

LARGE BEARINGS

CONTENTS

Technical Data		A-	5
Deep Groove Ba	II Bearings	В-	5
Angular Contact	Ball Bearings	В-	15
Cylindrical Rolle	r Bearings	В-	37
Tapered Roller B	Bearings	В-	89
Spherical Roller	Bearings	B-2	03
Thrust Bearings		B-2	27
Bearings for Spe	ecial Applications	C-	1
Catalog List & A	ppendix Table	D-	1

Warranty

NTN warrants, to the original purchaser only, that the delivered product which is the subject of this sale (a) will conform to drawings and specifications mutually established in writing as applicable to the contract, and (b) be free from defects in material or fabrication. The duration of this warranty is one year from date of delivery. If the buyer discovers within this period a failure of the product to conform to drawings or specifications, or a defect in material or fabrication, it must promptly notify NTN in writing. In no event shall such notification be received by NTN later than 13 months from the date of delivery. Within a reasonable time after such notification, NTN will, at its option, (a) correct any failure of the product to conform to drawings, specifications or any defect in material or workmanship, with either replacement or repair of the product, or (b) refund, in part or in whole, the purchase price. Such replacement and repair, excluding charges for labor, is at NTN's expense. All warranty service will be performed at service centers designated by NTN. These remedies are the purchaser's exclusive remedies for breach of warranty.

NTN does not warrant (a) any product, components or parts not manufactured by NTN, (b) defects caused by failure to provide a suitable installation environment for the product, (c) damage caused by use of the product for purposes other than those for which it was designed, (d) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, or (g) any other abuse or misuse by the purchaser.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no case shall NTN be liable for any special, incidental, or consequential damages based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory, and in no case shall total liability of NTN exceed the purchase price of the part upon which such liability is based. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the product or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, downtime, the claims of third parties including customers, and injury to property. Some states do not allow limits on warranties, or on remedies for breach in certain transactions. In such states, the limits in this paragraph and in paragraph (2) shall apply to the extent allowable under case law and statutes in such states.

Any action for breach of warranty or any other legal theory must be commenced within 15 months following delivery of the goods.

Unless modified in a writing signed by both parties, this agreement is understood to be the complete and exclusive agreement between the parties, superceding all prior agreements, oral or written, and all other communications between the parties relating to the subject matter of this agreement. No employee of NTN or any other party is authorized to make any warranty in addition to those made in this agreement.

This agreement allocates the risks of product failure between NTN and the purchaser. This allocation is recognized by both parties and is reflected in the price of the goods. The purchaser acknowledges that it has read this agreement, understands it, and is bound by its terms.

Although care has been taken to assure the accuracy of the data compiled in this catalog, NTN does not assume any liability to any company or person for errors or omissions.

TECHNICAL DATA CONTENTS

1.		Rating and Life ·····	
		Bearing life ····	
	1.2	Basic rated life and basic dynamic load rating	۹- 5
		Adjusted life rating factor ·····	
		Basic static load rating ·····	
	1.5	Allowable static equivalent load ·····	4- 7
2.		ing Load Calculation ·····	
		Load acting on shafts	
		Mean load ·····	
	2.3	Equivalent load ·····	4- 9
3.		ing Tolerances·····	
		Dimensional accuracy and running accuracy	
	3.2	Limits and tolerances for chamfer and tapered bore	\-20
4.		ing Fits ·····	
		Interference	
		The necessity of a proper fit	
	4.3	Fit selection	\-22
5.		ing Internal Clearance·····	
		Bearing internal clearance	
	5.2	Internal clearance selection	\-29
6.		ication ······	
		Lubrication of rolling bearings ·····	
		Characteristics of grease and oil lubrication	
		Grease lubrication	
		Solid Grease (for bearings with solid grease lubricant)	
	6.5	Oil lubrication ·····	\-42
7.		ing Materials······	
		Raceway and rolling element materials	
	7.2	Cage materials ·····	۹-45

1. Load Rating and Life

1.1 Bearing life

Even in bearings operating under normal conditions, the surfaces of the raceway and rolling elements are constantly being subjected to repeated compressive stresses which cause flaking of these surfaces to occur. This flaking is due to material fatigue and will eventually cause the bearings to fail. The effective life of a bearing is usually defined in terms of the total number of revolutions a bearing can undergo before flaking of either the raceway surface or the rolling element surfaces

Other causes of bearing failure are often attributed to problems such as seizing, abrasions, cracking, chipping, gnawing, rust, etc. However, these so called "causes" of bearing failure are usually themselves caused by improper installation, insufficient or improper lubrication, faulty sealing or inaccurate bearing selection. Since the above mentioned "causes" of bearing failure can be avoided by taking the proper precautions, and are not simply caused by material fatigue, they are considered separately from the flaking aspect.

1.2 Basic rated life and basic dynamic load rating

A group of seemingly identical bearings when subjected to identical load and operating conditions will exhibit a wide diversity in their durability.

This "life" disparity can be accounted for by the difference in the fatigue of the bearing material itself. This disparity is considered statistically when calculating bearing life, and the basic rated life is defined as follows.

The basic rated life is based on a 90% statistical model which is expressed as the total number of revolutions 90% of the bearings in an identical group of bearings subjected to identical operating conditions will attain or surpass before flaking due to material fatigue occurs. For bearings operating at fixed constant speeds, the basic rated life (90% reliability) is expressed in the total number of hours of operation.

The basic dynamic load rating is an expression of the load capacity of a bearing based on a constant load which the bearing can sustain for one million revolutions (the basic life rating). For radial bearings this rating applies to pure radial loads, and for thrust bearings it refers to pure axial loads. The basic dynamic load ratings given in the bearing tables of this catalog are for bearings constructed of NTN standard bearing materials, using standard manufacturing techniques. Please consult NTN Engineering for basic load ratings of bearings constructed of special materials or using special manufacturing techniques.

The relationship between the basic rated life, the basic dynamic load rating and the bearing load is given in formula (1.1).

$$L_{10} = \left(\frac{C}{P}\right)^{p} \cdots \cdots (1.1)$$

where,

p= 3.....For ball bearings p= 10/3....For roller bearings L_{10} : Basic rated life 10 6 revolutions

C: Basic dynamic rated load, N (Cr: radial bearings, Ca: thrust bearings)

P: Equivalent dynamic load, N
(Pr: radial bearings, Pa: thrust bearings)

The basic rated life can also be expressed in terms of hours of operation (revolution), and is calculated as shown in formula (1.2).

$$L_{10h} = 500 f_h^p \dots (1.2)$$

$$f_h = f_0 \frac{C}{P} \cdots \cdots (1.3)$$

$$f_n = (\frac{33.3}{n})^{1/p} \cdots (1.4)$$

where,

 $L_{10\mathrm{h}}$: Basic rated life, h

 $f_{\rm h}$: Life factor

 f_n : Speed factor

n: Shaft speed, min⁻¹

Formula (1.2) can also be expressed as shown in formula (1.5).

$$L_{10h} = \frac{10^6}{60 n} \left(\frac{C}{P} \right)^p \cdots (1.5)$$

The relationship between Rotational speed n and speed factor f_n as well as the relation between the basic rated life L_{10h} and the life factor f_n is shown in **Fig. 1.1**.

When several bearings are incorporated in machines or equipment as complete units, all the bearings in the unit are considered as a whole when computing bearing life (see formula 1.6). The total bearing life of the unit is a life rating based on the viable lifetime of the unit before even one of the bearings fails due to rolling contact fatigue.

$$L = \frac{1}{\left(\frac{1}{L_1^e} + \frac{1}{L_2^e} + \cdots + \frac{1}{L_n^e}\right)^{1/e}} \dots \dots (1.6)$$

where,

e = 10/9.....For ball bearings

e = 9/8.....For roller bearings

 ${\it L}$: Total basic rated life of entire unit, h

 $L_1.L_2\cdots L_n$: Basic rated life of individual bearings, 1, 2, ..., h

When the load conditions vary at regular intervals, the life can be given by formula (1.7).

$$L_{\rm m} = (\sum \phi_{\rm j} / L_{\rm j})^{-1} \cdots \cdots (1.7)$$

where,

 $\varPhi\ _{\ {\scriptscriptstyle j}}$: Frequency of individual load conditions

 $L_{
m i}$: Life under individual conditions

Fig. 1.1 Bearing life rating scale

1.3 Adjusted life rating factor

The basic bearing life rating (90% reliability factor) can be calculated through the formulas mentioned earlier in Section 1.2. However, in some applications a bearing life factor of over 90% reliability may be required. To meet these requirements, bearing life can be lengthened by the use of specially improved bearing materials or special construction techniques. Moreover, according to elastohydrodynamic lubrication theory, it is clear that the bearing operating conditions (lubrication, temperature, shaft speed, etc.) all exert an effect on bearing life. All these adjustment factors are taken into consideration when calculating bearing life, and using the life adjustment factor as prescribed in ISO 281, the adjusted bearing life can be determined.

$$L_{\text{na}} = a_1 \cdot a_2 \cdot a_3 \cdot (C/P)^p \cdots (1.8)$$
 where.

 Lna: Adjusted life rating in millions of revolutions (10⁶)(adjusted for reliability, material and operating conditions)

a₁: Reliability adjustment factor
 a₂: Material adjustment factor

a₃:Operating condition adjustment factor

1.3.1 Life adjustment factor for reliability a_1

The values for the reliability adjustment factor a_1 (for a reliability factor higher than 90%) can be found in **Table 1.1**.

Table 1.1 Reliability adjustment factor values a_1

Reliability %	$L_{ m n}$	Reliability factor a_1
90	L_{10}	1.00
95	L_{5}	0.62
96	L_4	0.53
97	L_3	0.44
98	L_2	0.33
99	L_1	0.21

1.3.2 Life adjustment factor for material a_2

The life of a bearing is affected by the material type and quality as well as the manufacturing process. In this regard, the life is adjusted by the use of an a_2 factor.

The basic dynamic load ratings listed in the catalog are based on NTN's standard material and manufacturing processes, therefore, the adjustment factor a_2 =1. When special materials or processes are used the adjustment factor can be larger than 1.

NTN bearings can generally be used up to 120°C. If bearings are operated at a higher temperature, the bearing must be specially heat treated (stabilized) so that inadmissible dimensional change does not occur due to changes in the micro-structure. This special heat treatment might cause the reduction of bearing life because of a hardness change.

1.3.3 Life adjustment factor a_3 for operating conditions

The operating conditions life adjustment factor $a_{\rm s}$ is used to adjust for such conditions as lubrication, operating temperature, and other operation factors which have an effect on bearing life.

Generally speaking, when lubricating conditions are satisfactory, the α_3 factor has a value of one; and when lubricating conditions are exceptionally favorable, and all other operating conditions are normal, α_3 can have a value greater than one.

However, when lubricating conditions are particularly unfavorable and the oil film formation on the contact surfaces of the raceway and rolling elements is insufficient, the value of a_3 becomes less than one. This insufficient oil film formation can be caused, for example, by the lubricating oil viscosity being too low for the operating temperature (below 13 mm²/s for ball bearings; below 20 mm²/s for roller bearings); or by exceptionally low rotational speed (nmin⁻¹ x d_p mm less than 10,000). For bearings used under special operating conditions, please consult **NTN** Engineering.

As the operating temperature of the bearing increases, the hardness of the bearing material decreases. Thus, the bearing life correspondingly decreases. The operating temperature adjustment values are shown in **Fig. 1.2**.

Fig. 1.2 Life adjustment value for operating temperature

1.4 Basic static load rating

When stationary rolling bearings are subjected to static loads, they suffer from partial permanent deformation of the contact surfaces at the contact point between the rolling elements and the raceway. The amount of deformity increases as the load increases, and if this increase in load exceeds certain limits, the subsequent smooth operation of the bearings is impaired.

It has been found through experience that a permanent deformity of 0.0001 times the diameter of the rolling element, occurring at the most heavily stressed contact point between the raceway and the rolling elements, can be tolerated without any impairment in running efficiency.

The basic rated static load refers to a fixed static load limit at which a specified amount of permanent deformation occurs. It applies to pure radial loads for radial bearings and to pure axial loads for thrust bearings. The maximum applied load values for contact stress occurring at the rolling element and raceway contact points are given below.

For ball bearings	4,200 Mpa
(except self-aligning ball bearings)	
For self-aligning ball bearings	4,600 Mpa
For roller bearings	4,000 Mpa

1.5 Allowable static equivalent load

Generally the static equivalent load which can be permitted (See Section 2.3.2 page A-9) is limited by the basic static rated load as stated in **Section 1.4**. However, depending on requirements regarding friction and smooth operation, these limits may be greater or lesser than the basic static rated load.

In the following formula (1.9) and **Table 1.2** the safety factor S_0 can be determined considering the maximum static equivalent load.

$$S_{\circ} = C_{\circ} / P_{\circ} \cdots$$
 (1.9)

where.

 S_{\circ} : Safety factor

 C_{\circ} : Basic static rated load, N

(radial bearings: $C_{\rm or}$, thrust bearings: $C_{\rm oa}$)

 $P_{0 \text{ max}}$: Maximum static equivalent load, N

(radial: P_{or} max, thrust: C_{oa} max)

Table 1.2 Minimum safety factor values So

Operating conditions	Ball bearings	Roller bearings
High rotational accuracy demand	2	3
Normal rotating accuracy demand (Universal application)	1	1.5
Slight rotational accuracy deterioration permitted (Low speed, heavy loading, etc.)	0.5	1

Notes: 1. For spherical thrust roller bearings, min. So value=4.

2. For shell needle roller bearings, min. So value=3.

 When vibration and/or shock loads are present, a load factor based on the shock load needs to be included in the P₀ max value.

4. If a large axial load is applied to deep groove ball bearings or angular ball bearings, the contact oval may exceed the raceway surface. For more information, please contact NTN Engineering.

2. Bearing Load Calculation

To compute bearing loads, the forces which act on the shaft being supported by the bearing must be determined. These forces include the inherent dead weight of the rotating body (the weight of the shafts and components themselves), loads generated by the working forces of the machine, and loads arising from transmitted power.

It is possible to calculate theoretical values for these loads; however, there are many instances where the load acting on the bearing is usually determined by the nature of the load acting on the main power transmission shaft.

2.1 Load acting on shafts

2.1.1 Load factor

There are many instances where the actual operational shaft load is much greater than the theoretically calculated load, due to machine vibration and/or shock. This actual shaft load can be found by using formula (2.1)

$$K=f_{\mathsf{W}}\cdot K_{\mathsf{C}}\cdots$$
 (2.1)

where:

K: Actual shaft load N {kgf} f_W : Load factor (**Table 2.1**)

 K_{c} : Theoretically calculated value N {kgf}

Table 2.1 Load factor $f_{\rm w}$

Amount of shock	$f_{ m w}$	Application
Very little or no shock	1.0~1.2	Electrical machines, machine tools, measuring instruments.
Light shock	1.2~1.5	Railway vehicles, automobiles, rolling mills, metal working machines, paper making machines, rubber mixing machines, printing machines, aircraft, textile machines, electrical units, office machines.
Heavy shock	1.5~3.0	Crushers, agricultural equipment, construction equipment, cranes.

2.2 Mean load

The load on bearings used in machines under normal circumstances will, in many cases, fluctuate according to a fixed time period or planned operation schedule. The load on bearings operating under such conditions can be converted to a mean load ($F_{\rm m}$), this is a load which gives bearings the same life they would have under constant operating conditions.

(1) Fluctuating stepped load

The mean bearing load, $F_{\rm m}$, for stepped loads is calculated from formula (2.2). $F_{\rm 1}$, $F_{\rm 2}$ $F_{\rm n}$ are the loads acting on the bearing; $n_{\rm 1}$, $n_{\rm 2}$ $n_{\rm m}$ and $t_{\rm 1}$, $t_{\rm 2}$ $t_{\rm n}$ are the bearing speeds and operating times respectively.

$$F_{\mathrm{m}} = \left(\frac{\sum (F_{\mathrm{i}}^{p} n_{\mathrm{i}} t_{\mathrm{i}})}{(n_{\mathrm{i}} t_{\mathrm{i}})}\right)^{1/p} \dots (2.2)$$

where:

p=3 For ball bearings p=10/3 For roller bearings

Fig. 2.1 Stepped load

(2) Consecutive series load

Where it is possible to express the function F(t) in terms of load cycle to and time t, the mean load is found by using formula (2.3).

$$F_{\rm m} = \left[\frac{1}{t_0} \int_0^{t_0} F(t)^p dt \right]^{1/p} \dots (2.3)$$

where:

p=3 For ball bearings p=10/3 For roller bearings

Fig. 2.2 Linear fluctuating load

(3) Linear fluctuating load

The mean load, $F_{\rm m}$, can be approximated by formula (2.4).

$$F_{\rm m} = \frac{F_{\rm min} + 2F_{\rm max}}{3} \cdots (2.4)$$

Fig. 2.3 Time function series load

NTN

(4) Sinusoidal fluctuating load

The mean load, F_m , can be approximated by formulas (2.5) and (2.6).

case (a)
$$F_m = 0.75 F_{max} \cdots (2.5)$$

case (b) $F_m = 0.65 F_{max} \cdots (2.6)$

Fig. 2.4 Sinusoidal variable load

2.3 Equivalent load

2.3.1 Dynamic equivalent load

When both dynamic radial loads and dynamic axial loads act on a bearing at the same time, the hypothetical load acting on the center of the bearing giving the bearings the same life as if they had only a radial load or only an axial load, is called the dynamic equivalent load.

For radial bearings, this load is expressed as pure radial load and is called the dynamic equivalent radial load. For thrust bearings, it is expressed as pure axial load and is called the dynamic equivalent axial load.

(1) Dynamic equivalent radial load

The dynamic equivalent radial load is expressed by formula (2.7).

$$P_{r}=XF_{r}+YF_{a}$$
.....(2.7)

where,

P_r: Dynamic equivalent radial load, N

F_r: Actual radial load, N

 $F_{\rm a}$: Actual axial load, N

X: Radial load factor

Y: Axial load factor

The values for X and Y are listed in the bearing tables.

(2) Dynamic equivalent axial load

As a rule, standard thrust bearings with a contact angle of 90° cannot carry radial loads. However, self-aligning thrust roller bearings can accept some radial load. The dynamic equivalent axial load for these bearings is given in formula (2.8).

$$P_{a} = F_{a} + 1.2F_{r} + 1.2F$$

where,

Pa: Dynamic equivalent axial load, N

 $F_{\rm a}$: Actual axial load, N

 $F_{\rm r}$: Actual radial load, N

Provided that $F_r/F_a \leq 0.55$ only.

2.3.2 Static equivalent load

The static equivalent load is a hypothetical load which would cause the same total permanent deformation at the most heavily stressed contact point between the rolling elements and the raceway as under actual load conditions; that is when both static radial loads and static axial loads are simultaneously applied to the bearing.

For radial bearings this hypothetical load refers to pure radial loads, and for thrust bearings it refers to pure centric axial loads. These loads are designated static equivalent radial loads and static equivalent axial loads respectively.

(1) Static equivalent radial load

For radial bearings the static equivalent radial load can be found by using formula (2.9) or (2.10). The greater of the two resultant values is always taken for $P_{\rm or}$.

$$P_{\text{or}} = X_{\text{o}} F_{\text{r}} + Y_{\text{o}} F_{\text{a}} \cdots$$
 (2.9)
 $P_{\text{or}} = F_{\text{r}} \cdots \cdots \cdots \cdots \cdots$ (2.10)

where,

Por: Static equivalent radial load, N

 $F_{\rm r}$: Actual radial load, N $F_{\rm a}$: Actual axial load, N

 X_{\circ} : Static radial load factor

 Y_{\circ} : Static axial load factor

The values for X_0 and Y_0 are given in the respective bearing tables.

(2) Static equivalent axial load

For spherical thrust roller bearings the static equivalent axial load is expressed by formula (2.11).

$$P_{\text{oa}} = F_{\text{a}} + 2.7 F_{\text{r}} \cdots (2.11)$$

where,

 P_{oa} : Static equivalent axial load, N

 F_a : Actual axial load, N

 $F_{\rm r}$: Actual radial load, N

Provided that $F_r / F_a \leq 0.55$ only.

3. Bearing Tolerances

3.1 Dimensional accuracy and running accuracy

Bearing "tolerances" or dimensional accuracy and running accuracy, are regulated by ISO and JIS B 1514 standards (rolling bearing tolerances). For **dimensional accuracy**, these standards prescribe the tolerances necessary when installing bearings on shafts or in housings. **Running accuracy** is defined as the allowable limits for bearing runout during operation.

Dimensional accuracy

Dimensional accuracy constitutes the acceptable values for bore diameter, outer diameter, assembled bearing width, and bore diameter uniformity as seen in chamfer dimensions, allowable inner ring tapered bore deviation and shape error. Also included are, average bore diameter variation average, outer diameter variation, average outer diameter unevenness, as well as raceway width and height variation (for thrust bearings).

Running accuracy

Running accuracy constitutes the acceptable values for inner and outer ring radial runout and axial runout, inner ring side runout, and outer ring outer diameter runout.

Allowable rolling bearing tolerances have been established according to precision classes. JIS Class 0 corresponds to normal precision class bearings, and precision becomes progressively higher as the class number becomes smaller; i.e., Class 6 is less precise than Class 5, which is less precise than Class 4, and so on.

Table 3.1 indicates which standards and precision classes are applicable to the major bearing types. Table 3.2 shows a relative comparison between JIS B 1514 precision class standards and other standards. For greater detail on allowable error limitations and values, refer to Tables 3.3 - 3.8. Allowable values for chamfer dimensions are shown in Table 3.9, and allowable error limitations and values for radial bearing inner ring tapered bores are shown in Table 3.10.

Table 3.1 Bearing types and applicable tolerance

Bearing type		Applicable standard		Applica	ble tolera	nce		Tolerance table
Deep groove ball bearing			class 0	class 6	class 5	class 4	class 2	
Angular contact ball bearings		ISO492	class 0	class 6	class 5	class 4	class 2	Table 0.0
Cylindrical roller bearigns		150492	class 0	class 6	class 5	class 4	class 2	Table 3.3
Spherical roller bearings			class 0	_	_	_	_	
Tapered roller bearings	metric	ISO492	class 0,6X	class 6	class 5	class 5	_	Table 3.4
rapered roller bearings	Inch	ABMA Std.19	class 4	class 2	class 3	class 0	class 00	Table 3.5
Thrust ball bearings		- ISO199	class 0	class 6	class 5	class 4	_	Table 3.6
Spherical roller thrust bearings		130199	class 0	_	_	_	_	Table 3.7
Thrust tapered roller bearings	metric	NTN standard	class 0	_	_	_	_	Table 3.8
musi tapereu roller bearings	Inch	ANSI/ABMA Std. 23	class 2	_	_	_	_	Table 3.8

Table 3.2 Comparison of tolerance classifications of national standards

Standa	rd		Tole	rance Cla	ass		Bearing Types			
Japanese industrial standard (JIS)	JIS B 1514	class 0,6X	class 6	class 5	class 4	class 2	All type			
	ISO 492	Normal class Class 6X	Class 6	Class 5	Class 4	Class 2	Radial bearings			
International Organization for Standardization (ISO)	ISO 199	Normal class	Class 6	Class 5	Class 4	_	Thrust ball bearings			
	ISO 578	Class 4	_	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)			
Deutsches Institut fur Normung(ISO)	DIN 620	P0	P6	P5	P4	P2	All type			
American National Standards Institute (ANSI) Anti-Friction Bearing	ANSI/ABMA Std.20	ABEC-1 RBEC-1	ABEC-3 RBEC-3	ABEC-5 RBEC-5	ABEC-7	ABEC-9	Radial bearings (Except tapered roller bearings)			
Manufacturers (ABMA)	ANSI/ABMA Std.19	Class 4	Class 2	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)			

 [&]quot;ABEC" is applied for ball bearings and "RBEC" for roller bearings.

