | 126.603 | 152.003 | 177.403 | 202.803 | 228.203 | 253.603 |