Notes: 1. JIS B 1514, ISO 492 and 199, and DIN 620 have the same specification level.

^{2.} The tolerance and allowance of JIS B 1514 are a little different from those of ABMA standards.

Table 3.3 Tolerance for radial bearings (Except tapered roller bearings) Table 3.3 (1) Inner rings

	ninal ore neter		Sir	ngle p	lane m		oore d	liame	ter dev	viation	1	Single radial plane bore diameter variation $V_{d m p}$														
0												dia	ame	ter se	eries	9	l max	diam	eter s	eries	s 0.1	max	diam	eter s	eries	2,3,4
m	m	clas	ss 0	cla	ss 6	clas	ss 5	cla	ss 4	cla	ss 2			class 5					class			class				
over	incl.	high	low	high	low	high	low	high		high	low			max					max		_	ŭ		max		_
80	120	0	-20	0	-15	0	-10	0	-8	0	-5	25	19	10	8	5	25	19	8	6	5	15	11	8	6	5
120	150	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	7	31	23	10	8	7	19	14	10	8	7
150	180	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	7	31	23	10	8	7	19	14	10	8	7
180	250	0	-30	0	-22	0	-15	0	-12	0	-8	38	28	15	12	8	38	28	12	9	8	23	17	12	9	8
250	315	0	-35	0	-25	0	-18	_	_	_	_	44	31	18	_	_	44	31	14	_	_	26	19	14	_	_
315	400	0	-40	0	-30	0	-23	_	_	_	_	50	38	23	_	_	50	38	18	_	_	30	23	18	_	_
400	500	0	-45	0	-35	_	_	_	_	_	_	56	44	_	_	_	56	44	_	_	_	34	26	_	_	_
500	630	0	-50	0	-40	_	_	_	_	_	_	63		_	_	_	63	50	_	_	_	38	30	_	_	_
630	800	0	-75	_	_	_	_	_	_	_	_	94	_	_	_	_	94	_	_	_	_	55	_	_	_	_
800	1,000	0	-100	_	_	_	_	_	_	_	_	125	_	_	_	_	125	_	_	_	_	75	_	_	_	_
1,000	1,250	0	-125	_	_	_	_	_	_	_	_	155	_	_	_	_	155	_	_	_	_	94	_	_	_	_
1,250	1,600	0	-160	_	_	_	_	_	_	_	_	200	_	_	_	_	200	_	_	_	_	120	_	_	_	_
1,600	2,000	0	-200	_	_	_	_	_	_	_	_	250	_	_	_	_	250	_	_	-	_	150	_	_	_	_

[•] The dimensional difference Δds of bore diameter to applied for class 4 and 2 is the same as the tolerance of dimensional difference Δdmp of average bore diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and to all the diameter series against Class 2.

Table 3.3 (2) Outer rings

	Nom			Single plane mean outside diameter deviation												ngle	radi	al pla	ne o	utsi	de d	liame	eter v	ariat	ion		
	outs diam						$\Delta \! D$ n	пр												V_D	p						
	L)													open type												
	mı	m											diameter series 9 max diameter serie						serie	s 0,1	0,1 max diameter series 2,3,4						
			cla	ss 0	cla	ss 6	clas	ss 5	cla	ıss 4	cla	ass 2	class	class	class	class	class 2	class	class	class	class	class 2	class	class 6	class 5	class 4	class
	over	incl.	high	low	high	low	high	low	high	low	high	low		U	max		2		J	max		2		ŭ	max		
	80	120	0	-15	0	-13	0	-10	0	-8	0	-5	19	16	10	8	5	19	16	8	6	5	11	10	8	6	5
	120	150	0	-18	0	-15	0	-11	0	-9	0	-5	23	19	11	9	5	23	19	8	7	5	14	11	8	7	5
	150	180	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	7	31	23	10	8	7	19	14	10	8	7
	180	250	0	-30	0	-20	0	-15	0	-11	0	-8	38	25	15	11	8	38	25	11	8	8	23	15	11	8	8
	250	315	0	-35	0	-25	0	-18	0	-13	0	-8	44	31	18	13	8	44	31	14	10	8	26	19	14	10	8
	315	400	0	-40	0	-28	0	-20	0	-15	0	-10	50	35	20	15	10	50	35	15	11	10	30	21	15	11	10
	400	500	0	-45	0	-33	0	-23	_	_	_	_	56	41	23	_	_	56	41	17	_	_	34	25	17	_	_
	500	630	0	-50	0	-38	0	-28	_	_	_	_	63	48	28	_	_	63	48	21	_	_	38	29	21	_	_
	630	800	0	-75	0	-45	0	-35	_	_	_	_	94	56	35	_	_	94	56	26	_	_	55	34	26	_	_
	800	1,000	0	-100	0	-60	_	_	_	_	_	_	125	75	_	_	_	125	75	_	_	_	75	45	_	_	_
1,	000	1,250	0	-125	_	_	_	_	_	_	_	_	155	_	_	_	_	155	_	_	_	_	94	_	_	_	_
1,	250	1,600	0	-160	_	_	_	_	_	_	_	_	200	_	_	-	-	200	_	_	-	_	120	-	-	_	_
1,	600	2,000	0	-200	_	_	_	_	_	_	_	_	250	_	_	_	_	250	_	_	_	_	150	_	_	_	_
2,	000	2,500	0	-250	_	_	_	_	-	_	-	_	310	-	_	_	-	310	_	_	_	-	190	_	-	_	_

The dimensional difference ΔDs of outer diameter to be applied for classes 4 and 2 is the same as the tolerance of dimensional difference ΔDmp of average outer diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and also to all the diameter series against Class 2.

Mean single plane bore diameter variation $V_{d\mathrm{mp}}$	$ \begin{array}{c c} \text{Inner ring} & \text{Face runout} \\ \text{radial runout} & \text{with bore} \\ \hline K_{\text{ia}} & S_{\text{d}} \\ \end{array} $	Inner ring axial runout (with side)	Inner ring width deviation Δ_{BS}	Inner ring width variation $V_{B m S}$
class class class class class 0 6 5 4 2 max	class	class class class 5 4 2 max	normal modified class 0,6 class 5,4 class 2 class 0,6 class 5,4 high low high low high low high low	class class class class class 0 6 5 4 2 max
15 11 5 4 2.5 19 14 7 5 3.5 19 14 7 5 3.5	25 13 6 5 2.5 9 5 2.5 30 18 8 6 2.5 10 6 2.5 30 18 8 6 5 10 6 4	9 5 2.5 10 7 2.5 10 7 5	0 -200 0 -200 0 -380 0 -380 0 -250 0 -250 0 -500 0 -380 0 -250 0 -250 0 -500 0 -380	25 25 7 4 2.5 30 30 8 5 2.5 30 30 8 5 4
23 17 8 6 4 26 19 9 — — 30 23 12 — —	40 20 10 8 5 11 7 5 50 25 13 — 60 30 15 — 15 — 15 —	13 8 5 15 — — 20 — —	0 -300 0 -350 0 -500 0 -500 0 -350 0 -350 — 0 -500 0 -500 0 -400 0 -400 — 0 -630 0 -630	30 30 10 6 5 35 35 13 — — 40 40 15 — —
34 26 — — — 38 30 — — — 55 — — —	65 35 — — — — — — — — — — — — — — — — — —		0 -450 0 -500 0 -750	50 45 — — — 60 50 — — — 70 — — —
75 — — — — 94 — — — — 120 — — — — 150 — — —	90 — — — — — — — — — — — — — — — — — — —		0 -1,000 — — — — 0 -1,250 — — — — 0 -1,600 — — — — 0 -2,000 — — — —	80 — — — — 100 — — — — 120 — — — 140 — — —

2 To be applied to deep groove ball bearing and angular contact ball bearings.
3 To be applied to individual raceway rings manufactured for combined bearing use.

Unit μ m

	Mean single plane outside diameter variation $V_{D{ m mp}}$					er rin	g rac	lial ru	inout		ide su clinati Sp	irface ion		side i al run S_{ea}	out		er ring variation $V_{C{ m s}}$	
class 0	class 6	class 5 max	class 4	class 2	class 0	class 6	class 5 max	class 4	class 2	class 5	class 4 max	class 2	class 5	class 4 max	class 2	class 5	class 4 max	class 2
11 14 19	10 11 14	5 6 7	4 5 5	2.5 2.5 3.5	35 40 45	18 20 23	10 11 13	6 7 8	5 5 5	9 10 10	5 5 5	2.5 2.5 2.5	11 13 14	6 7 8	5 5 5	8 8 8	4 5 5	2.5 2.5 2.5
23 26 30	15 19 21	8 9 10	6 7 8	4 4 5	50 60 70	25 30 35	15 18 20	10 11 13	7 7 8	11 13 13	7 8 10	4 5 7	15 18 20	10 10 13	7 7 8	10 11 13	7 7 8	4 5 7
34 38 55	25 29 34	12 14 18	_ _ _	_ _ _	80 100 120	40 50 60	23 25 30	_ _ _	_ _ _	15 18 20	_ _ _	_ _ _	23 25 30	_ _ _	_ _ _	15 18 20	_ _ _	_ _ _
75 94 120	45 — —	_ _ _	_ _ _	_ _ _	140 160 190	75 — —		_ _ _	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _
150 190	_	_	_	_	220 250	_	_	_	_	_ _	_	_	_ _	_	_	_ _	_	_

⑤ To be applied to deep groove ball bearings and angular contact ball bearings.

Table 3.4 Tolerance of tapered roller bearings (Metric system)
Table 3.4 (1) Inner rings

bo dian	ninal ore neter		_	e plane ameter Δa)		ngle ra diame				ean sin diame V_a	.		Inne	Ŭ	radial ı Kia	runout	run with	ice iout bore
	d	.1	- 0.01/	.1	- 5.0	-1-		class	class	class	class	class	class	class	class	class	class	class	class	S class	class
	ım 		s 0,6X	class			iss 4	0,6X	6	5	4	0,6X	6	5	4	0,6X	6	5	4	5	4
over	incl.	high	low	high	low	high	low		n	nax			n	nax			n	nax		m	nax
80	120	0	-20	0	-15	0	-10	20	15	11	8	15	11	8	5	30	13	8	5	9	5
120	180	0	-25	0	-18	0	-13	25	18	14	10	19	14	9	7	35	18	11	6	10	6
180	250	0	-30	0	-22	0	-15	30	22	17	11	23	16	11	8	50	20	13	8	11	7
050	045	_	0.5					0.5				00									
250	315	0	-35	_	_	_	_	35	_	_	_	26	_	_	_	60	_	_	_	_	_
315	400	0	-40	_	_	_	_	40	_	_	_	30	_	_	_	70	_	_	_	_	_
400	500	0	-45	_	_	_	_	45	_	_	_	34	_	_	_	80	_	_	_	_	_
500	630	0	-50	_	_	_	_	50	_	_	_	38	_	_	_	90	_	_	_	_	_
630	800	0	-75	_	_	_	_	75	_	_	_	56		_	_	105	_	_	_	_	_
800	1,000	٥	-100	_	_	_	_	100	_	_	_	75		_	_	120	_	_	_	_	_
000	1,000		100					100				73	_			120					
1,000	1,250	0	-125	_	_	_	_	125	_	_	_	94	_	_	_	140	_	_	_	_	_
1,250	1,600	0	-160	_	_	_	_	160	_	_	_	120	_	_	_	160	_	_	_	_	_

 $[\]textbf{①} \ \, \text{The dimensional difference } \Delta_{\textit{ds}} \ \, \text{of bore diameter to be applied for class 4 is the same as the tolerance of dimensional difference } \Delta_{\textit{dmp}} \ \, \text{of average bore diameter.}$

Table 3.4 (2) Outer rings

ou	minal Itside meter	,	Single plane mean outside diameter deviation \$\Delta_{Dmp}\$ class 0.6X class 5.6 class 4				de						ean sin utside (varia	diame		Oute	J	radial (Tea	runout	surf inclin	side ace ation
n	nm		,-				ass 4	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 5	class 4
over	incl.	high	low	high	low	high	low		n	nax			n	nax			n	nax		m	nax
80	120	0	-18	0	-13	0	-10	18	13	10	8	14	10	7	5	35	18	10	6	9	5
120	150	0	-20	0	-15	0	-11	20	15	11	8	15	11	8	6	40	20	11	7	10	5
150	180	0	-25	0	-18	0	-13	25	18	14	10	19	14	9	7	45	23	13	8	10	5
180	250	0	-30	0	-20	0	-15	30	20	15	11	23	15	10	8	50	25	15	10	11	7
250	315	0	-35	0	-25	0	-18	35	25	19	14	26	19	13	9	60	30	18	11	13	8
315	400	0	-40	0	-28	0	-20	40	28	22	15	30	21	14	10	70	35	20	13	13	10
400	500	0	-45	_	_	_	_	45	_	_	_	34	_	_	_	80	_	_	_	_	_
500	630	0	-50	_	_	_	_	50	_	_	_	38	_	_	_	100	_	_	_	_	_
630	800	0	-75	_	_	_	_	75	_	_	_	56	_	_	_	120	_	_	_	—	_
800	1,000	0	-100	_	_	_	_	100	_	_	_	75	_	_	_	140	_	_	_	_	_
1,000	1,250	0	-125	_	_	_	_	125	_	_	_	84	_	_	_	165	_	_	_	_	_
1,250	1,600	0	-160	_	_	_	_	160	_	_	_	120	_	_	_	190	_	_	_	_	_
1,600	2,000	0	-200	_	_	_	_	200	_	_	_	150	_	_	_	230	_	_	_	_	_

² The dimensional difference ΔD_S of outside diameter to be applied for class 4 is the same as the tolerance of dimensional difference ΔD_{mp} of average outside diameter.

³ $\Delta {\it D}s$ as the same as $\Delta {\it D}mp$ in the case of class 4.

Inner ring axial runout (with side)	Inner	ring width d Δ_{Bs}	eviation				ng, o	sembled r height	single deviation	tapered rolle height devia	d double rows or bearing or tion	Overall width of assembled tapered rolled or height dev	four rows bearing iation
class 4	class 0.6	class 6X	class 4.5	class	0.6	class	6X	class	s 4,5	Δ _{B1s} ,	Δ_{C1s} s 0,6,5	$\Delta_{B2s,}$ class (Δc_{2s}
max	high low	high low	high low	high	low	high		high	low	high	low	high	low
5	0 -200	0 -50	0 -400	+200	-200	+100	0	+200	-200	+400	-400	+500	-500
7	0 -250	0 -50	0 -500	+350	-250	+150	0	+350	-250	+500	-500	+600	-600
8	0 -300	0 -50	0 -600	+350	-250	+150	0	+350	-250	+600	-600	+750	-750
_	0 -350	0 -50		+350	-250	+200	0	_	_	+700	-700	+900	-900
_	0 -400	0 -50		+400	-400	+200	0	_	_	+800	-800	+1,000	-1,000
_	0 -450			_	_	_	_	_	_	+900	-900	+1,200	-1,200
_	0 -500			_	_	_	_	_	_	+1,000	-1,000	+1,200	-1,200
_	0 -750			_	_	_	_	_	_	+1,500	-1,500	+1,500	-1,500
_	0 -1,000			_	_	_	-	_	_	+1,500	-1,500	+1,500	-1,500
_	0 -1,200			_	_	_	_	_	_	+1,500	-1,500	+1,500	-1,500
_	0 -1,500			_	_	_	_	_	_	+1,500	-1,500	+1,500	-1,500

Unit μ m

				μ μ
Outer ring axial runout S_{ea}	Outer	ring wid Δα		riation
class 4	class 0,	6,5,4	clas	s 6X
max	sup.	inf.	sup.	inf.
6 7 8 10 10 13 — — — —	Identica inner rir same be	ig of	0 0 0 0 0 0 0	-100 -100 -100 -100 -100 -100 -100
_				

To be applied for nominal bore diameters of 406.400mm (16 inch) or lass.

Table 3.4 (3) Effective width of outer and inner rings with roller

Unit μ m

									,
Nom bo diam	re	Effective of roller a of tapere	and inner	ring asse	embly			bearing ridth devi	
á	l		ΔT 1	s			ΔT	2s	
m	m	clas	s 0	class	6X	clas	s 0	class	6X
over	incl.	high	low	high	low	high	low	high	low
80	120	+100	-100	+50	0	+100	-100	+50	0
120	180	+150	-150	+50	0	+200	-100	+100	0
180	250	+150	-150	+50	0	+200	-100	+100	0
250	315	+150	-150	+100	0	+200	-100	+100	0
315	400	+200	-200	+100	0	+200	-200	+100	0

Table 3.5 Tolerance for tapered roller bearings of inch system

Table 3.5 (1) Inner rings Unit μ m

Nominal be	ore diameter				Single bo	ore diameter	deviation				
	d					Δd s					
n	nm										
		Clas	ss 4	Clas	s 2	Cla	ss 3	Clas	s 0	Class	00
over	incl.	high	low	high	low	high	low	high	low	high	low
76.2	266.7	+25	0	+25	0	+13	0	+13	0	+8	0
266.7	304.8	+25	0	+25	0	+13	0	+13	0	-	-
304.8	609.6	+51	0	+51	0	+25	0	-	-	-	-
609.6	914.4	+76	0	_	_	+38	0	-	_	_	_
914.4	1,219.2	+102	0	_	_	+51	0	-	_	-	-
1,219.2	_	+127	0	-	-	+76	0	_	_	_	_

Table 3.5 (2) Outer rings

-	abic 010 (2) 01	ator ringo										Unit μm
	Nominal out	side diameter				Single outs	ide diamete	r deviation				
	i	D					$\Delta \! \! \! \! \! \! \! \! \! \Delta$					
	m	nm										
			Cla	ss 4	Clas	ss 2	Cla	ss 3	Clas	ss 0	Class	s 00
	over	incl.	high	low	high	low	high	low	high	low	high	low
	_	266.7	+25	0	+25	0	+13	0	+13	0	+8	0
	266.7	304.8	+25	0	+25	0	+13	0	+13	0	-	-
	304.8	609.6	+51	0	+51	0	+25	0	-	-	-	-
	609.6	914.4	+76	0	+76	0	+38	0	_	_	_	_
	914.4	1,219.2	+102	0	_	-	+51	0	_	-	-	-
	1,219.2	_	+127	0	-	-	+76	0	-	-	-	-

Table 3.5 (3) Effective width of inner rings with roller and outer rings

b	minal ore meter	out	ninal side neter	(Overall widt	h deviation		oled single ro Δ_{Ts}	w tapered	roller beari	ng	Overall widt of assemb tapered rolle	led 4-row
	d	i	D									Δ_{B2s} .	Δ_{C2s}
n	nm	m	ım										
				Clas	ss 4	Cla	ss 2	Cla	iss 3	Class	s 0,00	Class	4,2,3,0
over	incl.	over	incl.	high	low	high	low	high	low	high	low	high	low
_	101.6			+203	0	+203	0	+203	-203	+203	-203	+1,520	-1,520
101.6	304.8			+356	-254	+203	0	+203	-203	+203	-203	+1,520	-1,520
304.8	609.6	_	508.0	+381	-381	+381	-381	+203	-203	-	_	+1,520	-1,520
304.8	609.6	508.0	_	+381	-381	+381	-381	+381	-381	_	_	+1,520	-1,520
609.6	-			+381	-381	-	-	+381	-381	-	-	+1,520	-1,520

Table 3.5 (4) Radial deflection of inner and outer rings

Unit μ m Nominal outside diameter Inner ring radial runout K_{ia} DOuter ring radial runout $\it K_{\rm ea}$ mm Class 4 Class 2 Class 3 Class 0 Class 00 max over incl. 304.8 51 38 8 4 2 304.8 609.6 51 38 18 76 51 51 609.6 914.4 914.4 76 76

											Unit μm
		width deviati				Таре	ered roller be	aring outer	ring effective	width devia	ıtion
	ring ass	sembly of tap	ered roller b	earing				$\Delta \tau$	2s		
		ΔT	1s								
Clas	s 4	Clas	ss 2	Cla	ss 3	Clas	s 4	Cla	ss 2	Cla	ss 3
high	low	high	low	high	low	high	low	high	low	high	low
+102	0	+102	0	+102	-102	+102	0	+102	0	+102	-102
+152	-152	+102	0	+102	-102	+203	-102	+102	0	+102	-102
-	-	+178	-178 ¹⁰	+102	-102 ●	_	-	+203	-203 ¹	+102	-102 ¹⁰
_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_

¹ To be applied for nominal bore diameters of 406.400 mm (16 inch) or less.

Table 3.6 Tolerance of thrust ball bearings

Table 3.6 (1) Shaft washer

Unit μm

	ominal bore ameter	Single		ore diameter o	deviation	bore diame	dial plane eter variation		st bearing sha washer racev	vay) thicknes	
	d					V	⁷ dp		S	i	
	mm	Cla	ass	Cla	ISS	Class	Class	Class	Class	Class	Class
		0,6	6,5	4	1	0,6,5	4	0	6	5	4
over	incl.	high	low	high	low	m	ıax		m	ıax	
80	120	0	-20	0	-15	15	11	15	8	4	3
120	180	0	-25	0	-18	19	14	15	9	5	4
180	250	0	-30	0	-22	23	17	20	10	5	4
250	315	0	-35	0	-25	26	19	25	13	7	5
315	400	0	-40	0	-30	30	23	30	15	7	5
400	500	0	-45	0	-35	34	26	30	18	9	6
500	630	0	-50	0	-40	38	30	35	21	11	7
630	800	0	-75	0	-50	55	_	40	25	13	8
800	1,000	0	-100	_	_	75	_	45	30	15	_

Table 3.6 (2) Housing washer

Unit μ m

ou dia	minal Itside .meter	Single pl		itside diametei ∆ _{Dmp}	r deviation	outside	dial plane diameter ation	Thrust		ing washer ra variation	aceway
	D	CI	ass	Ck	ass	V Class	7 _{Dp} Class	Class	Class	Class	Class
r	nm										
		0,	6,5		4	0,6,5	4	0	6	5	4
over	incl.	high	low	high	low	m	ıax		m	ıax	
80	120	0	-22	0	-13	17	10				
120	180	0	-25	0	-15	19	11				
180	250	0	-30	0	-20	23	15				
250	315	0	-35	0	-25	26	19				
315	400	0	-40	0	-28	30	21		According to		
400	500	0	-45	0	-33	34	25		of S_1 against		
500	630	0	-50	0	-38	38	29		of the same b	pearings	
		_		0							
630	800	0	-75	0	-45	55	34				
800	1,000	0	-100	0	-60	75	45				
1,000	1,250	0	-125	_	_	95	_				

Table 3.6 (3) Height of bearings center washer

		_	Unit μm
bo dian	ninal ore neter d	Single dire	ection type ① □
over	incl.	high	low
80	120	0	-150
120	180	0	-175
180	250	0	-200
250	315	0	-225
315	400	0	-300
400	500	0	-350
500	630	0	-400
630	800	0	-500
800	1,000	0	-600

¹ This standard is applied to flat back face bearing of class 0.

Single plane mean

Table 3.7 Tolerance of spherical thrust roller bearing

Table 3.7 (1) Shaft washer

able 3.7 (1) Shart washer Unit μ m									
Nominal bore diameter d mm		Single plane mean bore diameter deviation Δ_{dmp}		Single radial plane bore diameter variation V_{dp}	Face runout with bore $S_{ m d}$	single o	eviation of direction opearing		
over	incl.	high	low	max	max	high	low		
80	120	0	-20	15	25	+200	-200		
120	180	0	-25	19	30	+250	-250		
180	250	0	-30	23	30	+300	-300		
250	315	0	-35	26	35	+350	-350		
315	400	0	-40	30	40	+400	-400		
400	500	0	-45	34	45	+450	-450		
500	630	0	-50	38	50	+500	-500		
630	800	0	-75	55	60	+750	-750		

outside diameter outside diameter deviation d ΔD mp mm high incl. low over 120 180 0 -25 180 250 0 -30 250 315 0 -35 315 400 0 -40 400 500 0 -45

Table 3.7 (2) Housing washer

Nominal

500

630

800

1,000

1,250

630

800

1,000

1,250

1,600

Table 3.8 Tolerance of thrust tapered roller bearings

Table 3.8 (1) Shaft washer (metric series)

	` '	•			Unit μm
Nominal outside diameter d mm		Single plane mean bore diameter deviation		Bearing hight deviation Δ_{Ts}	
over	incl.	high	low	high	low
80 120 180 250 315 400	120 180 250 315 400 500	0 0 0 0	-20 -25 -30 -35 -40 -45	0 0 0 0	-150 -175 -200 -225 -300 -350
500 630 800	630 800 1,000	0 0 0	-50 -75 -100	0 0 0	-400 -500 -600

Table 3.8 (3) Shaft washer (inch series)

			-		Unit μ m
Nom bore di	ameter	Single plane mean bore diameter deviation		Bearing hight deviation Δ_{T} s	
over	incl.	Δd mp		Δ	15
mm	mm	high	low	high	low
-	304.800	+25	0	+381	-381
304.800	609.600	+51	0	+381	-381
609.600	914.400	+76	0	+381	-381
914.400	1,219.200	+102	0	+381	-381

Table 3.8 (2) Housing washer (metric series)

Unit μ n

0

0

0

0

0

-50

-75

-100

-125

-160

			Unit μm	
	minal diameter	Single plane mean outside diameter deviation		
r	nm	Δ	<i>D</i> mp	
over	incl.	high	low	
180	250	0	-30	
250	315	0	-35	
315	400	0	-40	
400	500	0	-45	
500	630	0	-60	
630	800	0	-75	
800	1,000	0	-100	
1,000	1,250	0	-125	

Table 3.8 (4) Housing washer (inch series)

Unit μ n

			Oπ μπ	
outside	ninal diameter D	outside	ane mean diameter ation	
over	incl.	Δ_{D} mp		
mm	mm	high	low	
-	304.800	+25	0	
304.800	609.600	+51	0	
609.600	914.400	+76	0	
914.400 1,219.200	1,219.200	+102 +127	0	
,		_	-	

3.2 Limits and tolerances for chamfer and tapered bore

Table 3.9 Allowable critical-value of bearing chamfer

Table 3.9 (1) Radial bearing (except tapered roller bearing)

Unit mm							
γ's min [●]	Nominal bore diameter		Ƴs max O	r r 1s max			
or			Radial	Axial			
₹1s min	over	incl.	direction	direction			
0.6	-	40	1	2			
	40		1.3	2			
1	-	50	1.5	3			
	50		1.9	3			
1.1	-	120	2	3.5			
	120		2.5	4			
1.5	_	120	2.3	4			
1.0	120		3	5			
	_	80	3	4.5			
2	80	220	3.5	5			
	220	-	3.8	6			
2.1	-	280	4	6.5			
2.1	280	_	4.5	7			
	_	100	3.8	6			
2.5	100	280	4.5	6			
	280	-	5	7			
3	-	280	5	8			
	280	_	5.5	8			
4	-	_	6.5	9			
5	-		8	10			
6	-	_	10	13			
7.5	_	_	12.5	17			
9.5	_	_	15	19			
12	_	_	18	24			
15	-	_	21	30			
19	-	-	25	38			

1 These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table.

Table 3.9 (2) Tapered roller bearings of metric system

	mm	

				Unit mm
rs min ♥ Or rs min	Nomina diameter "d" or r outside dia OVEr	Nominal bore $rac{f 0}$ itameter of bearing "d" or nominal staide diameter "D" over incl. $rac{f 0}$ Radial A direction direction		
0.3	-	40	0.7	1.4
	40		0.9	1.6
0.6	_	40	1.1	1.7
	40		1.3	2
1	_	50	1.6	2.5
	50	_	1.9	3
	-	120	2.3	3
1.5	120	250	2.8	3.5
	250	-	3.5	4
	-	120	2.8	4
2	120	250	3.5	4.5
	250	-	4	5
	_	120	3.5	5
2.5	120	250	4	5.5
	250	-	4.5	6
	_	120	4	5.5
0	120	250	4.5	6.5
3	250	400	5	7
	400	-	5.5	7.5
	_	120	5	7
	120	250	5.5	7.5
4	250	400	6	8
	400	_	6.5	8.5
_	_	180	6.5	8
5	180	_	7.5	9
	_	180	7.5	10
6	180	_	9	11

² These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table.

Note: This standard will be applied to the bearings whose dimensional series (refer to the dimensional table) are specified in the standard of ISO $355\,$ or JIS B 1512. Please consult NTN Engineering on non-standard bearings.

 $[\]ensuremath{\mathbf{3}}$ Inner rings shall be in accordance with the division of "\$d\$" and outer rings with that of "D".

Table 3.9 (3) Thrust bearings

Unit mm

$r_{ m smax}$ or $r_{ m 1smax}$ Radial and axial direcition
1.5
2.2
2.7
3.5
4
4.5
5.5
6.5
8
10
12.5
15
18
21
25

These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table.

Theoretical tapered hole

Tapered hole having dimensional difference of the average bore diameter within the flat surface

Table 3.10 (1) Tolerance and allowable values (Class 0) of tapered bore of radial bearings

				Unit μ		
d mm		Δd mp		Δd 1mp	- Δd mp	<i>V</i> _{dp} 0 2
over	incl.	high	low	high	low	max
80	120	+ 54	0	+ 35	0	22
120	180	+ 63	0	+ 40	0	40
180	250	+ 72	0	+ 46	0	46
250	315	+ 81	0	+ 52	0	52
315	400	+ 89	0	+ 57	0	57
400	500	+ 97	0	+ 63	0	63
500	630	+110	0	+ 70	0	70
630	800	+125	0	+ 80	0	_
800	1,000	+140	0	+ 90	0	-
1,000	1,250	+165	0	+105	0	_
1,250	1,600	+195	0	+125	0	-

Table 3.10 (2) Allowable variations for radial bearing inner ring tapered bores standard taper ratio 1:30 (Class 0)

Units μ m

	Offits #111					
d		Δ_d mp		Δd 1mp – Δd mp		<i>V</i> _{dp} 0 2
m	m					
over	incl.	high	low	high	low	max
80	120	+20	0	+35	0	22
120	180	+25	0	+40	0	40
180	250	+30	0	+46	0	46
250	315	+35	0	+52	0	52
315	400	+40	0	+57	0	57
400	500	+45	0	+63	0	63
500	630	+50	0	+70	0	70

- Applies to all radial flat planes of inner ring tapered bore.
- 2 Does not apply to diameter series 7 and 8.

Note: Quantifiers

For a standard taper ratio of 1:12 $d1 = d + \frac{1}{12}B$

For a standard taper ratio of 1:30 $d1 = d + \frac{1}{30} B$

 $\Delta_{\textit{timp}} \quad \hbox{: Dimensional difference of the average bore } \\ \quad \text{diameter within the flat surface at the theoretical } \\ \quad \text{small end of the tapered bore.}$

\(\Delta_{\text{d1mp}}\) Dimensional difference of the average bore diameter within the flat surface at the theoretical large end of the tapered bore.

 V_{dp} : Unevenness of the bore diameter with the flat surface

B: Nominal width of inner ring

 α : Half of the tapered bore's nominal taper angle For a standard taper ratio of 1:12 α = 2°23′9.4″ For a standard taper ratio of 1:30 α = 0°57′7.4″

4. Bearing Fits

4.1 Interference

For rolling bearings, inner and outer rings are fixed on the shaft or in the housing so that relative movement does not occur between fitted surfaces during operation or under load. This relative movement (referred to as "creep") between the fitted surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. To help prevent this creeping movement, bearing rings and the shaft or housing are installed with one of three interference fits, a "tight fit" (also called shrink fit), "transition fit," or "loose fit" (also called clearance fit), and the degree of interference between their fitted surfaces varies.

The most effective way to fix the fitted surfaces between a bearing's raceway and shaft or housing is to apply a "tight fit." The advantage of this tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; and when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases.

4.2 The necessity of a proper fit

In some cases, improper fit may lead to damage and shorten bearing life, therefore it is necessary to make a careful analysis in selecting a proper fit. Some of the negative conditions caused by improper fit are listed below.

- Raceway cracking, early peeling and displacement of raceway
- Raceway and shaft or housing abrasion caused by creeping and fretting corrosion
- Seizing caused by loss of internal clearances
- Increased noise and lowered rotational accuracy due to raceway groove deformation

4.3 Fit selection

Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of:

- Shaft and housing material, wall thickness, finished surface accuracy, etc.
- Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.)

4.3.1 "Tight fit," "transition fit," or "loose fit"

(1) For raceways under rotating loads, a tight fit is necessary. (refer to **Table 4.1**) "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction. For raceways under static loads, on the other hand, a loose fit is sufficient.

(Example) Rotating inner ring load = the direction of the radial load on the inner ring is rotating relatively

(2) For non-separable bearings, such as deep groove ball bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit.

Table 4.1 Radial load and bearing fit

Illustration	Bearing rotation	Ring load	Fit					
Static load	Rot Our	er ring: tatring Rotating inner ter ring:	Inner ring : Tight fit					
Unbalanced load	Sta Ou	er ring: ttionary ter ring: ter ring: tating	Outer ring : Loose fit					
Static load	Sta Ou	ter ring: Static inner ter ring: ring load	Inner ring : Loose fit					
Unbalanced load	Rot Our	er ring: tating ring load ter ring: ttionary	Outer ring : Tight fit					

NTN

4.3.2 Recommended Fits

Bearing fit is governed by the selection tolerances for bearing shaft diameters and housing bore diameters.

Widely used fits for 0 Class tolerance bearings and various shaft and housing bore diameter tolerances are shown in **Fig. 4.1**.

Generally-used, standard fits for most types of bearings and operating conditions are shown in **Tables 4.2 - 4.6**.

Table 4.2: Fits for radial bearings

Table 4.3: Fits for thrust bearings

Table 4.4: Fits for electric motor bearings

Table 4.5: Fits for inch series tapered roller bearings (ANSI Class 4)

Table 4.6: Fits for inch series tapered roller bearings (ANSI Class 3 and 0)

Table 4.5. shows fits and their numerical values. For special fits or applications, please consult **NTN** Engineering.

4.3.3 Interference minimum and maximum values

The following points should be considered when it is necessary to calculate the interference for an application:

- In calculating the minimum required amount of interference keep in mind that:
 - 1) interference is reduced by radial loads
 - 2) interference is reduced by differences between bearing temperature and ambient temperature
 - interference is reduced by variation of fitted surfaces
- Maximum interference should be no more than 1:1000 of the shaft diameter or outer diameter.
 Required interference calculations are shown below.

(1) Radial loads and required interference

Interference between inner rings mounted on solid shafts is reduced when acted upon by radial loads. Calculation of the minimum required amount of interference in such cases is shown in formulae (4.1) and (4.2).

$$F_{r} \leq 0.3 C_{or}$$

$$\Delta_{dF} = 0.08 (d \cdot F_{r}/B)^{1/2}$$

$$= 0.25 (d \cdot F_{r}/B)^{1/2}$$

$$F_{r} > 0.3 C_{or}$$

$$\Delta_{dF} = 0.02 (F_{r}/B)$$

$$= 0.2 (F_{r}/B)$$

$$N_{kqf}$$

$$N_{kqf}$$

Where.

 Δ_{dF} : Required effective interference for load μ m

d: Nominal bore diameter mm

B: Inner ring width mm F_r : Radial load N {kgf}

 C_{or} : Basic static rated load N {kgf}

(2) Temperature difference and required interference

Interference between inner rings and steel shafts is reduced as a result of temperature increases (difference between bearing temperature and ambient temperature, $\Delta T)$ caused by bearing rotation. Calculation of the minimum required amount of interference in such cases is

shown in formulae (4.3).

 $\Delta_{dT} = 0.0015 d \Delta T$ (4.3)

 Δ_{aT} : Required effective interference for temperature difference μ m

 ΔT : Difference between bearing temperature and ambient temperature $^{\circ}C$

d: Bearing bore diameter mm

(3) Fitted surface variation and required interference

Interference between fitted surfaces is reduced by roughness and other slight variations of these surfaces which are flattened in the fitting process. The degree of reduced interference depends upon the finish treatment of these surfaces, but in general it is necessary to assume the following interference reductions.

For ground shafts: $1.0\sim2.5 \mu$ m For lathed shafts: $5.0\sim7.0 \mu$ m

(4) Maximum interference

When bearing rings are installed with an interference fit, tension or compression stress may occur along their raceways. If interference is too great, this may cause damage to the rings and reduce bearing life. For these reasons, maximum interference should not exceed the previously mentioned ratio of 1:1,000 of shaft or outside diameter.

4.3.4 Other details

- (1) Tight interference fits are recommended for,
 - Operating conditions with large vibration or shock loads
 - Applications using hollow shafts or housings with thin walls
 - Applications using housings made of light alloys or plastic
- (2) Loose interference fits are preferable for,
 - Applications requiring high running accuracy
 - Applications using small sized bearings or thin walled bearings

Fig. 4.1

- (3) Consideration must also be given to the fact that fit selection will affect internal bearing clearance selection. (refer to page insert A-29)
- (4) A particular type of fit is recommended for SL type cylindrical roller bearings.

Table 4.2 General standards for radial bearing fits (JIS Class 0, 6, 6X)

Table 4.2 (1) Tolerance class of shafts commonly used for radial bearings (classes 0, 6X and 6)

Nature	- :.	Load conditions,	Load conditions, Ball beari		Cylindrical roller Tapered roller b		Self-aligning rolle	r bearings	Remarks
of load	Fit	magnitude	Shaft diameter mm over incl	Tolerance class	Shaft diameter mm over incl	Tolerance class	Shaft diameter mm over incl	Tolerance class	Hemarks
Inde Rc	=	Light or fluctuating variable load	18 ~ 100 100 ~ 200	js6 k6	40 ~ 140 140 ~ 200	k6 m6			When greater accuracy is required js5, k5, and m5 may be substituted for js6, k6, and m6.
Indeterminate direction load Rotating inner ring load	Tight fit / Transition t	Normal load	18 ~ 100 100 ~ 140 140 ~ 200 200 ~ 280	k5 m5 m6 n6	40 ~ 100 100 ~ 140 140 ~ 200 200 ~ 400	m5 m6 n6 p6	$40 \sim 65$ $65 \sim 100$ $100 \sim 140$ $140 \sim 280$ $280 \sim 500$	m5 m6 n6 p6 r6	Alteration of inner clearances to accommodate fit is not a consideration with single-row angular contact bearings and tapered roller bearings. Therefore, k5 and m5 may be substituted for k6 and m6.
	Ħ	Heavy load or shock load			50 ~ 140 140 ~ 200 200 ~	n6 p6 r6	50 ~ 100 100 ~ 140 140 ~ 200	n6 p6 r6	Use bearings with larger internal clearances than CN clearance bearings.
Static inner ring load	Transition	Inner ring axial displacement possible	All shaft	g6	All shaft diameters	g6	All shaft	g6	When greater accuracy is required use g5. For large bearings, f6 may be used.
inner load	tion fit	Inner ring axial displacement unnecessary	diameters	h6		h6	diameters	h6	When greater accuracy is required use h5.
Centric axial load only		All loads	All shaft diameters	js6	All shaft diameters	js6	All shaft diameters	js6	General; depending on the fit, shaft and inner rings are not fixed.

Table 4.2 (2) Fit with shaft (fits for tapered bore bearings (Class 0) with adapter assembly/withdrawal sleeve)

All loads	All bearing types	All aboft diameters	Tolerance	h9 / IT5 	General applications
All loads	All bearing types	All shaft diameters	-1	h10/ IT7	Transmission shafts, etc.

1 Standards for light loads, normal loads, and heavy loads

Light loads: equivalent radial load $\leq 0.06 C_{\rm r}$

 \langle Normal loads: 0.06 $C_{\rm r}$ < equivalent radial load \leq 0.12 $C_{\rm r}$

Heavy loads: 0.12 C_r < equivalent radial load

2 IT5 and IT7 show shaft roundness tolerances, cylindricity tolerances, and related values.

Note: All values and fits listed in the above tables are for solid steel shafts.

Table 4.2 (3) Housing fits

Nature of load	Housing	Fit	Load conditions, magnitude	Tolerance class	Outer ring axial displacement ^❷	Remarks
			All loads	H7	Displacement possible	G7 also acceptable for large type bearings as well as outer rings and
	Solio	Lс	All loads	G7	Easy displacement	housings with large temperature differences.
R	Solid or split housing	Loose	Light ¹ to normal load	H8	Displacement possible	_
Rotating static	split	Ħ	Shaft and inner rings	G7	Easy displacement	F7 also acceptable for large type bearings as well as outer rings and housings with large
ic o			reach high temperature	F7	Easy displacement	temperature differences.
uter	uter		Requires silent operation	H6	Displacement possible	
g outer ring load c outer ring load		Transition or loose fit	High rotation accuracy required with light to	Js6	Displacement not possible (in principle)	Applies primarily to ball bearings
or		on fit	normal loads	K6	Displacement not possible (in principle)	Applies primarily to roller bearings
ind _		tra	Light to normal load	Js7	Displacement possible	
Direction indeterminate load	Solid housing	Tight to transition	Normal to heavy load	K7	Displacement not possible (in principle)	When greater accuracy is required substitute Js6 for Js7 and K6 for K7.
	hou	fit	Heavy shock load	M7	Displacement not possible	
ring	sing		Light or variable load	M7	Displacement not possible	
er ring ad or rotati		Tight fit	Normal to heavy load	N7	Displacement not possible	Applies primarily to ball bearings
Inner ring static load or outer ring rotating load		t fit	Heavy load (thin wall housing) or heavy shock load	P7	Displacement not possible	Applies primarily to roller bearings
Centered axial load only - Loose fit		Loose fit	_	provide	a tolerance class that will clearance between outer d housing.	_

1 Standards for light loads, normal loads, and heavy loads

Light loads: equivalent radial load $\leq 0.06 C_r$

Heavy loads: 0.12 $C_{\rm r}$ < equivalent radial load

Notes: 1. All values and fits listed in the above tables are for cast iron or steel housings.

2. In cases where only a centered axial load acts on the bearing, select a tolerance class that will provide clearance in the axial direction for the outer ring.

Normal loads: 0.06 C_r < equivalent radial load \leq 0.12 C_r

² Indicates whether or not outer ring axial displacement is possible with non-separable type bearings.

Table 4.3 Standard fits for thrust bearings (JIS Class 0 and 6)

Table 4.3 (1) Shaft fits

Bearing type		Load conditions	Fit	Shaft diameter mm over incl	Tolerance class
All thrust bearings		Centered axial load only	Transition fit	All sizes	js6 or h6
	လ္ခ	Inner ring static load	Transition fit	All sizes	js6
Self-aligning roller thrust bearings	Combined load	Inner ring rotating load or direction indeterminate load	Transition fit Tight fit	− ~ 200 200 ~ 400 400 ~	k6 or js6 m6 or k6 n6 or m6

Table 4.3 (2) Housing fits

Bearing type		Load conditions	Fit	Tolerance class	Remarks	
All thrust	Cal	ntered axial load only		Select a tolerance class that will provide clearance between outer ring and housing.		
bearings	Cei	ntered axial load only	Loose fit	H8	Greater accuracy required with thrust ball bearings	
Self-aligning	Com	Outer ring static load		H7		
roller thrust	Combined	Direction Indeterminate		K7	Normal operating conditions	
bearings	load	load or outer ring rotating load	Transition fit	M7	For relatively large radial loads	

Note: All values and fits listed in the above tables are for cast iron or steel housings.

Table 4.4 Fits for electric motor bearings

		ft fits	Housing bore diameter		
Bearing type	Shaft diameter mm over incl.	Tolerance class	Housing fits	Tolerance class	
Deep groove ball bearings	18 ~100 100 ~160	k5 m5	All sizes	H6 or J6	
Cylindrical roller bearings	40 ~160 160 ~200	m5 n6	All sizes	H6 or J6	

Table 4.5 Fits for inch series tapered roller bearing (ANSI class 4)

Table 4.5 (1) Fit with shaft

Load conditions		Shaft diameter $d \mod$ over incl.	Cone bore tolerance Δ_{ds} high low		Shaft to	olerance low	Extreme max	e fits ¹⁾	Remark	
Rotating	Normal loads, no shock	$76.2 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +51 +76	0 0 0	+ 64 +127 +190	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
cone load	Heavy loads or shock loads	$76.2 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +51 +76	0 0 0	Use average tight cone fit of 0.5 μ m/mm, (0.0005 inch/inch) of cone bore, use a minimum fit of 25 μ m, 0.0010 inch tight.					
Stationary	Cone axial displacement on shaft necessary	$76.2 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +51 +76	0 0 0	+ 25 + 51 + 76	0 0 0	25T ~ 51T ~ 76T ~	_	Not applicable	
Stationary cone load	Cone axial displacement on shaft unnecessary	$76.2 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +51 +76	0 0 0	0 0 0	- 25 - 51 - 76	0 ~ 0 ~ 0 ~	102L	when impact load is applied.	

Table 4.5 (2) Fit with housing

Unit μ m

	Offic pin								
	Load conditions	Housing bore diameter D mm over incl.	Cup O.D. tolerance Δ_{Ds} high low		Housing bore tolerance		Extreme fits max min	Types of fit	
C	Light and normal loads: cup easily axially displaceable	$76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +25 +51 +76	0 0 0	+ 76 + 76 +152 +229	+ 51 + 51 +102 +152	$26L \sim 76L$ $26L \sim 76L$ $51L \sim 152L$ $76L \sim 229L$	loose fit	
		$76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +25 +51 +76	0 0 0 0	+ 25 + 51 + 76 +127	0 0 + 26 + 51	$25T \sim 25L$ $25T \sim 51L$ $25T \sim 76L$ $25T \sim 127L$	tight interference fit	
G	Heavy loads: cup not axially displaceable	$76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +25 +51 +76	0 0 0 0	- 25 - 25 - 25 - 25	- 51 - 51 - 76 -102	$76T \sim 25T$ $76T \sim 25T$ $127T \sim 25T$ $178T \sim 25T$	Ai-pla fia	
cup load	Cup not axially displaceable	$76.2 \sim 127.0$ $127.0 \sim 304.8$ $304.8 \sim 609.6$ $609.6 \sim 914.4$	+25 +25 +51 +76	0 0 0 0	- 25 - 25 - 25 - 25	- 51 - 51 - 76 -102	$76T \sim 25T$ $76T \sim 25T$ $127T \sim 25T$ $178T \sim 25T$	tight fit	

¹ T= tight, L= loose

Table 4.6 Fits for inch series tapered roller bearing (ANSI class 3 and 0)

Table 4.6. (1) Fit with shaft

			J j					
Load conditions		Shaft diameter	tolera	Cone bore tolerance		lerance	Extreme fits ¹⁾	
		over incl.	high	low	high	low	max min	
Rotating cone load	Precision	~ 304.8	+13	0	+ 30	+ 18	30T \sim 5T	
	machine tool spindles	304.8 ~ 609.6	+25	0	+ 64	+ 38	64T \sim 13T	
ing		609.6 ~ 914.4	+38	0	+102	+ 64	102T \sim 26T	
con	Heavy loads,	76.2 ~ 304.8	+13	0	Use minimum tight cone fit			
e	or high speed	304.8 ~ 609.6	+25	0	of 0.25	μm/mm 0	.00025 inch/inch	
ad	or shock	609.6 ∼ 914.4	+38	0	of cone	bore.		
Stationary cone load	Precision	~ 304.8	+13	0	+ 13	0	30T ∼ 5T	
ē	machine tool	304.8 ~ 609.6	+25	0	+ 25	0	64T \sim 13T	
nary pad	spindles	609.6 ~ 914.4	+38	0	+102	0	102T ∼ 26T	

Note: Must be applied for maximum bore dia. 241.300mm (9.500 inch) in case of class 0 product.

Table 4.6 (2) Fit with housing

Unit μ m

							- · · · · · · · · · · · · · · · · · · ·	
Load conditions		Housing bore diameter D mm over incl.	Cup O.D. tolerance Δ_{Ds} high low		Housing bore tolerance		Extreme fits max min	Type of fit
		~ 152.4	+13	0	+ 38	+ 25	12L ∼ 38L	
	Electing	152.4 ~ 304.8	+13	0	+ 38	+ 25	12L \sim 38L	
	Floating	304.8 ~ 609.6	+25	0	+ 64	+ 38	13L ∼ 64L	
		609.6 ~ 914.4	+38	0	+ 89	+ 51	13L ∼ 89L	
		~ 152.4	+13	0	+ 25	+ 13	0 ~ 25L	loose fit
တ္သ	Clamped	152.4 ~ 304.8	+13	0	+ 25	+ 13	0 ~ 25L	
atic		304.8 ~ 609.6	+25	0	+ 51	+ 25	$0 \sim 51L$	
Stationary cup load		609.6 ~ 914.4	+38	0	+ 76	+ 38	$0 \sim 76L$	
Ź								
은		~ 152.4	+13	0	+ 13	0	13T \sim 13L	
5	Adjustable	152.4 ~ 304.8	+13	0	+ 13	0	13T \sim 13L	tight
ac	Adjustable	304.8 ~ 609.6	+13	0	+ 25	0	25T \sim 25L	interference fit
_		609.6 ~ 914.4	+38	0	+ 38	0	38T \sim 38L	
		~ 152.4	+13	0	0	- 13	26T ~ 0	
	Nonadjustable	152.4 ~ 304.8	+13	0	0	- 25	38T ∼ 0	
	or in carriers	304.8 ~ 609.6	+25	0	0	- 25	50T ~ 0	
		609.6 ~ 914.4	+38	0	0	- 38	76T ~ 0	
		~ 152.4	+13	0	- 13	- 25	38T ∼ 13T	tight fit
임무			_			-		
ptat	Nonadjustable	152.4 ~ 304.8	+13	0	- 13	- 38	51T ∼ 13T	
ing	Nonadjustable or in carriers	304.8 ~ 609.6	+25	0	- 13	- 38	63T \sim 13T	
g		609.6 ~ 914.4	+38	0	- 13	- 51	89T \sim 13T	

T= tight, L= loose

Note: Must be applied for maximum cup OD 304.800mm (12.000 inch) in case of class 0 product.

5. Bearing Internal Clearance

5.1 Bearing internal clearance

Bearing internal clearance (initial clearance) is the amount of internal clearance a bearing has before being installed on a shaft or in a housing.

As shown in **Fig. 5.1**, when either the inner ring or the outer ring is fixed and the other ring is free to move, displacement can take place in either an axial or radial direction. This amount of displacement (radially or axially) is termed the internal clearance and, depending on the direction, is called the radial internal clearance or the axial internal clearance.

When the internal clearance of a bearing is measured, a slight measurement load is applied to the raceway so the internal clearance may be measured accurately. However, at this time, a slight amount of elastic deformation of the bearing occurs under the measurement load, and the clearance measurement value (measured clearance) is slightly larger than the true clearance. This discrepancy between the true bearing clearance and the increased amount due to the elastic deformation must be compensated for. These compensation values are given in **Table 5.1**. For roller bearings the amount of elastic deformation can be ignored.

The internal clearance values for each bearing class are shown in **Tables 5.2** through **5.9**.

Fig. 5.1 Internal clearance

5.2 Internal clearance selection

The internal clearance of a bearing under operating conditions (effective clearance) is usually smaller than the same bearing's initial clearance before being installed and operated. This is due to several factors including bearing fit, the difference in temperature between the inner and outer rings, etc. As a bearing's operating clearance has an effect on bearing life, heat generation, vibration, noise, etc.; care must be taken in selecting the most suitable operating clearance.

Effective internal clearance:

The internal clearance differential between the initial clearance and the operating (effective) clearance (the amount of clearance reduction caused by interference fits, or clearance variation due to the temperature difference between the inner and outer rings) can be calculated by the following formula:

$$\delta_{\text{eff}} = \delta_{\circ} - (\delta_{f} + \delta_{t}) \cdots (5.1)$$

where,

 δ _{eff} : Effective internal clearance, mm

 δ 。: Bearing internal clearance, mm

δ₊ : Reduced amount of clearance due to interference, mm

 $\delta_{\, \rm t}\,$: Reduced amount of clearance due to temperature differential of inner and outer r, mm

Table 5.1 Examples of applications where bearing clearances other than normal clearance are used

Operating conditions	Applications	Selected clearance
With heavy or shock	Railway vehicle axles	C3
load, clearance is great.	Vibration screens	C3, C4
indeterminate load,	Railway vehicle traction motors	C4
both inner and outer rings are tight-fitted.	Tractors and final speed regulators	C4
Shaft or inner ring is heated.	Paper making machines and driers	C3, C4
nealeu.	Rolling mill table rollers	C3
To reduce shaft runout, clearance is adjusted.	Main spindles of lathes (Double-row cylindrical roller bearings)	C9NA, C0NA

(1) Reduced clearance due to interference

When bearings are installed with interference fits on shafts and in housings, the inner ring will expand and the outer ring will contract; thus reducing the bearings' internal clearance. The amount of expansion or contraction varies depending on the shape of the bearing, the shape of the shaft or housing, dimensions of the respective parts, and the type of materials used. The differential can range from approximately 70% to 90% of the effective interference.

$$\delta_f = (0.70 \sim 0.90) \Delta_{deff} \cdots (5.2)$$

where.

 $\delta_{\rm f}$: Reduced amount of clearance due to interference, mm

 Δ_{deff} : Effective interference, mm

(2) Reduced internal clearance due to inner/outer ring temperature difference.

During operation, normally the outer ring will range from 5 to 10°C cooler than the inner ring or rotating parts. However, if the cooling effect of the housing is large, the shaft is connected to a heat source, or a heated substance is conducted through the hollow shaft; the

temperature difference between the two rings can be even greater. The amount of internal clearance is thus further reduced by the differential expansion of the two rings.

$$\delta_{t} = \alpha \cdot \Delta T \cdot D_{0} \cdot \dots (5.3)$$

where.

 $\delta_{\,\,\mathrm{t}}\,$: Amount of reduced clearance due to heat differential, mm

 α : Bearing steel linear expansion coefficient 12.5 \times 10 $^{\circ}$ /°C

 ΔT : Inner/outer ring temperature differential, °C

 D_{\circ} : Outer ring raceway diameter, mm

Outer ring raceway diameter, D_0 , values can be approximated by using formula (5.4) or (5.5).

$$D_0 = 0.20 (d + 4.0D) \cdots (5.4)$$

For roller bearings (except self-aligning),
$$D_0 = 0.25 (d + 3.0D) \cdots (5.5)$$

where,

d: Bearing bore diameter, mm D: Bearing outside diameter, mm

Table 5.2 Radial internal clearance of deep groove ball bearings

Unit μm

			Unit μm			
Nominal bore diameted mm	er C2	Normal	C3	C4	C5	
over incl.	min max					
80 100	1 18	12 36	30 58	53 84	75 120	
100 120	2 20	15 41	36 66	61 97	90 140	
120 140	2 23	18 48	41 81	71 114	105 160	
140 160	2 23	18 53	46 91	81 130	120 180	
160 180	2 25	20 61	53 102	91 147	135 200	
180 200	2 30	25 71	63 117	107 163	150 230	
200 225	2 35	25 85	75 140	125 195	175 265	
225 250	2 40	30 95	85 160	145 225	205 300	
250 280	2 45	35 105	90 170	155 245	225 340	
280 315	2 55	40 115	100 190	175 270	245 370	
315 355	3 60	45 125	110 210	195 300	275 410	
355 400	3 70	55 145	130 240	225 340	315 460	
400 450	3 80	60 170	150 270	250 380	350 510	
450 500	3 90	70 190	170 300	280 420	390 570	
500 560	10 100	80 210	190 330	310 470	440 630	
560 630	10 110	90 230	210 360	340 520	490 690	
630 710	20 130	110 260	240 400	380 570	540 760	
710 800	20 140	120 290	270 450	430 630	600 840	
800 900	20 160	140 320	300 500	480 700	670 940	
900 1,000	20 170	150 350	330 550	530 770	740 1,040	
1,000 1,120	20 180	160 380	360 600	580 850	820 1,150	
1,120 1,250	20 190	170 410	390 650	630 920	890 1,260	

Table 5.3 Radial internal clearance of double row and duplex angular contact ball bearings

Nominal bo	Nominal bore diameter d mm		C1		2	No	Normal		СЗ		4
over	incl.	min	max	min	max	min	max	min	max	min	max
80	100	3	13	13	22	22	40	40	60	95	120
100	120	3	15	15	30	30	50	50	75	110	140
120	150	3	16	16	33	35	55	55	80	130	170
150	180	3	18	18	35	35	60	60	90	150	200
180	200	3	20	20	40	40	65	65	100	180	240
200	225	3	25	25	50	50	75	75	115	210	270
225	250	3	25	25	50	50	75	80	130	230	300
250	280	3	30	30	55	55	85	90	150	260	340
280	315	3	30	30	55	55	85	100	170	300	380
315	400	-	-	40	65	60	85	110	180	-	-
400	500	-	-	40	65	60	85	110	180	-	-

Notes: 1. The clearance group in the table is applied only to contact angles in the table below.

^{2.} This table shows NTN standard clearances.

Contact angle symbol	Nominal contact angle	Applicable clearance group
С	15°	C1, C2
A	30°	C2, Normal, C3
В	40°	Normal, C3, C4

Usually not to be indicated

Table 5.4 Radial internal clearance of bearings for electric motor

Unit μ m

Nominal bore diameter	Radial internal clearance CM							
$\begin{array}{cc} d & \text{mm} \\ \text{over} & \text{incl.} \end{array}$	Deep groove min	e ball bearings max	Cylindrical remin	oller bearings max				
80 (incl.) 100	18	30	35	55				
100 120	18	30	35	60				
120 140	24	38	40	65				
140 160	24	38	50	80				
160 180	—		60	90				
180 200	—	_	65	100				

Notes: 1. Suffix CM is added to bearing numbers. Ex. 6220CM 2. Cylindrical roller bearings are non-interchangeable clearance.

Table 5.5 Radial internal clearance of cylindrical roller bearings, needle roller bearings (Interchangeable, cylindrical bore bearings)

Unit μ m

	-	= :			Onit µm	
Nominal bore diameter d mm	C2	Normal	С3	C4	C5	
over incl.	min max	min max	min max	min max	min max	
80 100	15 50	50 85	75 110	105 140	155 190	
100 120	15 55	50 90	85 125	125 165	180 220	
120 140	15 60	60 105	100 145	145 190	200 245	
140 160	20 70	70 120	115 165	165 215	225 275	
160 180	25 75	75 125	120 170	170 220	250 300	
180 200	35 90	90 145	140 195	195 250	275 330	
200 225	45 105	105 165	160 220	220 280	305 365	
225 250	45 110	110 175	170 235	235 300	330 395	
250 280	55 125	125 195	190 260	260 330	370 440	
280 315	55 130	130 205	200 275	275 350	410 485	
315 355	65 145	145 225	225 305	305 385	455 535	
355 400	100 190	190 280	280 370	370 460	510 600	
400 450 450 500 500 560	110 210 110 220 120 240	210 310 220 330 240 360	310 410 330 440 360 480	410 510 440 550 480 600	565 665 625 735	
560 630	140 260	260 380	380 500	500 620		
630 710	145 285	285 425	425 565	565 705		
710 800	150 310	310 470	470 630	630 790		
800 900 900 1,000 1,000 1,120 1,120 1,250	180 350 200 390 220 430 230 470	350 520 390 580 430 640 470 710	520 690 580 770 640 850 710 950	690 860 770 960 850 1,060 950 1,190	: : : :	

Note: This table shows NTN standard clearances where "d > 500mm".

Por information concerning clearance other than applicable clearance, please contact NTN Engineering.

Table 5.6 Radial internal clearance of cylindrical roller bearings, needle roller bearings (non-interchangeable)

	al bore					Bea	aring with c	ylindrical	bore				
diam d	neter mm	C1	NA	C	2NA	N	A [•]	С	3NA	С	4NA	С	5NA
over	incl.	min	max	min	max	min	max	min	max	min	max	min	max
80	100	10	25	25	45	45	70	80	105	105	125	155	180
100	120	10	25	25	50	50	80	95	120	120	145	180	205
120	140	15	30	30	60	60	90	105	135	135	160	200	230
140	160	15	35	35	65	65	100	115	150	150	180	225	260
160	180	15	35	35	75	75	110	125	165	165	200	250	285
180	200	20	40	40	80	80	120	140	180	180	220	275	315
200	225	20	45	45	90	90	135	155	200	200	240	305	350
225	250	25	50	50	100	100	150	170	215	215	265	330	380
250	280	25	55	55	110	110	165	185	240	240	295	370	420
280	315	30	60	60	120	120	180	205	265	265	325	410	470
315	355	30	65	65	135	135	200	225	295	295	360	455	520
355	400	35	75	75	150	150	225	255	330	330	405	510	585
400	450	45	85	85	170	170	255	285	370	370	455	565	650
450	500	50	95	95	190	190	285	315	410	410	505	625	720
500	560	-	-	100	210	210	320	350	450	450	550	720	815
560	630	-	-	110	230	230	350	380	500	500	615	800	910
630	710	-	-	130	260	260	400	435	570	570	695	900	1,030
710	800	-	-	140	290	290	450	485	635	635	780	1,000	1,140
800 900 1,000 1,120	900 1,000 1,120 1,250	- - -	- - - -	160 180 200 220	330 360 400 440	330 360 400 440	500 560 620 690	540 600 670 750	700 780 900 1,000	700 780 900 1,000	860 970 1,100 1,220	1,130 1,270 1,410 1,580	

 $[\]bullet \ \, \text{For bearings with normal clearance, only NA is added to bearing numbers. } \ \, \text{Ex. NU310NA}$

Table 5.7 Axial internal clearance of metric double row and duplex tapered roller bearings (except series 329X, 322C, 323C)

		nal bore meter			Cont	act angle $\alpha \leq 2$	$7^{\circ} (e \leq 0.76)$			
	d			C2	Ne	ormal		C3		C4
	over	incl.	min	max	min	max	min	max	min	max
	80	100	45	150	150	260	280	390	390	500
	100	120	45	175	175	305	350	480	455	585
	120	140	45	175	175	305	390	520	500	630
	140	160	60	200	200	340	400	540	520	660
	160	180	80	220	240	380	440	580	600	740
	180	200	100	260	260	420	500	660	660	820
	200	225	120	300	300	480	560	740	720	900
	225	250	160	360	360	560	620	820	820	1,020
	250	280	180	400	400	620	700	920	920	1,140
	280	315	200	440	440	680	780	1,020	1,020	1,260
	315	355	220	480	500	760	860	1,120	1,120	1,380
	355	400	260	560	560	860	980	1,280	1,280	1,580
	400	500	300	600	620	920	1,100	1,400	1,440	1,740
	500	560	350	650	750	1,050	1,250	1,550	1,650	1,950
	560	630	400	700	850	1,150	1,400	1,700	1,850	2,150
	630	710	500	850	1,000	1,350	1,650	2,000	2,100	2,450
	710	800	550	950	1,100	1,500	1,800	2,200	2,300	2,700
	800	900	650	1,050	1,250	1,650	2,000	2,400	2,550	2,950
	900	1,000	700	1,100	1,400	1,800	2,200	2,600	2,900	3,300
	,000	1,120	750	1,250	1,500	2,000	2,500	3,000	3,250	3,750
	,120	1,250	850	1,350	1,700	2,200	2,850	3,350	3,700	4,200
1	,250	1,400	1,000	1,500	2,000	2,500	3,000	3,500	4,000	4,500

Notes: 1. This table applies to bearings contained in the catalog. For information concerning other bearings or bearings using US customary unit, please contact NTN Engineering.

^{2.} The correlation of axial internal clearance (Δa) and radial internal clearance (Δr) is expressed as $\Delta r = 0.667 \cdot e \cdot \Delta a$.

 $[\]it e$: Constant (see dimensions table)

^{3.} Bearing series 329X, 330, 322C and 323Cdo not apply to the table.

^{4.} This table shows **NTN** standard clearances.

Unit μ m

	Bearing with tapered bore												al bore neter
C	9NA ®	C	NA ®	C.	1NA	C	2NA	١	IA Φ	С	3NA	d	mm
min	max	min	max	min	max	min	max	min	max	min	max	over	incl.
10	25	20	35	25	45	45	70	80	105	105	125	80	100
10	25	20	35	25	50	50	80	95	120	120	145	100	120
15	30	25	40	30	60	60	90	105	135	135	160	120	140
15	35	30	45	35	65	65	100	115	150	150	180	140	160
15	35	30	45	35	75	75	110	125	165	165	200	160	180
20	40	30	50	40	80	80	120	140	180	180	220	180	200
20	45	35	55	45	90	90	135	155	200	200	240	200	225
25	50	40	65	50	100	100	150	170	215	215	265	225	250
25	55	40	65	55	110	110	165	185	240	240	295	250	280
30	60	45	75	60	120	120	180	205	265	265	325	280	315
30	65	45	75	65	135	135	200	225	295	295	360	315	355
35	75	50	90	75	150	150	225	255	330	330	405	355	400
45	85	60	100	85	170	170	255	285	370	370	455	400	450
50	95	70	115	95	190	190	285	315	410	410	505	450	500
-	-	-	-	100	210	210	320	350	450	450	550	500	560
-	-	-	-	110	230	230	350	380	500	500	615	560	630
-	-	-	-	130	260	260	400	435	570	570	695	630	710
-	-	-	-	140	290	290	450	485	635	635	780	710	800
- - - -	- - -	- - -	- - - -	160 180 200 220	330 360 400 440	330 360 400 440	500 560 620 690	540 600 670 750	700 780 900 1,000	700 780 900 1,000	860 970 1,100 1,220	800 900 1,000 1,120	900 1,000 1,120 1,250

 $\ensuremath{\mathbf{Q}}$ C9NA, C0NA and C1NA are applied only to precision bearings of Class 5 and higher.

Unit μm

		Co	ontact angle $lpha$	$>$ 27 $^{\circ}$ ($e>0$.	76)			Nominal bo	re diameter
	C2	No	mal	(D3	C4		d 1	mm
min	max	min	max	min	max	min	max	over	incl.
20	70	70	120	130	180	180	230	80	100
20	70	70	120	150	200	210	260	100	120
20	70	70	120	160	210	210	260	120	140
30	100	100	160	180	240	240	300	140	160
40	110	110	180	200	270	280	340	160	180
50	120	120	190	230	300	310	380	180	200
60	140	140	200	260	340	340	420	200	225
80	160	170	260	290	380	380	470	225	250
90	190	190	280	320	420	430	520	250	280
90	200	200	310	360	470	470	580	280	315
100	220	230	350	400	510	520	630	315	355
120	260	260	400	450	590	590	730	355	400
140	280	280	420	510	640	650	780	400	500
160	310	310	460	530	650	680	820	500	630
180	350	350	520	590	760	760	930	630	800

Table 5.8 Axial internal clearance of double row and duplex tapered roller bearings (inch series) Table 5.8 (1) contact angle $\alpha < 12^{\circ}$

Unit μ m

	al bore ¹	Contact angle $lpha <$ 12 $^{\circ}$ $(e <$ 0.32 $)$							
d	mm	С	2	No	ormal		C3	C4	
over	incl.	min	max	min	max	min	max	min	max
63.5	127	55	165	290	400	400	510	510	620
127	203.2	85	230	320	470	470	620	620	770
203.2	304.8	140	320	370	550	550	730	730	910
304.8	406.4	200	420	660	880	880	1,100	1,100	1,320
406.4	508	260	520	710	970	970	1,230	1,230	1,490
508	609.6	340	640	790	1,090	1,090	1,390	1,390	1,690
609.6	711.2	430	780	1,120	1,470	1,470	1,820	1,820	2,170
711.2	762	-	-	-	-	-	-	-	-
762	914.4	-	-	-	-	-	-	-	-

¹ Nominal bore diameter is the minimum size among the same series.

Note: This table shows NTN standard clearances.

Table 5.8 (2) $12^{\circ} \leq \text{contact angle } \alpha < 15^{\circ}$

Unit μ m

Nomi	nal bore ¹		$12^{\circ} \leq \text{Contact angle } \alpha < 15^{\circ} \ \ (0.32 \leq \theta < 0.40)$						
d	mm	C	2	No	ormal		C3	C4	
over	incl.	min	max	min	max	min	max	min	max
63.5	127	45	135	240	330	330	420	420	510
127	203.2	70	190	270	390	390	510	510	630
203.2	304.8	120	270	310	460	460	610	610	760
304.8	406.4	160	340	550	730	730	910	910	1,090
406.4	508	210	420	590	800	800	1,010	1,010	1,220
508	609.6	280	530	650	900	900	1,150	1,150	1,400
609.6	711.2	350	640	930	1,220	1,220	1,510	1,510	1,800
711.2	762	420	750	990	1,320	1,320	1,650	1,650	1,980
762	914.4	520	890	1,070	1,440	1,440	1,810	1,810	2,180

¹ Nominal bore diameter is the minimum size among the same series.

Note: This table shows NTN standard clearances.

Table 5.8 (3) $15^{\circ} \leq \text{contact angle } \alpha < 20^{\circ}$

Unit μ m

		nal bore meter		$15^{\circ} \leq \text{Contact angle } \alpha < 20^{\circ} \ \ (0.40 \leq \ell < 0.55)$						
	d	mm	C	2	No	ormal		C3		C4
	over	incl.	min	max	min	max	min	max	min	max
	63.5	127	35	105	190	260	260	330	330	400
	127	203.2	55	155	210	310	310	410	410	510
2	203.2	304.8	90	210	240	360	360	480	480	600
;	304.8	406.4	130	270	440	580	580	720	720	860
4	406.4	508	170	340	470	640	640	810	810	980
	508	609.6	220	420	520	720	720	920	920	1,120
(609.6	711.2	280	510	740	970	970	1,200	1,200	1,430
	711.2	762	340	600	780	1,040	1,040	1,300	1,300	1,560
-	762	914.4	410	700	850	1,140	1,140	1,430	1,430	1,720

Nominal bore diameter is the minimum size among the same series.

Note: This table shows NTN standard clearances.

Table 5.8 (4) $20^{\circ} \le \text{contact angle } \alpha < 30^{\circ}$

Unit μ m

	nal bore neter	$20^{\circ} \leq \text{Contact angle } \alpha < 30^{\circ} \ \ (0.55 \leq \ell < 0.87)$							
d	mm	C	2	No	rmal		C3		C4
over	incl.	min	max	min	max	min	max	min	max
63.5	127	30	80	140	190	190	240	240	290
127	203.2	40	110	160	230	230	300	300	370
203.2	304.8	70	160	180	270	270	360	360	450
304.8	406.4	95	195	320	420	420	520	520	620
406.4	508	120	240	350	470	470	590	590	710
508	609.6	160	310	380	530	530	680	680	830
609.6	711.2	210	380	540	710	710	880	880	1,050
711.2	762	250	440	580	770	770	960	960	1,150
762	914.4	300	520	630	850	850	1,070	1,070	1,290

[•] Nominal bore diameter is the minimum size among the same series.

Note: This table shows NTN standard clearances.

Table 5.8 (5) $30^{\circ} \le \text{contact angle } \alpha$

Unit μ m

	nal bore meter		$30^{\circ} \leq \text{Contact angle } \boldsymbol{\alpha} \ (0.87 \leq e)$						
d	mm	C	2	No	rmal	(C3	C4	
over	incl.	min	max	min	max	min	max	min	max
63.5	127	15	50	90	125	125	160	160	200
127	203.2	25	70	100	145	145	190	190	240
203.2	304.8	45	100	110	170	170	230	230	290
304.8	406.4	60	130	200	270	270	340	340	410
406.4	508	80	160	220	300	300	380	380	460
508	609.6	100	200	-	-	-	-	-	-
609.6	711.2	130	250	-	-	-	-	-	-
711.2	762	160	290	-	-	-	-	-	-
762	914.4	190	330	-	-	-	-	-	-

Nominal bore diameter is the minimum size among the same series.

Note: This table shows NTN standard clearances.

Table 5.9 Radial internal clearance of spherical roller bearings

Nominal bore diame	er	В	earing with cylindrical bo	ore	
d mm	C2	Normal	СЗ	C4	C5
over incl.	min max	min max	min max	min max	min max
80 100	35 60	60 100	100 135	135 180	180 225
100 120 120 140	40 75 50 95	75 120 95 145	120 160 145 190	160 210 190 240	210 260 240 300
140 160	60 110	110 170	170 220	220 280	280 350
160 180 180 200	65 120 70 130	120 180 130 200	180 240 200 260	240 310 260 340	310 390 340 430
200 225	80 140	140 220	220 290	290 380	380 470
225 250 250 280	90 150 100 170	150 240 170 260	240 320 260 350	320 420 350 460	420 520 460 570
280 315	110 190	190 280	280 370	370 500	500 630
315 355	120 200	200 310	310 410	410 550	550 690
355 400	130 220	220 340	340 450	450 600	600 750
400 450 450 500	140 240 140 260	240 370 260 410	370 500 410 550	500 660 550 720	660 820 720 900
500 560	150 280	280 440	440 600	600 780	780 1,000
560 630	170 310	310 480	480 650	650 850	850 1,100
630 710 710 800	190 350 210 390	350 530 390 580	530 700 580 770	700 920 770 1,010	920 1,190 1,010 1,300
800 900	230 430	430 650	650 860	860 1,120	1,120 1,440
900 1,000	260 480	480 710	710 930	930 1,220	1,220 1,570
1,000 1,120	290 530	530 780	780 1,020	1,020 1,330	1,330 1,720
1,120 1,250	320 580	580 860	860 1,120	1,120 1,460	1,460 1,870
1,250 1,400 1,400 1,600	350 640 400 720	640 950 720 1,060	950 1,240 1,060 1,380	1,240 1,620 1,380 1,800	1,620 2,080
1,600 1,800	450 810	810 1,180	1,180 1,550	1,550 2,000	

Note: This table shows NTN standard clearances where " $d > 1,000 \mathrm{mm}$ ".

Unit μ m

	E	Bearing with tapered bore)		Nominal bore diameter
C2	Normal	СЗ	C4	C5	d mm
min max	min max	min max	min max	min max	over incl.
55 80	80 110	110 140	140 180	180 230	80 100
65 100	100 135	135 170	170 220	220 280	100 120
80 120	120 160	160 200	200 260	260 330	120 140
90 130 100 140 110 160	130 180 140 200 160 220	160 200 180 230 200 260 220 290	200 260 230 300 260 340 290 370	260 330 300 380 340 430 370 470	140 160 160 180 180 200
120 180	180 250	250 320	320 410	410 520	200 225
140 200	200 270	270 350	350 450	450 570	225 250
150 220	220 300	300 390	390 490	490 620	250 280
170 240	240 330	330 430	430 540	540 680	280 315
190 270	270 360	360 470	470 590	590 740	315 355
210 300	300 400	400 520	520 650	650 820	355 400
230 330	330 440	440 570	570 720	720 910	400 450
260 370	370 490	490 630	630 790	790 1,000	450 500
290 410	410 540	540 680	680 870	870 1,100	500 560
320 460	460 600	600 760	760 980	980 1,230	560 630
350 510	510 670	670 850	850 1,090	1,090 1,360	630 710
390 570	570 750	750 960	960 1,220	1,220 1,500	710 800
440 640	640 840	840 1,070	1,070 1,370	1,370 1,690	800 900
490 710	710 930	930 1,190	1,190 1,520	1,520 1,860	900 1,000
530 770	770 1,030	1,030 1,300	1,300 1,670	1,670 2,050	1,000 1,120
570 830 620 910 680 1,000 750 1,110	830 1,120 910 1,230 1,000 1,350 1,110 1,500	1,120 1,420 1,230 1,560 1,350 1,720 1,500 1,920	1,420 1,830 1,560 2,000 1,720 2,200 1,920 2,400	1,830 2,250 2,000 2,470 	1,120 1,250 1,250 1,400 1,400 1,600 1,600 1,800

6. Lubrication

6.1 Lubrication of rolling bearings

The purpose of bearing lubrication is to prevent direct metallic contact between the various rolling and sliding elements. This is accomplished through the formation of a thin oil (or grease) film on the contact surfaces. For rolling bearings, lubrication also has the following advantages:

- (1) Friction and wear reduction
- (2) Friction heat dissipation
- (3) Prolonged bearing life
- (4) Prevention of rust
- (5) Protection against harmful elements

In order to achieve the above effects, the most effective lubrication method for the operating conditions must be selected. Also, a good quality, reliable lubricant must be selected. In addition, an effectively designed sealing system that prevents the intrusion of damaging elements

Fig. 6.1

Table 6.1 Oil volume, friction loss, bearing temperature (See Fig. 6.1)

	(*** 3 * /								
Range	Characteristics	Lubrication method							
Α	When oil volume is extremely low, direct metallic contact occurs in places between the rolling elements and raceway surfaces. Bearing abrasion and seizing occur.	_							
В	A thin oil film develops over all surfaces, friction is minimal and bearing temperature is low.	Grease lubrication, oil mist, air-oil lubrication							
С	As oil volume increases, heat buildup is balanced by cooling.	Circulating lubrication							
D	Regardless of oil volume, temperature increases at a fixed rate.	Circulating lubrication							
E	As oil volume increases, cooling predominates and bearing temperature decreases.	Forced circulation lubrication, Oil jet lubrication							

(dust, water, etc.) into the bearing interior, removes dust and other impurities from the lubricant, and prevents the lubricant from leaking to the outside, is also a requirement.

Almost all rolling bearings use either grease or oil lubrication methods, but in some special applications, a solid lubricant such as molybdenum disulfide or graphite may be used.

Fig. 6.1 shows the relationship between oil volume, friction loss, and bearing temperature. **Table 6.1** details the characteristics of this relationship.

6.2 Characteristics of grease and oil lubricants

Grease and oil are the two general choices for lubrication: it is important to select lubricant with care. Please contact NTN Engineering when selecting a lubricant.

The characteristics are show in table 6.2.

Table 6.2 Comparison of grease lubrication and oil lubrication characteristics

Method	Grease lubrication	Oil lubrication
Handling	0	Δ
Reliability	0	0
Cooling effect	×	(Circulation necessary)
Seal structure	0	Δ
Power loss	0	0
Environment contamination	0	Δ
High speed rotation	×	0

○: Very good ○: Good △: Fair X: Poor

6.3 Grease lubrication

Grease type lubricants are relatively easy to handle and require only the simplest sealing devices—for these reasons, grease is the most widely used lubricant for rolling bearings.

6.3.1 Types and characteristics of grease

Lubricating greases are composed of either a mineral oil base or a synthetic oil base. To this base a thickener and other additives are added. The properties of all greases are mainly determined by the kind of base oil used and by the combination of thickening agent and various additives.

Standard greases and their characteristics are listed in **Table 6.3**. As performance characteristics of even the same type of grease will vary widely from brand to brand, it is best to check the manufacturers' data when selecting a grease.

Table 6.3 Grease varieties and characteristics

Grease name		Lithium grease			Calcium compound base grease
Thickener		Li soap		Na soap	Ca+Na soap Ca+Li soap
Base oil	Mineral oil Diester oil		Silicone oil	Mineral oil	Mineral oil
Dropping point °C	Dropping point °C 170 ∼ 190		200 ~ 250	150 ~ 180	150 ~ 180
Operating temperature range $^{\circ}$ C -30 \sim +130		-50 ∼ +130	-50 ∼ +160	-20 ∼ +130	-20 ~ +120
Mechanical stability	Excellent	Good	Good	Excellent \sim Good	Excellent ~ Good
Pressure resistance	Good	Good	poor	Good	Excellent ~ Good
Water resistance	Good	Good	Good	Good ∼ poor	Good ∼ poor
Applications	Widest range of applications. Grease used in all types of rolling bearings.	Excellent low temperature and wear characteristics. Suitable for small sized and miniature bearings.	Suitable for high and low temperatures. Unsuitable for heavy load applications due to low oil film strength.	Some emulsification when water is introduced. Excellent characteristics at relatively high temperatures.	Excellent pressure resistance and mechanical stability. Suitable for bearings receiving shock loads.

Grease name	Aluminum grease	Non-soap base grease Thickener			
Thickener	Al soap	Bentone, silica gel, urea, carbon black fluorine compounds, etc.			
Base oil	Mineral oil	Mineral oil	Synthetic oil		
Dropping point °C	Dropping point °C $70 \sim 90$		250 or above		
Operating temperature range °C	-10 ∼ +80	-10 ∼ +130	-50 ∼ +200		
Mechanical stability	Good ∼ poor	Good	Good		
Pressure resistance	Good	Good	Good		
Water resistance	Good	Good	Good		
Applications	Excellent viscosity characteristics. Suitable for bearings subjected to vibrations.	Can be used in a wide range of low to high temperatures. Shows excellent heat resistance, cold resistance, chemical resistance, and other characteristics when matched with a suitable base oil and thickener. Grease used in all types of rolling bearings			

6.3.2 Base oil

Natural mineral oil or synthetic oils such as diester oil, silicone oil and fluorocarbon oil are used as grease base oils.

Mainly, the properties of any grease are determined by the properties of the base oil. Generally, greases with a low viscosity base oil are best suited for low temperatures and high speeds; while greases made from high viscosity base oils are best suited for heavy loads.

6.3.3 Thickening agents

Thickening agents are compounded with base oils to maintain the semi-solid state of the grease. Thickening agents consist of two types of bases, metallic soaps and non-soaps. Metallic soap thickeners include: lithium, sodium, calcium, etc.

Non-soap base thickeners are divided into two groups; inorganic (silica gel, bentonite, etc.) and organic (polyurea, fluorocarbon, etc.).

The various special characteristics of a grease, such as limiting temperature range, mechanical stability, water resistance, etc. depend largely on the type of thickening agent used. For example, a sodium based grease is generally poor in water resistance properties, while greases with bentone, poly-urea and other non-metallic soaps as the thickening agent are generally superior in high temperature properties.

6.3.4 Additives

Various additives are added to greases to improve various properties and efficiency. For example, there are anti-oxidants, high-pressure additives (EP additives), rust preventives, and anti-corrosives.

For bearings subject to heavy loads and/or shock loads, a grease containing high-pressure additives should be used. For comparatively high operating temperatures or in applications where the grease cannot be replenished for long periods, a grease with an oxidation stabilizer is best to use.

6.3.5 Consistency

The consistency of a grease, i.e. the stiffness and liquidity, is expressed by a numerical index.

The NLGI values for this index indicate the relative softness of the grease; the larger the number, the stiffer the grease. The consistency of a grease is determined by the amount of thickening agent used and the viscosity of the base oil. For the lubrication of rolling bearings, greases with the NLGI consistency numbers of 1, 2, and 3 are used.

General relationships between consistency and application of grease are shown in **Table 6.4**.

Table 6.4 Consistency of grease

NLGI Consis- tency No.	JIS (ASTM) Worked penetration	Applications
0	355~385	For centralized greasing use
1	310~340	For centralized greasing use
2	265~295	For general use and sealed bearing use
3	220~250	For general and high temperature use
4	175~205	For special use

6.3.6 Mixing of greases

When greases of different kinds are mixed together, the consistency of the greases will change (usually softer), the operating temperature range will be lowered, and other changes in characteristics will occur. As a general rule, greases with different bases oil, and greases with different thickener agents should never be mixed.

Also, greases of different brands should not be mixed because of the different additives they contain.

However, if different greases must be mixed, at least greases with the same base oil and thickening agent should be selected. But even when greases of the same base oil and thickening agent are mixed, the quality of the grease may still change due to the difference in additives. For this reason, changes in consistency and other qualities should be checked before being applied.

6.3.7 Amount of grease

The amount of grease used in any given situation will depend on many factors relating to the size and shape of the housing, space limitations, bearing's rotating speed and type of grease used.

As a general rule, housings and bearings should be only filled from 30% to 60% of their capacities.

Table 6.5 Bearings space ratio K

Table 0.5 Dealings space fallo A		
Bearing type	Retainer type	K
Ball bearings	Pressed retainer	61
NU-type cylindrical roller bearings	Pressed retainer Machined retainer	50 36
N-type cylindrical roller bearings	Pressed retainer Machined retainer	55 37
Tapered roller bearings	Pressed retainer	46
Spherical roller bearings	Pressed retainer Machined retainer	35 28

- Remove 160 series
- 2 Remove NU4 series
- 3 Remove N4 series

Where speeds are high and temperature rises need to be kept to a minimum, a reduced amount of grease should be used. Excessive amount of grease cause temperature rise which in turn causes the grease to soften and may allow leakage. With excessive grease fills oxidation and deterioration may cause lubricating efficiency to be lowered.

6.4 Solid grease (for bearings with solid grease)

"Solid grease" is a lubricant composed mainly of lubricating grease and ultra-high polymer polyethylene. Solid grease has the same viscosity as grease at normal temperature, but by applying a special heat treatment process, this special grease solidifies retaining a large proportion of the lubricant within the bearing. The result of this solidification is that the grease does not easily leak from the bearing, even when the bearing is subjected to strong vibrations or centrifugal force.

Bearings with solid grease are available in two types: the spot-pack type in which solid grease is injected into the retainer, and the full-pack type in which all empty space around the rolling elements is filled with solid grease.

Spot-pack solid grease is standard for deep groove ball bearings, small diameter ball bearings, and bearing units. Full-pack solid grease is standard for self-aligning ball bearings, self-aligning roller bearings, and needle roller bearings.

Primary advantages:

- (1) Clean working environment with minimal grease leakage
- (2) Low bearing torque with spot-pack type solid grease

For more details, please refer to the NTN special catalog for **Solid grease bearings**.

Fig. 6.3 Deep groove ball bearing with spot-pack solid grease (Z shield) (Standard for deep groove ball bearings)

Fig. 6.4 Self-aligning roller bearing with full-pack solid grease (Standard for self-aligning roller bearings)

6.5 Oil lubrication

Oil lubrication is suitable for applications that require bearing-generated heat or heat applied to the bearing from other sources be carried away from the bearing and

dissipated to the outside. Table 6.6 shows the main methods of oil lubrication.

Table 6.6 Oil lubrication meth	ods		
Lubrication method	Example	Lubrication method	Example
(Oil bath lubrication) Oil bath lubrication is the most generally used method of lubrication and is widely used for low to moderate rotation speed applications. For horizontal shaft applications, oil level should be maintained at approximately the center of the lowest rolling element, according to the oil gauge, when the bearing is at rest. For vertical shafts at low speeds, oil level should be maintained at 50-80% submergence of the rolling elements.		(Disc lubrication) In this method, a partially submerged disc rotates and pulls oil up into a reservoir from which it then drains down through the bearing, lubricating it.	
(Oil spray lubrication) ● In this method, an impeller or similar device mounted on the shaft draws up oil and sprays it onto the bearing. This method can be used at considerably high speeds.		(Oil mist lubrication) Using pressurized air, lubricating oil is atomized before passing through the bearing. Due to the low lubricant resistance, this method is well suited to high speed applications.	Oil supply plug Oil supply plug Oil exhaust Plug Oil exhaust plug
(Drip lubrication) In this method, oil is collected above the bearing and allowed to drip down into the housing where it becomes a lubricating mist as it strikes the rolling elements. Another version allows only slight amounts of oil to pass through the bearing. Used at relatively high speeds for light to moderate load applications. In most cases, oil volume is a few drops per minute.		(Air-oil lubrication) In this method, the required minimum amount of lubricating oil is measured and fed to each bearing at ideal intervals using compressed air. With fresh lubricating oil constantly being fed to the bearing, and with the cooling effect of the compressed air, bearing temperature rise can be minimized. Because the required oil quantity is infinitesimal, the working environment can be kept clean. Air-oil lubrication units are available from NTN.	Mist separator Air Oil Ine Air filter Solenoid valve Air filter Air Pressure switch
(Circulating lubrication) Used for bearing cooling applications or for automatic oil supply systems in which the oil supply is centrally located. One of the advantages of this method is that oil cooling devices and filters to maintain oil purity can be installed within the system. In order for oil to thoroughly lubricate the bearing, oil inlets and outlets must be provided on opposite sides of the bearing.	Oil exhaust plug	(Oil jet lubrication) • This method lubricates by injecting oil under high pressure directly into the side of the bearing. This is a reliable system for high speed, high temperature or otherwise severe conditions. • Used for lubricating the bearings in jet engines, gas turbines, and other high speed equipment. • Under-race lubrication for machine tools is one example of this type of lubrication.	

6.5.1 Selection of lubricating oil

Under normal operating conditions, **spindle oil**, **machine oil**, **turbine oil**, and other mineral oils are widely used for the lubrication of rolling bearings. However, for temperatures **above 150°C or below -30°C**, synthetic oils such as **diester oil**, **silicone oil**, and **fluorocarbon oil** are used.

For lubricating oils, viscosity is one of the most important properties and it determines an oil's lubricating efficiency. If viscosity is too low, formation of the oil film will be insufficient, and damage will occur to the load carrying surfaces of the bearing. If viscosity is too high, viscous resistance will also be great and result in temperature increases and friction loss. In general, for higher speed applications a lower viscosity oil should be used; for heavier load applications, a higher viscosity oil should be used.

In regard to operating temperature and lubrication, **Table 6.7** lists the required oil viscosity for different types of rolling bearings. **Fig. 6.3** is an oil viscosity—operating temperature comparison chart for the purpose of selecting a lubrication oil with viscosity characteristics appropriate to an application.

Table 6.8 lists the selection standards for lubricating oil viscosity with reference to bearing operating conditions.

Table 6.7 Required lubricating oil viscosity for bearings

Bearing type	Dynamic viscosity mm ² /s
Ball bearings, Cylindrical roller bearings, Needle roller bearings	13
Self-aligning roller bearings, Tapered roller bearings, Needle roller thrust bearings	20
Self-aligning roller thrust bearings	30

6.5.2 Oil quantity

In forced oil lubrication systems, the heat radiated away by the housing and surrounding parts plus the heat carried away by the lubricating oil is approximately equal to the amount of heat generated by the bearing and other sources.

For standard housing applications, the quantity of oil required can be found by formula (6.2).

where,

Q: Quantity of oil for one bearing cm³/min.

K: Allowable oil temperature rise factor (Table 6.9)

q: Minimum oil quantity cm³/min. (Fig. 6.4)

Because the amount of heat radiated will vary according to the type of housing, for actual operation it is advisable that the quantity of oil calculated by formula (6.2) be multiplied by a factor or 1.5 or 2.0. Then, the amount of oil can be adjusted to correspond to actual operating conditions.

Fig. 6.3 Relation between lubricating oil viscosity and temperature

Table 6.8 Selection standards for lubricating oils (reference)

Bearing operating	dn-value	Lubricating	oil ISO viscosity grade (VG)	Cuitable begins
temperature °C	dri-value	Normal load	Heavy load or shock load	Suitable bearing
−30 ~ 0	Up to allowable speed limiting	22, 32	46	All types
	15,000 Up to	46, 68	100	All types
0- 60	15,000 ~80,000	32, 46	68	All types
0~ 60	80,000 ~150,000	22, 32	32	All types but thrust ball bearings
	150,000~500,000	10	22, 32	Single row radial ball bearings, cylindrical roller bearings
	15,000 Up to	150	220	All types
00 100	15,000 ~80,000	100	150	All types
60~100	80,000 ~150,000	68	100, 150	All types but thrust ball bearings
	150,000~500,000	32	68	Single row radial ball bearings, cylindrical roller bearings
100 ~150	Up to allowable speed limiting		320	All types
0~ 60	Up to allowable speed limiting		46, 68	Solf oligning roller bearings
60~100	Up to allowable speed limiting		150	Self-aligning roller bearings

Notes: 1. Applied when lubrication method is either oil bath or circulating lubrication.

2. Please consult NTN Engineering in cases where operating conditions fall outside the range covered by this table.

Table 6.9 Factor K

Expelled oil temp minus supplied oil temp °C	K
10	1.5
15	1
20	0.75
25	0.6

Furthermore, if it is assumed for calculation purposes that no heat is radiated by the housing, and that all bearing heat is removed by the oil, then the value in **Fig. 6.3** for shaft diameter, d = 0, regardless of actual shaft diameter.

(Example) For tapered roller bearing **30220U** mounted on a flywheel shaft with a radial load of 9.5 kN (969 kgf), operating at 1,800 min⁻¹, what is the amount of lubricating oil required to keep the bearing temperature rise below 15°C.

$$d = 100 \text{ mm},$$

 $dn = 100 \times 1,800 = 18 \times 10^4$

From **Fig. 6.4** $q = 180 \text{cm}^3 / \text{min}$

Assume the bearing temperature is approximately equal to the expelled oil temperature,

from **Table 6.9**, since
$$K = 1$$

$$Q=1\times180=180$$
cm³ / min

6.5.3 Relubrication intervals

The intervals at which lubricating oil should be changed varies depending upon operating conditions, oil quantity, and type of oil used. In general, for oil bath lubrication where the operating temperature is 50°C or less, oil should be replaced once a year. When the operating temperature is between 80°C – 100°C, oil should be replaced at least every three months. For important equipment, it is advisable that lubricating efficiency and oil purity deterioration be checked regularly to determine when oil replacement is necessary.

Fig. 6.4 Oil quantity guidelines

7. Bearing Materials

7.1 Raceway and rolling element materials

While the contact surfaces of a bearing's raceways and rolling elements are subjected to repeated heavy stress, they still must maintain high precision and rotational accuracy. To accomplish this, the raceways and rolling elements must be made of a material that has high hardness, is resistant to rolling fatigue, is wear resistant, and has good dimensional stability. The most common cause of fatigue cracking in bearings is the inclusion of non-metallic impurities in the steel. By using pure materials low in these non-metallic impurities, the rolling fatigue life of the bearing is lengthened.

For all NTN bearings, steel low in oxygen content and non-metallic impurities, then refined by a vacuum degassing process as well as outside hearth smelting, is used. For bearings requiring especially high reliability and long life, steels of even higher in purity, such as vacuum smelted steel (VIM, VAR, CEVM) and electro-slag melted steel (ESR), are used.

1) High/mid carbon alloy steel

In general, steel varieties which can be hardened not just on the surface but also deep hardened by the so-called "through hardening method" are used for the raceways and rolling elements of bearings. Foremost among these is high carbon chromium bearing steel, which is widely used. For large type bearings and bearings with large cross sectional dimensions, induction hardened bearing steel incorporating manganese or molybdenum is used. Also in use is midcarbon chromium steel incorporating silicone and manganese, which gives it hardening properties comparable to high carbon chromium steel.

2) Case hardened (carburized) steel

Because of its combination of a hard surface layer which has been carburized and hardened to an appropriate depth, and a relatively pliable inner core, case hardened steel has excellent efficiency against shock loads. NTN uses case hardened steel for almost all of its tapered roller bearings. In terms of case hardened steel for NTN's other bearings, chromium steel and chrome molybdenum steel are used for small to medium sized bearings, and nickel chrome molybdenum steel is used for large sized bearings.

3) Heat resistant bearing steel

When bearings made of ordinary high carbon chromium steel which have undergone standard heat treatment are used at temperatures above 120°C for long durations, unacceptably large dimensional changes can occur. For this reason, a dimension stabilizing treatment (TS treatment) has been devised for very high temperature applications. Through application of this dimension stabilizing treatment, shortening of rolling fatigue life due to decreases in bearing hardness at high temperatures can be avoided. (refer to page insert A-6 1.3.2)

For standard high temperature bearings used at temperatures from 150°C – 200°C, the addition of silicone to the steel improves heat resistance and results in a

bearing with excellent rolling fatigue life with minimal dimensional change or softening at high temperatures.

A variety of heat resistant steels are also incorporated in bearings to minimize softening and dimensional changes when used at high temperatures. Two of these are high speed molybdenum steel and high speed tungsten steel. For bearings requiring heat resistance in high speed applications, there is also heat resistant case hardening molybdenum steel.

4) Corrosion resistant bearing steel

For applications requiring high corrosion resistance, stainless steel is used. To achieve this corrosion resistance a large proportion of the alloying element chrome is added to martensite stainless steel.

5) Induction hardened steel

Besides the use of surface hardening steel, induction hardening is also utilized for bearing raceway surfaces, and for this purpose mid-carbon steel is used for its lower carbon content instead of through hardened steel. For induction hardening of the deep layers required for larger bearings and bearings with large surface dimensions, mid-carbon steel is fortified with chrome and molybdenum.

6) Other bearing materials

For ultra high speed applications and applications requiring very high level corrosion resistance, ceramic bearing materials such as Si_3N_4 are also available.

7.2 Cage materials

Bearing cage materials must have the strength to withstand rotational vibrations and shock loads. These materials must also have a low friction coefficient, be light weight, and be able to withstand bearing operation temperatures.

For small and medium sized bearings, pressed cages of cold or hot rolled steel with a low carbon content of approx. 0.1% are used. However, depending on the application, austenitic stainless steel is also used.

For large bearings, machined cages of machine structural carbon steel or high tensile cast brass are widely used, although aluminum alloy and other material cages are also available.

For aircraft engine bearings, high tensile brass, midcarbon nickel, chrome, or molybdenum steel is used after undergoing various heat treatments and high temperature tempering. The sliding properties of these materials may also be enhanced when silver plated.

Injection molded plastic cages are now widely used: most are made from fiberglass reinforced heat resistant polyamide resin. Plastic cages are light weight, corrosion resistant and have excellent damping and sliding properties. Heat resistant polyamide resins now enable the production of cages that perform well in applications ranging between -40°C – 120°C. However, they are not recommended for use at temperatures exceeding 120°C.

MEMO

																			\vdash	\dashv	
																			\vdash		
													-						\vdash	\dashv	
1	1	1	I	1								1			i		i			.	

General Bearings

INDEX OF BEARING TABLES

Deep Groove Ball BearingsB- 5
Angular Contact Poll Postings
Angular Contact Ball BearingsB-15
Angular contact ball bearings (single, duplex)B-18
Double row angular contact ball bearingsB-32
Cylindrical Roller Bearings
Single row cylindrical roller bearingsB-40
Multi-row cylindrical roller bearings ····································
4-row cylindrical roller bearings ······B-64
SL type cylindrical roller bearings ·······B-80
SL type cylindrical roller bearings for sheaves ············B-84
Tapered Roller Bearings
Single row tapered roller bearings (Metric system sizes)B- 96
Single row tapered roller bearings (Inch system sizes)B-106
Double row tapered roller bearings (outside direction) (Metric system sizes) ···B-124
Double row tapered roller bearings (outside direction) (Inch system sizes) ······B-140

Double row tapered roller bearings (inside direction) (Metric system sizes) ······B-	152
Double row tapered roller bearings (inside direction) (Inch system sizes) ······B-	162
Double row steep slope tapered roller bearings (outside direction) ······B-	170
Double row steep slope tapered roller bearings (inside direction)B-	172
Four row tapered roller bearingsB-	180
Sealed four row tapered roller bearingsB-	200
Spherical Roller Bearings	203
Spherical Roller Bearings Thrust Bearings	
	227
Thrust Bearings····································	227 230
Thrust Bearings B- Thrust bearings B- Thrust roller bearings B-	227 230
Thrust Bearings B- Thrust bearings B- Thrust roller bearings B-	227 230 234 240

1. Structure and Characteristics

A widely used bearing, the deep groove ball bearing takes its name from the track formed on both the inner and outer rings of the bearing. The bearings can sustain radial and axial loads and the resultant forces of these loads and they are suitable for high speed operation.

The dimensional table below represents the various cage models and special shapes. **Drawing A** is the pressed cage;

drawing B shows the machined cage; **drawings C** through **F** show the position and shape of the notch on the inner ring; and **drawing G** shows a bearing with the key groove on the inner ring. Pressed cages are generally used, though machined cages are used for larger sized bearings, or bearings for high speed rotation.

Deep groove ball bearings drawing

2. Dimensional Accuracy/Rotation Accuracy

Refer to Table 3.3 (Page A-12)

3. Recommended Fitting

Refer to Table 4.2 (Page A-24)

4. Bearing Internal Clearance

Refer to Table 5.2 (Page A-30)

5. Permissible slant angle

0.0006-0.003 radian

6. General Operating Cautions

Slippage between the balls and raceways may occur when bearings are operated under small loads (about $F_{\rm r} \le 0.01 C_{\rm or}$) and may cause smearing. This is most apparent when using large size deep groove ball bearings due to the large cage mass. Please consult NTN Engineering for further details.

$\frac{F_{\rm a}}{C_{\rm or}}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F}{F}$	$\frac{r_a}{r_r} > e$		
Cor		X	Y	X	Y		
0.010	0.18				2.46		
0.020	0.20				2.14		
0.040	0.24	0.24			1.83		
0.070	0.27				1.61		
0.10	0.29	1	0	0.56	1.48		
0.15	0.32	•	0	0.50	1.35		
0.20	0.35				1.25		
0.30	0.38				1.13		
0.40	0.41				1.05		
0.50	0.44				1.00		

static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r}

d 100~140mm

	Вс	oundary di	mensio	ns	dynamic	Basic loa static	d ratings dynamic	static	Bearing numbers	Drawing No.	d ns	Mass		
		mn	า		kΝ	1	kg	f				mm		kg
											$d_{ m a}$	$D_{\rm a}$	$\gamma_{\rm as}$	
	d	D	B	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			min	max	max	(approx.)
										_				
		125	13	1	19.6	21.2	2,000	2,160	6820	Α	105	120	1	0.31
		140	20	1.1	41	39.5	4,200	4,050	6920	Α	106.5	133.5	1	0.78
	100	150	16	1	35	36.5	3,600	3,750	16020	Α	105	145	1	0.91
	100	150	24	1.5	60	54	6,150	5,500	6020	Α	108	142	1.5	1.15
		180	34	2.1	122	93	12,500	9,450	6220	Α	111	169	2	3.14
		215	47	3	173	141	17,600	14,400	6320	Α	113	202	2.5	7
		130	13	1	19.8	22	2,020	2,240	6821	Α	110	125	1	0.33
		145	20	1.1	42.5	42	4,300	4,300	6921	A	111.5	138.5	1	0.81
		160	18	1.1	52	50.5	5,300	5,150	16021	A	110	155.5	1	1.2
	105	160	26	2	72.5	65.5	7,400	6,700	6021	A	114	151	2	1.59
		190	36	2.1	133	105	13,600	10,700	6221	A	116	179	2	3.7
		225	49	3	184	153	18,700	15,700	6321	A	118	212	2.5	8.05
		223	43	3	104	155	10,700	13,700	0321	^	110	212	2.5	0.03
		140	16	1	24.9	28.2	2,540	2,880	6822	Α	115	135	1	0.51
		150	20	1.1	43.5	44.5	4,450	4,550	6922	Α	116.5	143.5	1	0.85
	110	170	19	1	57.5	56.5	5,850	5,800	16022	Α	115	165	1	1.46
	110	170	28	2	82	73	8,350	7,450	6022	Α	119	161	2	1.96
		200	38	2.1	144	117	14,700	11,900	6222	Α	121	189	2	4.36
		240	50	3	205	179	20,900	18,300	6322	Α	123	227	2.5	9.54
		150	16	1	28.9	33	2,950	3,350	6824	Α	125	145	1	0.55
		165	22	1.1	53	54	5,400	5,500	6924	A	126.5	158.5	1	1.15
		180	19	1	63	63.5	6,450	6,450	16024	A	125	175	1	1.56
	120	180	28	2	85	79.5	8,650	8,100	6024	A	129	171	2	2.07
		215	40	2.1	155	131	15,900	13,400	6224	A	131	204	2	5.15
		260	55	3	207	185	21,100	18,800	6324	Α	133	247	2.5	12.4
ı		165	18	1.1	37	41	3,750	4,200	6826	Α	136.5	158.5	1	0.8
		180	24	1.5	65	41 67.5	6,650	4,200 6,850	6926	A	136.5	172	1.5	1.52
		200	22	1.5	80	79.5	8,150	8,100	16026	A	136.5	193.5	1.5	2.31
	130		33	2	106	79.5 101	10,800	10,300	6026	A	130.5	193.5	2	3.16
		200 230	33 40	3	167	146	17,000	14,900	6226	A	143	217	2.5	5.82
		280	58	4	229	214	23,400	21,800	6326	A	146	264	3	15.3
		200	56	4	223	۷۱ ۲	23,400	21,000	0320	^	140	۷0 4	J	10.0
		175	18	1.1	38.5	44.5	3,900	4,550	6828	Α	146.5	168.5	1	0.85
	140	190	24	1.5	66.5	71.5	6,800	7,300	6928	Α	148	182	1.5	1.62
	140	210	22	1.1	82	85	8,350	8,650	16028	Α	146.5	203.5	1	2.45
		210	33	2	110	109	11,200	11,100	6028	Α	149	201	2	3.35

<sup>Drawing details are shown in Page B-5.
Smallest allowable dimension for chamfer dimension r.</sup>

$\frac{Fa}{Cor}$	e	$\frac{F_{ m a}}{F_{ m r}}$	≤ e	$\frac{F}{F}$	
Cor		X	Y	X	Y
0.010	0.18				2.46
0.020	0.20				2.14
0.040	0.24				1.83
0.070	0.27			1.61	
0.10	0.29	1	0	0.56	1.48
0.15	0.32	•	"	0.50	1.35
0.20	0.35				1.25
0.30	0.38				1.13
0.40	0.41				1.05
0.50	0.44				1.00

static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r}

d 140∼180mm

Во	oundary di	mensio	ns	dynamic	Basic loa	d ratings dynamic	static	Bearing numbers	Drawing No.	• Ab	utment an		Mass
	mm	1		k۱		kg					mm		kg
										$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	
d	D	В	$r_{ m s min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			min	max	max	(approx.)
	250	42	3	166	150	17,000	15,300	6228	Α	153	237	2.5	7.57
140	300	42 62	3 4	253	246	17,000 25,800	25,100	6328	A	156	237 284	2.5 3	7.57 18.5
	300	02		230	240	25,000	25,100	0020	^	130	204	0	10.5
145	220	38	2.5	126	115	12,800	11,800	SC2951	В	157	208	2	5.07
	190	20	1.1	47.5	55	4,850	5,600	6830	Α	156.5	183.5	1	1.16
	210	28	2	85	90.5	8,650	9,200	6930	Α	159	201	2	2.47
	225	24	1.1	96.5	101	9,850	10,300	16030	Α	156.5	218.5	1	3.07
150	225	35	2.1	126	126	12,800	12,800	6030	Α	161	214	2	4.08
130	230	35	2.5	120	118	12,300	12,100	SC3002	С	162	218	2	5.18
	230	35	2.5	120	118	12,300	12,100	SC3007	G	162	218	2	5.18
	270	45	3	176	168	18,000	17,100	6230	Α	163	257	2.5	9.41
	320	65	4	274	284	28,000	28,900	6330	Α	166	304	3	22
	200	20	1.1	48.5	57	4,950	5,800	6832	Α	166.5	193.5	1	1.23
	220	28	2	87	96	8,850	9,800	6932	A	169	211	2	2.61
	229.5	33	2.5	108	111	11,000	11,300	SC3209	В	172	218	2	4.35
	229.5	36	2.5	120	119	12,200	12,100	SC3207	В	172	218	2	4.75
160	230	33	2.5	108	111	11,000	11,300	SC3210	В	172	218	2	4.39
	240	25	1.5	99	108	10,100	11,000	16032	Α	168	232	1.5	3.64
	240	38	2.1	143	144	14,500	14,700	6032	Α	171	229	2	5.05
	290	48	3	185	186	18,900	19,000	6232	Α	173	277	2.5	11.7
	340	68	4	278	286	28,300	29,200	6332	Α	176	324	3	26
	215	22	1.1	60	70.5	6,100	7,200	6834	Α	176.5	208.5	1	1.63
	230	28	2	86	95.5	8,750	9,750	6934	Α	179	221	2	2.74
470	260	28	1.5	119	128	12,100	13,100	16034	Α	178	252	1.5	4.93
170	260	42	2.1	168	172	17,200	17,600	6034	Α	181	249	2	6.76
	310	52	4	212	223	21,700	22,800	6234	Α	186	294	3	14.5
	360	72	4	325	355	33,500	36,000	6334	Α	186	344	3	30.7
	225	22	1.1	60.5	73	6,200	7,450	6836	В	186.5	218.5	1	2.03
	250	33	2	110	119	11,200	12,200	6936	В	189	241	2	4.76
	265	33	2.5	113	127	11,500	13,000	SC3605	В	192	253	2	6.08
180	280	31	2	117	134	11,900	13,600	16036	A	189	271	2	6.49
100	280	46	2.1	189	199	19,300	20,300	6036	A	191	269	2	8.8
	320	52	4	227	241	23,200	24,600	6236	A	196	304	3	15.1
	380	75	4	355	405	36,000	41,500	6336	A	196	364	3	35.6
			•			,	, 3 0 0		1			-	

<sup>Drawing details are shown in Page B-5.
Smallest allowable dimension for chamfer dimension r.</sup>

$\frac{F_{\rm a}}{C_{\rm or}}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\frac{F_{\rm a}}{F_{\rm r}} \leq e$		$\frac{\frac{a}{r}}{r} > e$
Cor		X	Y	X	Y
0.010	0.18				2.46
0.020	0.20				2.14
0.040	0.24				1.83
0.070	0.27				1.61
0.10	0.29	1	0	0.56	1.48
0.15	0.32	•	0	0.50	1.35
0.20	0.35				1.25
0.30	0.38				1.13
0.40	0.41			1.05	
0.50	0.44				1.00

static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r}

d 190~260mm

В	oundary di mm		ns	dynamic kľ	static	nd ratings dynamic kg	static f	Bearing numbers	Drawing No.		Abutment ar illet dimension mm		Mass kg
		'		Ki	•	Kg				$d_{ m a}$	D_{a}	$r_{ m as}$	ĸg
d	D	B	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			min	max	max	(approx.)
	240	24	1.5	73	88	7,450	9,000	6838	В	198	232	1.5	2.62
	260	33	2	113	127	11,500	13,000	6938	В	199	251	2	4.98
	269.5	33	2.5	117	134	11,900	13,600	SC3805	G	202	258	2	5.87
190	290	31	2	134	156	13,700	15,900	16038	Α	199	281	2	6.77
	290	46	2.1	197	215	20,100	21,900	6038	Α	201	279	2	9.18
	340	55	4	255	281	26,000	28,700	6238	Α	206	324	3	18.2
	400	78	5	355	415	36,000	42,500	6338	Α	210	380	4	41
						<u> </u>	<u> </u>						
195	270	35	2.5	130	147	13,300	15,000	SC3904	В	207	258	2	5.94
	250	24	1.5	74	91.5	7,550	9,300	6840	В	208	242	1.5	2.73
	280	38	2.1	157	168	16,000	17,100	6940	В	211	269	2	7.1
200	310	34	2	142	160	14,400	16,300	16040	Α	209	301	2	8.68
200	310	51	2.1	218	243	22,200	24,800	6040	Α	211	299	2	11.9
	360	58	4	269	310	27,400	31,500	6240	Α	216	344	3	21.6
	420	80	5	410	500	42,000	51,000	6340	Α	220	400	4	46.3
	270	24	1.5	76.5	98	7,800	10,000	6844	В	228	262	1.5	3
	300	38	2.1	160	180	16,400	18,400	6944	В	231	289	2	7.69
	309.5	38	2.5	176	202	18,000	20,600	SC4401	В	232	298	2	8.77
000	319.5	46	2.5	193	220	19,700	22,400	SC4405	В	232	308	2	12
220	340	37	2.1	181	216	18,500	22,000	16044	Α	231	329	2	11.3
	340	56	3	241	289	24,600	29,400	6044	Α	233	327	2.5	15.7
	400	65	4	297	365	30,500	37,000	6244	Α	236	384	3	30.2
	460	88	5	410	520	42,000	53,000	6344	Α	240	440	4	60.8
230	329.5	40	2.5	191	227	19,500	23,100	SC4605	В	242	318	2	10.8
230	339.5	45	3	224	266	22,800	27,200	SC4609	G	244	326	2.5	13.7
	300	28	2	85	112	8,650	11,400	6848	В	249	291	2	4.6
	320	38	2.1	170	203	17,300	20,700	6948	В	251	309	2	8.28
0.40	360	37	2.1	178	217	18,200	22,100	16048	Α	251	349	2	12.1
240	360	56	3	249	310	25,400	32,000	6048	Α	253	347	2.5	16.8
	440	72	4	360	470	36,500	48,000	6248	В	258	422	3	51.7
	500	95	5	440	590	45,000	60,000	6348	В	262	478	4	93.6
250	349.5	46	2.5	214	262	21,800	26,700	SC5003	В	262	338	2	13.4
260	320	28	2	87	120	8,900	12,200	6852	В	269	311	2	5

<sup>Drawing details are shown in Page B-5.
Smallest allowable dimension for chamfer dimension r.</sup>

$\frac{F_{\rm a}}{C_{\rm or}}$	e	$\frac{F_{\rm a}}{F_{\rm r}} \leq e$		$\frac{F_{\rm a}}{F_{\rm r}} > e$		
Cor		X	Y	X	Y	
0.010	0.18				2.46	
0.020	0.20				2.14	
0.040	0.24				1.83	
0.070	0.27				1.61	
0.10	0.29	1	0	0.56	1.48	
0.15	0.32	'	0	0.50	1.35	
0.20	0.35				1.25	
0.30	0.38				1.13	
0.40	0.41				1.05	
0.50	0.44				1.00	

static P_{or} =0.6 F_r +0.5 F_a When P_{or} < F_r use P_{or} = F_r

d 260~340mm

Во	oundary di	imensio	ns	dynamic	static	ad ratings dynamic	static	Bearing numbers	Drawing No.		Abutment an fillet dimensio		Mass
	mn	n		k١	I	kg	f				mm		kg
d	D	B	0	C	C	C	$C_{ m or}$			$d_{ m a}$	D_{a}	$r_{\rm as}$	()
a	D	D	$r_{ m s min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			min	max	max	(approx.)
	360	46	2.1	222	280	22,600	28,500	6952	В	271	349	2	13.9
	379.5	56	4	253	320	25,800	32,500	SC5206	G	278		3	20.8
	400	44	3	227	299	23,200	30,500	16052	A	273		2.5	18.5
260	400	65	4	291	375	29,700	38,500	6052	Α	276		3	25
	480	80	5	400	540	41,000	55,000	6252	В	282		4	65.7
	540	102	6	505	710	51,500	72,500	6352	В	288	512	5	116
	350	33	2	137	177	13,900	18,100	6856	В	289	_	2	7.4
	360	38	2.5	147	191	14,900	19,500	SC5605	В	292		2	9.47
	380	46	2.1	227	299	23,200	30,500	6956	В	291		2	14.8
280	420	44	3	232	315	23,700	32,500	16056	В	293	_	2.5	23
	420	65	4	325	420	33,000	43,000	6056	В	296		3	31
	500	80	5	440	600	44,500	61,000	6256	В	302	_	4	70.9
	580	108	6	530	760	54,000	77,500	6356	В	308	552	5	142
290	419.5	60	5	277	375	28,300	38,500	SC5803	G	312	398	4	26.8
	380	38	2.1	162	210	16,500	21,500	6860	В	311	369	2	10.5
	420	56	3	276	375	28,200	38,500	6960	В	313		2.5	23.5
300	460	50	4	292	410	29,800	42,000	16060	В	316	444	3	32.5
	460	74	4	355	480	36,000	49,000	6060	В	316	444	3	43.8
	540	85	5	465	670	47,500	68,500	6260	В	322	518	4	88.9
	429.5	60	4	275	380	28,000	38,500	SC6201	В	328	412	3	25.8
310	450	50	4	286	420	29,200	42,500	SC6203	В	328		3	25.9
	400	38	2.1	168	228	17,200	23,200	6864	В	331	389	2	10.9
	440	56	3	285	405	29,000	41,000	6964	В	333		2.5	24.8
	449.5	56	3	276	395	28,200	40,500	SC6406	В	334		2.5	27.6
320	470	70	4	330	475	34,000	48,500	SC6403	В	338	452	3	40.4
	480	50	4	300	440	30,500	45,000	16064	В	336	464	3	34.2
	480	74	4	370	530	38,000	54,000	6064	В	336	464	3	46.1
		92	5	530	805	54,500	82,500	6264	В	342	558	4	110
	580	92	0	000				the state of the s					
					236	17 400	24 000	6868	2	351	409	2	11.5
	420	38	2.1	170	236	17,400	24,000	6868	2 B	351		2	11.5
3/10	420 460	38 56	2.1	170 293	430	29,800	44,000	6968	В	353	447	2.5	26.2
340	420	38	2.1	170							447 468		

<sup>Drawing details are shown in Page B-5.
Smallest allowable dimension for chamfer dimension r.</sup>

$\frac{F_{\rm a}}{C_{\rm or}}$	e	$\frac{F_{\rm a}}{F_{\rm r}} \leq e$		$\frac{F_{\rm a}}{F_{\rm r}} > e$		
Cor		X	Y	X	Y	
0.010	0.18				2.46	
0.020	0.20				2.14	
0.040	0.24				1.83	
0.070	0.27				1.61	
0.10	0.29	1	0	0.56	1.48	
0.15	0.32		"	0.50	1.35	
0.20	0.35				1.25	
0.30	0.38				1.13	
0.40	0.41				1.05	
0.50	0.44				1.00	

static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r}

d 340~480mm

Вс	oundary d mr		s	dynamic kl	static	ad ratings dynamic	static	Bearing numbers	Drawing ⁶ No.		butment ar et dimension		Mass kg
	1111	11		KI	V	kį	yı			$d_{\scriptscriptstyle \mathrm{a}}$	$D_{\rm a}$	$r_{ m as}$	kg
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			min	max	max	(approx.)
340	620	92	6	530	820	54,000	83,500	6268	В	368	592	5	129
355.6	469.9	57.15	5	233	340	23,800	34,500	SC7101	В	377.5	448	4	26.3
	440	38	2.1	187	258	19,100	26,300	6872	В	371	429	2	12.3
	480	56	3	300	455	30,500	46,500	6972	В	373	467	2.5	27.5
360	509.5	70	5	340	515	34,500	52,500	SC7205	В	382	488	4	45
300	540	57	4	350	550	36,000	56,000	16072	В	376	524	3	49.3
	540	82	5	440	670	44,500	68,000	6072	В	380	520	4	64.7
	650	95	6	555	905	57,000	92,000	6272	В	388	622	5	145
	480	46	2.1	231	340	23,600	34,500	6876	В	391	469	2	19.7
000	520	65	4	325	510	33,000	52,000	6976	В	396	504	3	39.8
380	560	57	4	360	590	37,000	60,000	16076	В	398	542	3	50.1
	560	82	5	455	725	46,500	74,000	6076	В	400	540	4	67.5
	500	46	2.1	226	340	23,100	34,500	6880	В	411	489	2	20.6
	540	65	4	335	535	34,000	54,500	6980	В	416	524	3	41.6
400	600	63	5	370	620	38,000	63,000	16080	В	422	578	4	65.8
	600	90	5	510	825	52,000	84,000	6080	В	420	580	4	87.6
	720	130	6	610	1,080	62,000	110,000	SC8002	D	428	692	5	226
	520	46	2.1	260	405	26,500	41,500	6884	В	431	509	2	21.6
420	560	65	4	340	560	35,000	57,000	6984	В	436	544	3	43.4
	620	90	5	530	895	54,000	91,000	6084	В	440	600	4	91.1
	540	46	2.1	264	420	26,900	43,000	6888	В	451	529	2	22.5
	599	80	4	425	720	43,000	73,500	SC8803	В	458	581	3	64
440	600	74	4	365	615	37,500	63,000	6988	В	456	584	3	60
	650	94	6	525	900	53,500	92,000	6088	В	468	622	5	104
450	629	80	4	435	770	44,500	78,500	SC9001	F	468	611	3	76
	580	56	3	315	515	32,000	52,500	6892	В	473	567	2.5	34.8
460	620	74	4	375	645	38,500	66,000	6992	В	476	604	3	62.2
	680	100	6	605	1,080	62,000	110,000	6092	В	488	652	5	122
400	600	56	3	320	540	32,500	55,000	6896	В	493	587	2.5	36.2
480	650	78	5	430	770	44,000	78,500	6996	В	500	630	4	73

<sup>Drawing details are shown in Page B-5.
Smallest allowable dimension for chamfer dimension r.</sup>

$\frac{Fa}{Cor}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
Cor		X	Y	X	Y
0.010	0.18				2.46
0.020	0.20				2.14
0.040	0.24				1.83
0.070	0.27				1.61
0.10	0.29	1	0	0.56	1.48
0.15	0.32	'	0	0.50	1.35
0.20	0.35				1.25
0.30	0.38			1.13	
0.40	0.41				1.05
0.50	0.44				1.00

static P_{or} =0.6 F_r +0.5 F_a When P_{or} < F_r use P_{or} = F_r

d 480∼710mm

	Boundary d		ons	dynamic	static	ad ratings dynamic	static	Bearing numbers	Drawing No.		Abutment ar fillet dimension		Mass
	mı	m		kl	N	k	gf			7	mm		kg
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max	(approx.)
α	D	D	s min	$O_{ m r}$	Oor	$\sigma_{\rm r}$	Oor			111111	IIIdA	IIIax	(αρριολ.)
480	700	100	6	605	1,090	61,500	111,000	6096	В	508	672	5	126
	620	56	3	325	560	33,500	57,000	68/500	В	513		2.5	37.5
500	670	78	5	445	805	45,500	82,500	69/500	В	520		4	75.5
500	669	100	5	545	980	55,500	100,000	SC10006	В	522		4	103
	720	100	6	630	1,170	64,000	120,000	60/500	В	528	692	5	130
520	719	100	5	560	1,050	57,000	107,000	SC10403	В	542	697	4	118
	650	56	3	330	580	34,000	59,500	68/530	В	543	637	2.5	39.5
530		82	5	455	845	46,500	86,000	69/530	В	552		4	89.1
	780	112	6	645	1,270	66,000	129,000	60/530	В	558		5	178
					, -	,	-,						
	680	56	3	335	600	34,000	61,500	68/560	В	573	667	2.5	41.5
560	750	85	5	525	1,020	53,500	104,000	69/560	В	582	728	4	103
	820	115	6	705	1,410	72,000	143,000	60/560	В	588	792	5	200
570	790	115	6	705	1,400	72,000	143,000	SC11401	В	598	762	5	166
	730	60	3	375	705	38,500	72,000	68/600	В	613	717	2.5	51.7
600	800	90	5	590	1,200	60,500	122,000	69/600	В	622	778	4	122
	870	118	6	725	1,510	74,000	154,000	60/600	В	628		5	228
610	869	120	5	725	1,510	74,000	154,000	SC12203	Е	632	847	4	223
	710	69	4	210	395	21,400	40,000	SC12601	В	648	692	3	36
	790	69	4	420	820	43,000	84,000	68/630	В	648		3	71.6
630	850	100	6	680	1,450	69,500	148,000	69/630	В	658	_	5	158
	920	128	7.5	840	1,770	85,500	181,000	60/630	В	666		6	280
	020	.20	7.0	0.0	1,7.70		101,000	00,000		000		Ů	200
650	919	118	6	840	1,780	85,500	181,000	SC13007	В	678	891	5	246
	820	69	4	425	850	43,000	86,500	68/670	В	688	802	3	75.1
670	900	103	6	700	1,530	71,000	156,000	69/670	В	698	872	5	181
	980	136	7.5	975	2,120	99,500	216,000	60/670	В	706	944	6	336
	870	74	4	440	910	44,500	92,500	68/710	В	728	852	3	91.1
710		106	6	715	1,600	72,500	163,000	69/710	В	738		5	205
	1,030	140	7.5	1,020	2,310	104,000	235,000	60/710	В	746		6	379
	1,030	140	7.5	1,020	2,310	104,000	233,000	00//10	ь	740	334	O	319

<sup>Drawing details are shown in Page B-5.
Smallest allowable dimension for chamfer dimension r.</sup>

$\frac{Fa}{Cor}$	e	$\frac{F_{\rm a}}{F_{\rm r}} \leq e$		$\frac{F_{\rm a}}{F_{\rm r}} > e$		
Cor		X	Y	X	Y	
0.010	0.18				2.46	
0.020	0.20				2.14	
0.040	0.24				1.83	
0.070	0.27				1.61	
0.10	0.29	1	0	0.56	1.48	
0.15	0.32	'	"	0.50	1.35	
0.20	0.35				1.25	
0.30	0.38			1.13		
0.40	0.41				1.05	
0.50	0.44				1.00	

static P_{or} =0.6 F_{r} +0.5 F_{a} When P_{or} < F_{r} use P_{or} = F_{r}

d 750~1,320mm

Boundary dimensions		dynamic	Basic lo static	ad ratings dynamic	static	Bearing numbers	Drawing No.	Drawing Abutment and No. fillet dimensions			Mass		
	mr	m		kl	N	k	gf				mm		kg
										$d_{ m a}$	D_{a}	$r_{\rm as}$	
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			min	max	max	(approx.)
	000	70	_	405	1 0 1 0	40.500	100,000	C0/7F0	_ D	770	000	4	107
	920	78	5	485	1,040	49,500	106,000	68/750	В	772	898	4	107
750	1,000	112	6	725	1,670	74,000	171,000	69/750	В	778	972	5	238
	1,070	140	7.5	925	2,210	94,500	225,000	SC15002	С	765	1,055	6	403
	1,090	150	7.5	1,050	2,500	107,000	255,000	60/750	В	765	1,075	6	457
	980	82	5	485	1,070	49.500	110,000	68/800	В	822	958	4	127
800	1,060	115	6	800	1,900	81,500	194,000	69/800	В	828	1,032	5	270
000	1,150	155	7.5	1,090	2,690	111,000	274,000	60/800	В	836	1,114	6	515
	.,			.,000	_,000	,		00,000	_		.,		
820	1,160	160	7.5	1,020	2,540	104,000	259,000	SC16401	С	856	1,124	6	524
	1,030	82	5	500	1,140	51,000	116,000	68/850	В	872	1,008	4	135
850	1,120	118	6	900	2,240	92,000	228,000	69/850	В	878	1,092	5	305
030	1,220	165	7.5	1,120	2,880	114,000	294,000	60/850	В	886	1,184	6	615
	1,220	100	7.0	1,120	2,000	111,000	201,000	00/000		000	1,101		
	1,090	85	5	610	1,450	62,500	148,000	68/900	В	922	1,068	4	156
900	1,180	122	6	920	2,340	93,500	238,000	69/900	В	928	1,152	5	346
	1,280	170	7.5	1,150	3,100	117,000	315,000	60/900	В	936	1,244	6	685
			_						_				
050	1,150	90	5	630	1,550	64,500	158,000	68/950	В	972	1,128	4	184
950	1,250	132	7.5	935	2,430	95,000	248,000	69/950	В	986	1,214	6	424
	1,360	180	7.5	1,130	3,050	116,000	310,000	60/950	В	986	1,324	6	855
	1,220	100	6	710	1,790	72,000	183,000	68/1000	В 1	1,028	1,192	5	237
1,000	1,320	140	7.5	1,010	2,700	103,000	275,000	69/1000		1,036	1,284	6	506
,,,,,,	1,420	185	7.5	1,160	3,200	119,000	330,000	60/1000		1,036	1,384	6	945
	1,12			.,	-,				_	,	.,		
	1,280	100	6	730	1,910	74,500	195,000	68/1060	B 1	,088	1,252	5	250
1,060	1,400	150	7.5	1,200	3,400	122,000	345,000	69/1060		,096	1,364	6	610
	1,500	195	9.5	1,190	3,350	121,000	345,000	60/1060	B 1	1,104	1,456	8	1,126
	1,360	106	6	885	2,410	90,500	246,000	68/1120	В	1,148	1,332	5	307
1,120	1,460	150	7.5	1,230	3,550	125,000	360,000	69/1120		1,156	1,424	6	640
.,0	1,580	200	9.5	1,170	3,350	120,000	340,000	60/1120		I,164	1,536	8	1,258
	.,000		0.0	.,	0,000	.20,000	- 10,000	00,1120		.,	1,000		.,200
4 400	1,420	106	6	920	2,580	94,000	264,000	68/1180	В 1	1,208	1,392	5	322
1,180	1,540	160	7.5	1,250	3,700	127,000	375,000	69/1180		,216	1,504	6	762
1,250	1,500	112	6	925	2,670	94,500	272,000	68/1250	B 1	1,278	1,472	5	376
1,320	1,600	122	6	1,100	3,300	112,000	335,000	68/1320	В 1	1,348	1,572	5	495
	Drawing d		shown in		-	•	•		_				

<sup>Drawing details are shown in Page B-5.
Smallest allowable dimension for chamfer dimension r.</sup>

1. Structure and Characteristics

1. 1 Single row angular contact ball bearings / duplex angular contact ball bearings

A line connecting the contact points of both the ball and inner ring and ball and outer ring forms an angle to a line drawn radially: that angle is called the contact angle.

An angular contact ball bearing, while designed for radial loads, can accommodate single direction axial loads. Under radial loads and the resulting axial force component, the bearings are generally used in a duplex arrangement. More information on types and characteristics of duplexed angular

contact ball bearings is shown in Table 1.

Cage types and special features of single and multi–row angular contact ball bearings are show in Fig.1. Drawings A through F feature the inner ring guide cage. Drawings B and C illustrate cages with lubrication ports. Drawings D and E feature a rolling element guide cage: E also shows the cage with a lubrication port. Note that the inner ring width in drawing F is larger than that of the outer ring.

Table 1 Duplex angular contact ball bearings

Arrangem	ent type		Characteristics
Back-to-back duplex arrangement (Code: DB)		These bearings support	Since the distance "I" between the cone pressure apexes of bearing is large, the load capacity of the moment load is high. Permissible slant angle is small.
Face-to-face duplex arrangement (Code: DF)		direction of axial loads.	The distance "I" between the cone pressure apexes of bearing is small in comparison with the back-to-back duplex arrangement, the load capacity of the moment load is low. Permissible slant angle is larger than the back-to-back duplex arrangement type.

Notes: 1. Since the bearings are manufactured in a set to adjust for the internal clearance or pre-loading, parts with same serial number must be used for assembly.

2. Combination of more than 3 bearings may occur. Please consult NTN Engineering for details.

Fig.1 Single row/duplex angular contact ball bearings

1. 2 Double row angular contact ball bearings

Two single row angular contact ball bearings when duplexed back-to-back (DB) so that the inner ring forms one piece are used to create double row angular contact ball bearings. Alternatively, the bearings may be duplexed face-to-face (DF) with the outer ring as one piece.

These bearings support radial and axial loads in either direction: back-to-back duplexed bearings also support moment loads.

The cage type and special shape of the double row angular contact ball bearings are shown in **Fig.2** with the list of drawing numbers in the dimensions table.

The **drawings A** and **B** are the front-to-front duplex arrangement; drawing 2 is a bearing with a lubricating port; **drawings** from **C** to **G** show the back-to-back duplex arrangement and the different position of the lubricating ports whether or not there are lubricating grooves. **Drawing C** shows the inner ring width larger than that of outer ring.

Fig.2 Double row angular contact ball bearings drawing

2. Dimensional Accuracy/Rotation Accuracy

Refer to Table 3.3 (Page A-12)

Single row/Duplex angular contact ball bearings Double row angular contact ball bearings

3. Recommended Fitting

Refer to Table 4.2 (Page A-24)

Single row/Duplex angular contact ball bearings Double row angular contact ball bearings

4. Bearing Internal Clearance

Refer to Table 5.3 (Page A-31)

Duplex angular contact ball bearings
Double row angular contact ball bearings

5. Cautions for Operation

When the bearing loads are small(about $F_r \leq 0.02 C_{\rm or}$) or the ratio between the axial and radial loads of the duplex bearing exceeds the value "e", slippage may occur between the balls and the raceways. This slippage may cause smearing. Particularly with large size angular contact ball bearings, this tendency is significant since the ball and cage mass is large. Please consult with NTN Engineering for further details.

back-to-back arrangement (DB)

face-to-face arrangement (DF)

	d	100~130mm	1
--	---	-----------	---

	Во	oundar		ensions		contact angle	dynamic	static	oad ratings dynamic	static	Bearing numbers	Drawing [©]	Load center	Mass
			mm				L	sir (N	ngle	gf	single		mm	single
d	D	В	C	$r_{ m smin}$	$r_{ m lsmin}$	α	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			a	kg (approx.)
														,,,,
	125	13	_	1	0.6	30	21.2	25.2	2,160	2,570	7820	Α	39	0.36
	140	20	_	1.1	0.6	30	48.0	52.5	4,900	5,350	7920	Α	44.5	0.93
	150	24	_	1.5	1	30	68.5	70.5	6,950	7,200	7020	Α	48	1.47
100	150	24	_	1.5	1	40	61.0	63.5	6,250	6,500	7020B	Α	64.5	1.49
100	180	34	_	2.1	1.1	30	144	126	14,700	12,800	7220	Α	57.5	3.2
	180	34	_	2.1	1.1	40	130	114	13,300	11,700	7220B	Α	76	3.26
	215	47	_	3	1.1	30	207	193	21,100	19,700	7320	A	69	7.18
	215	47	_	3	1.1	40	190	178	19,400	18,100	7320B	Α	89.5	7.32
	130	13	_	1	0.6	30	21.7	26.5	2,210	2,700	7821	Α	40.5	0.37
	145	20	_	1.1	0.6	30	48.5	54.5	4,950	5,550	7921	Α	46	0.97
	160	26	_	2	1	30	80.0	81.5	8,150	8,350	7021	Α	51.5	1.86
105	160	26	_	2	1	40	71.5	73.5	7,300	7,500	7021B	Α	68.6	1.88
105	190	36	_	2.1	1.1	30	157	142	16,000	14,400	7221	Α	60.5	3.79
	190	36	_	2.1	1.1	40	142	129	14,500	13,100	7221B	Α	80	3.87
	225	49	_	3	1.1	30	220	210	22,400	21,500	7321	Α	72	8.2
	225	49	_	3	1.1	40	202	194	20,600	19,700	7321B	Α	93.5	8.36
	140	16	_	1	0.6	30	31.0	38.0	3,200	3,850	7822	Α	44	0.58
	150	20	_	1.1	0.6	30	49.5	56.0	5,050	5,700	7922	Α	47.5	1.01
	170	28	_	2	1	30	92.0	93.0	9,350	9,450	7022	Α	54.5	2.3
110	170	28	_	2	1	40	82.5	83.5	8,400	8,550	7022B	Α	72.8	2.34
110	200	38	_	2.1	1.1	30	170	158	17,300	16,100	7222	Α	64	4.45
	200	38	_	2.1	1.1	40	154	144	15,700	14,700	7222B	Α	84	4.54
	240	50	_	3	1.1	30	246	246	25,100	25,100	7322	Α	76	9.6
	240	50	_	3	1.1	40	226	226	23,000	23,100	7322B	Α	99	9.8
	150	16	_	1	0.6	30	31.5	40.0	3,250	4,050	7824	Α	47	0.63
	165	22	_	1.1	0.6	30	61.0	69.5	6,200	7,100	7924	Α	52	1.66
	180	28	_	2	1	30	93.5	98.5	9,550	10,000	7024	Α	57.5	2.47
120	180	28	_	2	1	40	84.0	89.0	8,550	9,050	7024B	Α	77	2.51
120	215	40	_	2.1	1.1	40	165	162	16,900	16,500	7224B	Α	90.5	6.26
	215	40	_	2.1	1.1	30	183	177	18,600	18,100	7224	Α	68.5	6.26
	260	55	_	3	1.1	30	246	252	25,100	25,700	7324	Α	82.5	14.7
	260	55	_	3	1.1	40	225	231	23,000	23,600	7324B	Α	107	14.7
	165	18	_	1.1	0.6	30	42.0	53.0	4,300	5,400	7826	Α	51.5	0.91
130	180	24	_	1.5	1	30	75.0	87.5	7,650	8,900	7926	A	56.5	1.82
	199.5	33	_	2.5	1	30	117	125	12,000	12,900	SF2652		64	3.74

<sup>Drawing details are shown in Page B-15.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Con-			Sin	gle		DB, DF				
tact	e	$F_{\rm a}/F_{\rm r} \leq e$		$F_a/F_r > e$		$F_{\rm a}/I$	7r ≤ e	$F_a/F_r > e$		
angle		X	Y	X	Y	X	Y	X	Y	
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24	
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93	

static Por=XoFr+YoFa

Con- tact	Sin	gle	DB, DF				
angle	X_0	Y_0	X_0	Yo			
30°	0.5	0.33	1	0.66			
40°	0.5	0.26	1	0.52			

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

dynamic Static dynamic (duplex)			static	num	ring bers olex)	Loa cent mn	er	f	Abutmen illet dime mm	nsions			
	KN	,	cgf	(30)	,	a		$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$	$r_{ m las}$		
$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	DB	DF	DB	DF	min	max	max	max		
34.0	50.5	3,500	5,150	DB	DF	78	52	105.5	119.5	1	0.6		
78.0	105	7,950	10,700	DB	DF	109	69	107	133	1	0.6		
111	141	11,300	14,400	DB	DF	120	72	108.5	141.5	1.5	1		
76.5	127	10,100	13,000	DB	DF	129	81	108.5	141.5	1.5	1		
233	251	23,800	25,600	DB	DF	149	81	112	168	2	1		
212	229	21,600	23,300	DB	DF	186	118	112	168	2	1		
335	385	34,500	39,500	DB	DF	185	91	114	201	2.5	1		
310	355	31,500	36,000	DB	DF	226	132	114	201	2.5	1		
35.0	53.0	3,600	5,400	DB	DF	81	55	110.5	124.5	1	0.6		
79.0	109	8,050	11,100	DB	DF	112	72	112	138	1	0.6		
130	163	13,300	16,700	DB	DF	129	77	115	150	2	1		
116	147	11,900	15,000	DB	DF	137	85	115	150	2	1		
254	283	25,900	28,900	DB	DF	157	85	117	178	2	1		
231	258	23,500	26,300	DB	DF	196	124	117	178	2	1		
355	420	36,500	43,000	DB	DF	193	95	119	211	2.5	1		
330	385	33,500	39,500	DB	DF	236	138	119	211	2.5	1		
50.5	76.0	5,150	7,750	DB	DF	88	56	115.5	134.5	1	0.6		
80.0	112	8,150	11,400	DB	DF	115	75	117	143	1	0.6		
149	186	15,200	18,900	DB	DF	137	81	120	160	2	1		
134	167	13,600	17,100	DB	DF	145.5	89.5	120	160	2	1		
276	315	28,100	32,500	DB	DF	166	90	122	188	2	1		
250	289	25,500	29,400	DB	DF	206	130	122	188	2	1		
400	490	41,000	50,000	DB	DF	202	102	124	226	2.5	1		
365	455	37,500	46,000	DB	DF	248	148	124	226	2.5	1		
51.5	79.5	5,250	8,100	DB	DF	94	62	125.5	144.5	1	0.6		
99.0	139	10,100	14,200	DB	DF	126	82	123.3	158	1	0.6		
152	197	15,500	20,100	DB	DF	143	87	130	170	2	1		
136	178	13,900	18,100	DB	DF	154	98	130	170	2	1		
269	325	27,400	33,000	DB	DF	221	141	132	203	2	1		
297	355	30,500	36,000	DB	DF	177	97	132	203	2	1		
400	505	41,000	51,500	DB	DF	220	110	134	246	2.5			
365	460	37,500	47,000	DB	DF	269	159	134	246	2.5	1		
500	100	07,000	17,000		٥.	200	100	104	2.10	2.0	'		
68.5	106	6,950	10,800	DB	DF	103	67	137	158	1	0.6		
121	175	12,400	17,800	DB	DF	137	89	138.5	171.5	1.5	1		
191	251	19,400	25,600	DB	DF	128.5	62.5	142	187.5	2	1		
		•	•										

d 130~160mm

	E	Bounda	ry dime	ensions		contact angle	dynamic	static	oad ratings dynamic	static	Bearing numbers	Drawing No.	Description Load Conter	Mass
			mm					sir kN	ngle	. a.f	single		ma.ma	single
d	D	В	C	$r_{ m smin}$	$r_{ m ls min}$	α	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	c gf $C_{ m or}$			$\frac{mm}{a}$	kg (approx.)
														· · · · · · ·
	200	33	_	2	1	30	117	125	12,000	12,800	7026	Α	64	3.73
	200	33	_	2	1	40	105	113	10,700	11,500	7026B	Α	86	3.78
	205	24	_	2.5	1	30	75.0	90.0	7,650	9,150	SF2608	Α	60.5	2.98
130	230	40	_	3	1.1	30	196	198	20,000	20,200	7226	Α	72	7.15
	230	40	_	3	1.1	40	177	180	18,100	18,300	7226B	Α	95.5	7.15
	280	58	_	4	1.5	30	273	293	27,900	29,800	7326	Α	88	17.6
	280	58	_	4	1.5	40	250	268	25,500	27,400	7326B	Α	115	17.6
	175	18	_	1.1	0.6	30	43.0	55.5	4,350	5,650	7828	Α	54.5	0.97
	190	24	_	1.5	1	30	75.5	90.0	7,700	9,150	7928	Α	59.5	1.94
	210	33	_	2	1	30	120	133	12,200	13,500	7028	Α	67	3.96
	210	33	_	2	1	40	107	119	10,900	12,100	7028B	Α	90	4.01
140	250	42	_	3	1.1	30	203	215	20,700	21,900	7228	Α	77.5	8.78
	250	42	_	3	1.1	40	183	195	18,700	19,900	7228B	Α	103	8.78
	300	62	_	4	1.5	30	300	335	30,500	34,500	7328	Α	94.5	21.5
	300	62	_	4	1.5	40	275	310	28,100	31,500	7328B	Α	123	21.5
145	220	38	_	2.5	1.5	30	148	158	15,100	16,100	SF2951	А	71.7	5.15
	190	20	_	1.1	0.6	30	54.5	70.5	5,550	7,200	7830	Α	59	1.35
	210	28	_	2	1	30	97.5	117	9,900	11,900	7930	Α	66	2.96
	225	35	_	2.1	1.1	30	137	154	14,000	15,700	7030	Α	71.5	4.82
4.04	225	35	_	2.1	1.1	40	122	138	12,500	14,000	7030B	Α	96	4.88
150	270	45	_	3	1.1	30	232	259	23,700	26,400	7230	Α	83	11
	270	45	_	3	1.1	40	210	235	21,400	24,000	7230B	Α	111	11
	320	65	_	4	1.5	30	330	380	33,500	39,000	7330	Α	100	25.1
	320	65	_	4	1.5	40	300	350	30,500	36,000	7330B	Α	131	25.1
	200	20	_	1.1	0.6	30	55.5	74.0	5,650	7,550	7832	Α	62	1.42
	215	28	25	2.5	1.1	40	75.5	93.0	7,700	9,450	SF3208	F	91	2.74
	220	28	_	2	1	30	98.5	121	10,000	12,300	7932	Α	69	3.13
	229.5	33	_	2.5	1	40	111	128	11,300	13,100	SF3209	Α	98.5	4.52
	229.5	33	_	2.5	1	40	111	128	11,300	13,100	SF3214	С	98.5	4.52
160	230	33	_	2.5	1	30	124	147	12,600	15,000	SF3210	Α	73	4.15
	240	38	_	2.1	1.1	30	155	176	15,800	18,000	7032	Α	77	5.96
	240	38	_	2.1	1.1	40	139	158	14,100	16,100	7032B	Α	103	5.98
	290	48	_	3	1.1	30	263	305	26,800	31,500	7232	Α	89	13.7
	290	48	_	3	1.1	40	238	279	24,200	28,400	7232B	Α	118	13.7
	340	68	_	4	1.5	30	345	420	35,500	43,000	7332	Α	106	29.8
	Drawing of	letails ar	e show	n in Page	B-15.									

<sup>Drawing details are shown in Page B-15.
Smallest allowable dimension for chamfer dimension r or r.</sup>

Con-			Sin	gle		DB, DF				
tact	e	$F_{\rm a}/F_{\rm r} \leq e$		$F_{\rm a}/F_{\rm r}>e$		$F_{\rm a}/I$	7r ≤ e	$F_a/F_r > e$		
angle	•	X	Y	X	Y	X	Y	X	Y	
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24	
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93	

static Por=XoFr+YoFa

Con- tact	Sin	gle	DB, DF				
angle	X_0	Y_0	Xo	Yo			
30°	0.5	0.33	1	0.66			
40°	0.5	0.26	1	0.52			

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

dynamic	dynamic Basic load ratings static dynamic (duplex)		static	num	ring bers olex)	Load center mm		Abutment and fillet dimensions mm			•
	KN (du _r	,	gf	(50)	,	a		$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$
$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	DB	DF	DB	DF	min	max	max	max
191	251	19,400	25,600	DB	DF	161	95	140	190	2	1
171	226	17,400	23,100	DB	DF	171.5	105.5	140	190	2	1
122	180	12,500	18,300	DB	DF	120.5	72.5	142	193	2	1
320	395	32,500	40,500	DB	DF	184	104	144	216	2.5	1
288	360	29,400	36,500	DB	DF	231	151	144	216	2.5	1
445	585	45,500	59,500	DB	DF	234	118	148	262	3	1.5
405	535	41,500	54,500	DB	DF	288	172	148	262	3	1.5
		•									
69.5	111	7,100	11,300	DB	DF	109	73	147	168	1	0.6
123	180	12,500	18,300	DB	DF	143	95	148.5	181.5	1.5	1
194	265	19,800	27,000	DB	DF	167	101	150	200	2	1
174	237	17,700	24,200	DB	DF	180	114	150	200	2	1
330	430	33,500	44,000	DB	DF	197	113	154	236	2.5	1
297	390	30,500	40,000	DB	DF	248	164	154	236	2.5	1
490	670	50,000	68,500	DB	DF	251	127	158	282	3	1.5
445	615	45,500	63,000	DB	DF	308	184	158	282	3	1.5
241	315	24,500	32,000	DB	DF	143.5	67.5	157	208	2	1.5
88.5	141	9,000	14,400	DB	DF	118	78	157	183	1	0.6
158	234	16,100	23,900	DB	DF	160	104	160	200	2	1
222	305	22,700	31,500	DB	DF	178	108	162	213	2	1
199	275	20,300	28,100	DB	DF	192.5	122.5	162	213	2	1
375	515	38,500	53,000	DB	DF	211	121	164	256	2.5	1
340	470	34,500	48,000	DB	DF	267	177	164	256	2.5	1
535	765	54,500	78,000	DB	DF	265	135	168	302	3	1.5
490	700	50,000	71,500	DB	DF	327	197	168	302	3	1.5
00.5	148	0.000	15 100	DP.	DF	104	84	167	100	4	0.6
90.5 123	148 186	9,200 12,500	15,100 18,900	DB DB	— —	124 182.5	84 132.5	167 172	193 203	1 2	0.6 1
160	241	16,300		DB	DF	162.5	132.5	172	210	2	1
180	24 i 256	18,300	24,600	DB	DF	196.5	130.5	170	217.5	2	1
180	256 256		26,100	_ _	DF		130.5	172		2	1
201	293	18,300 20,500	26,100 29,900	DB	DF	196.5 145.5	79.5	172	217.5 218	2	1
252	293 355	25,700	29,900 36,000	DB	DF	145.5 192	79.5 116	172	228	2	1
252 225	315			DB	DF	206	130	172	228	2	1
425		23,000	32,500 62,500	DB	DF	206		174	226 276	2.5	1
425 385	615 555	43,500 39,500	57,000		DF		130			2.5	1
385 565	555 845		86,000	DB DB	DF	284 280	188 144	174 178	276 322	2.5 3	1 1.5
202	040	57,500	00,000	νD	DF	∠00	144	1/0	322	3	1.5

d 160∼195mm

The late The late	single kg (approx.) 29.8 1.88 3.29 7.96 8.02 17 17 35.3
160 340 68 - 4 1.5 40 315 385 32,000 39,500 7332B A 139	(approx.) 29.8 1.88 3.29 7.96 8.02 17 17
170	29.8 1.88 3.29 7.96 8.02 17 17
170 215	1.88 3.29 7.96 8.02 17
170 230 28 - 2 1 30 102 129 10,400 13,100 7934 A 71.5 260 42 - 2.1 1.1 30 186 214 18,900 21,900 7034 A 83 83 83 83 83 83 83	3.29 7.96 8.02 17
170 260 42 — 2.1 1.1 40 166 193 17,000 19,700 7034B A 111.5 310 52 — 4 1.5 30 295 360 30,000 36,500 7234 A 95.5 310 52 — 4 1.5 40 266 325 27,200 33,000 7234B A 127 360 72 — 4 1.5 30 390 485 39,500 49,500 7334 A 113 360 72 — 4 1.5 40 355 445 36,000 45,500 7334B A 147 250 33 — 2 1 30 131 163 13,400 16,600 7936 A 78.5 259.5 33 — 2.5 1 30 178 211 18,200 21,500 \$F3629 C	8.02 17 17
180 310 52 4 1.5 30 295 360 30,000 36,500 7234 A 95.5 310 52 4 1.5 40 266 325 27,200 33,000 7234B A 127 360 72 4 1.5 30 390 485 39,500 49,500 7334 A 113 360 72 4 1.5 40 355 445 36,000 45,500 7334B A 147 225 22 1.1 0.6 30 70.0 95.0 7,100 9,700 7836 A 69.5 259.5 33 22 1 30 131 163 13,400 16,600 7936 A 78.5 259.5 33 2.5 1 40 138 166 14,100 16,900 5F3618 B 109 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 2.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 25.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 25.5 1 30 178 211 18,200 21,500 5F3639 B 80 259.5 33 25.5 1 30 155 190 15,800 19,400 5F3641 C 80 320 52 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 4 1.5 40 276 350 28,100 35,500 7336 A 118 380 75 4 1.5 40 375 40 375 490 38,000 50,000 7336B A 74 74 74 7536 F 108 240 240 240 240 240 240 240 2	17 17
180 52 - 4	17
180 360 72 -	
180 360 72 - 4 1.5 40 355 445 36,000 45,500 7334B A 147	55.5
180 250	35.3
180 259.5 33 - 2.5 1 40 138 166 14,100 16,900 SF3618 B 109 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3629 C 80 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3639 B 80 259.5 33 - 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 - 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 - 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	1.98
180 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3629 C 80 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3639 B 80 259.5 33 - 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 - 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 - 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	4.87
180 259.5 33 - 2.5 1 30 178 211 18,200 21,500 SF3639 B 80 259.5 33 - 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 - 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 - 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	5.7
180 259.5 33 — 2.5 1 30 155 190 15,800 19,400 SF3641 C 80 280 46 — 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 — 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 — 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 <td>5.8</td>	5.8
280 46 — 2.1 1.1 30 219 266 22,300 27,100 7036 A 89.5 280 46 — 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 — 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 <td>5.75</td>	5.75
280 46 — 2.1 1.1 40 196 240 20,000 24,400 7036B A 119.5 320 52 — 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 — 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	5.65 10.4
320 52 - 4 1.5 30 305 385 31,000 39,000 7236 A 98 320 52 - 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	10.4
320 52 — 4 1.5 40 276 350 28,100 35,500 7236B A 131 380 75 — 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 — 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 — 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 — 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	17.7
380 75 - 4 1.5 30 410 535 41,500 54,500 7336 A 118 380 75 - 4 1.5 40 375 490 38,000 50,000 7336B A 155 240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	17.7
240 24 - 1.5 1 30 85.0 116 8,650 11,800 7838 A 74 255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	40.9
255 33 29 2.5 1.5 40 108 138 11,000 14,100 SF3806 F 108 259.5 33 — 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	40.9
259.5 33 - 2 1 30 133 169 13,500 17,200 SF3816 C 81.5	2.55
	4.16
	5.1 5.1
269.5 33 - 2.5 1.5 30 132 168 13,500 17,100 SF3802 A 83	5.1 5.95
269 5 33 - 2.5 2.5 40 134 166 13.600 16.900 \$F3807 R 113	6.05
190 290 46 - 2.1 1.1 30 224 280 22,800 28,600 7038 A 92.5	10.8
290 46 - 2.1 1.1 40 201 253 20,400 25,800 7038B A 124	10.9
340 55 - 4 1.5 30 305 390 31,000 39,500 7238 A 104	21.3
340 55 - 4 1.5 40 273 355 27,800 36,000 7238B A 139	21.3
400 78 - 5 2 30 430 585 44,000 59,500 7338 A 124	47
400 78 — 5 2 40 390 535 40,000 54,500 7338B A 163	47
195 270 35 - 2.5 1.5 30 153 196 15,600 20,000 SF3901 C 84.5	6.2

<sup>Drawing details are shown in Page B-15.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Con-			Sin	gle			DB,	DF				
tact	e	$F_a/F_r \leq e$		$F_{\rm a}/F$	$F_a/F_r > e$		7r ≤ e	$F_a/F_r > e$				
angle		X	Y	X	Y	X	Y	X	Y			
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24			
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93			

static Por=XoFr+YoFa

Con- tact	Sin	gle	DB, DF				
angle	X_0	Y_0	X_0	Y_0			
30°	0.5	0.33	1	0.66			
40°	0.5	0.26	1	0.52			

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

dynamic	static (dup	ad ratings dynamic plex)	static	num	ring ibers olex)	Loa cent mr	ter		Abutmen illet dime mm	nsions	
$C_{ m r}$	KN		kgf C	DB	DF	DB a	DF	$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$	$r_{ m las}$
C_{r}	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	DB	DF	DB	DF	min	max	max	max
515	770	52,500	79,000	DB	DF	346	210	178	322	3	1.5
111	181	11,300	18,500	DB	DF	133	89	177	208	1	0.6
165	257	16,900	26,200	DB	DF	171	115	180	220	2	1
300	430	31,000	43,500	DB	DF	208	124	182	248	2	1
270	385	27,600	39,500	DB	DF	222.5	138.5	182	248	2	1
480	715	49,000	73,000	DB	DF	243	139	188	292	3	1.5
435	650	44,000	66,500	DB	DF	306	202	188	292	3	1.5
630	970	64,500	99,000	DB	DF	298	154	188	342	3	1.5
575	890	59,000	90,500	DB	DF	366	222	188	342	3	1.5
113	190	11,600	19,400	DB	DF	139	95	187	218	1	0.6
213	325	21,700	33,500	DB	DF	190	124	190	240	2	1
224	330	22,800	34,000	DB	_	217.5	151.5	192	247.5	2	1
290	420	29,600	43,000	_	DF	160	94	192	247.5	2	1
290	420	29,600	43,000	DB	DF	160	80	192	247.5	2	1
251	380	25,600	38,500	_	DF	160	94	192	247.5	2	1
355	530	36,500	54,000	DB	DF	225	133	192	268	2	1
320	480	32,500	49,000	DB	DF	239	147	192	268	2	1
495	770	50,500	78,500	DB	DF	248	144	198	302	3	1.5
450	700	45,500	71,000	DB	DF	314	210	198	302	3	1.5
665	1,070	68,000	109,000	DB	DF	311	161	198	362	3	1.5
605	975	62,000	99,500	DB	DF	385	235	198	362	3	1.5
138	232	14,100	23,700	DB	DF	148	100	198.5	231.5	1.5	1
175	276	17,800	28,200	DB	_	215.5	157.5	202	243	2	1.5
216	335	22,000	34,500	_	DF	163	97	200	249.5	2	1
216	335	22,000	34,500	DB	DF	196	130	200	250	2	1
215	335	21,900	34,500	DB	DF	166	83	202	257.5	2	1.5
217	330	22,100	34,000	DB	_	226	160	202	257.5	2	2
365	560	37,000	57,000	DB	DF	231	139	202	278	2	1
325	505	33,000	51,500	DB	DF	247.5	155.5	202	278	2	1
495	780	50,000	79,500	DB	DF	263	153.5	208	322	3	1.5
445	705	45,000	79,300	DB	DF	333	223	208	322	3	1.5
695	1,170	71,000	119,000	DB	DF	326	170	212	378	4	2
635	1,170	64,500	109,000	DB	DF	404	248	212	378	4	2
249	390	25,400	40,000	_	DF	169	99	207	258	2	1.5

d 200∼250mm

	Boundary dimensions				contact angle	dynamic	Basic Id	oad ratings dynamic	static	Bearing numbers	Drawing	Load center	Mass	
			mm				·	siı	ngle		single			single
							kľ			gf			mm	kg
d	D	B	C	$r_{ m smin}$	$r_{ m lsmin}$	α	$C_{ m r}$	$C_{ m or}$	C_{r}	$C_{ m or}$			a	(approx.)
	250	24	_	1.5	1	30	87.0	122	8,850	12,400	7840	Α	77	2.68
	279.5	38	_	2.5	1.5	40	165	202	16,800	20,600	SF4006	Α	119.5	7.15
	280	38	_	2.1	1.1	30	185	231	18,900	23,600	7940	Α	88.5	7.15
	289.5	38	_	2.5	1.5	40	188	238	19,200	24,200	SF4017	С	122	8.25
200	310	51	_	2.1	1.1	30	252	325	25,700	33,000	7040	Α	99	14
200	310	51	_	2.1	1.1	40	226	293	23,000	29,900	7040B	Α	132.5	14.1
	360	58	_	4	1.5	30	335	450	34,500	46,000	7240	Α	110	25.3
	360	58	_	4	1.5	40	305	410	31,000	41,500	7240B	Α	146	25.3
	420	80	_	5	2	30	450	605	46,000	62,000	7340	Α	130	53.1
	420	80	_	5	2	40	410	555	42,000	56,500	7340B	Α	170	53.1
203.2	330.2	88.9	_	3	1.5	30	219	285	22,400	29,100	SF4104	Α	99	14.7
	070	0.4						404	0.100	40.000	=0.44		00.5	2.24
	270	24	_	1.5	1	30	89.0	131	9,100	13,300	7844	Α	82.5	2.91
	300	38	_	2.1	1.1	30	187	239	19,000	24,300	7944	A	94	7.74
	300	38	35	2.5	1.5	40	149	189	15,200	19,300	SF4407	F	126.5	7.25
	309.5	38	_	2.1	1.1	40	190	246	19,400	25,100	SF4421	В	130	8.9
220	309.5	38	_	2.1	1.1	40	190	246	19,400	25,100	SF4433	С	130	8.9
	319.5	46	_	2.1	1.1	35	226	299	23,000	30,500	SF4438	С	117.5	12.2
	340	56	_	3	1.1	30	286	390	29,100	39,500	7044	Α	109	18.2
	340	56	_	3	1.1	40	238	325	24,300	33,000	7044B	Α	145.5	18.4
	400	65	_	4	1.5	30	345	485	35,000	49,500	7244	Α	122	37.1
	460	88	_	5	2	30	495	725	50,500	74,000	7344	Α	142	72.4
230	329.5	40	_	2.5	1.5	40	154	202	15,700	20,600	SF4614	Е	135.5	11
	300	28	_	2	1	30	101	155	10,300	15,800	7848	Α	92	4.49
	320	38	_	2.1	1.1	30	193	255	19,600	26,000	7948	Α	100	8.34
	329.5	40	_	2.1	1.1	30	221	305	22,600	31,000	SF4839	С	102.5	10
	329.5	40	_	2.5	1.5	40	197	265	20,100	27,000	SF4814	Α	139.5	10.1
040	329.5	40	_	2.5	1.5	40	197	265	20,100	27,000	SF4818	В	139.5	10.1
240	340	40	_	2.5	1.5	30	211	289	21,500	29,400	SF4802	Α	160.5	11.5
	360	56	_	3	1.1	30	279	400	28,500	40,500	7048	Α	114.5	19.5
	360	56	_	3	1.1	40	249	355	25,400	36,000	7048B	Α	154	19.8
	440	72	_	4	1.5	30	420	630	42,500	64,500	7248	Α	135.5	49.8
	500	95	_	5	2	30	515	795	52,500	81,000	7348	Α	154.5	92.2
250	340	38	_	2.5	1	40	169	222	17,200	22,600	SF5005	F	141.5	9.55
250	349.5	46	_	3	1.5	30	233	325	23,700	33,000	SF5004	A	109.5	13.6
	Drowing de								- ,	,				

<sup>Drawing details are shown in Page B-15.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

Con-			Sing $F_{\mathrm{a}}/F_{\mathrm{r}} \leq e^{-1}$				DB,	DF	
tact	e	$F_{\rm a}/I$			$F_a/F_r > e$		7r ≤ e	$F_a/F_r > e$	
angle		X	Y	X	Y	X	Y	X	Y
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
40°	1.14	1	0	0.35	0.57	1 0.55		0.57	0.93

static Por=XoFr+YoFa

Con- tact	Sin	gle	DB, DF				
angle	X_0	Y_0	X_0	Y_0			
30°	0.5	0.33	1	0.66			
40°	0.5	0.26	1	0.52			

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

dynamic	dynamic Basic load ratings dynamic static dynamic (duplex) KN		static	num	ring bers olex)	Loa cent mn	ter	f	Abutmer illet dime	nsions	.
	KN	,	kgf	(00)	J. J. J.	a		$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$
$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	DB	DF	DB	DF	min	max	max	max
141	244	14,400	24,900	DB	DF	154	106	208.5	241.5	1.5	1
268	405	27,400	41,000	DB	DF	239	163	212	267.5	2	1.5
300	465	30,500	47,000	DB	DF	215	139	212	268	2	1
305	475	31,000	48,500	_	DF	243.5	167.5	212	277.5	2	1.5
410	650	41,500	66,000	DB	DF	249	147	212	298	2	1
365	585	37,500	60,000	DB	DF	265	163	212	298	2	1
550	900	56,000	92,000	DB	DF	278	162	218	342	3	1.5
495	815	50,500	83,000	DB	DF	350	234	218	342	3	1.5
730	1,210	74,500	124,000	DB	DF	340	180	222	398	4	2
665	1,110	68,000	113,000	DB	DF	420	260	222	398	4	2
	, -	,	-,								
355	570	36,500	58,000	DB	DF	198.5	109.5	217.2	316.2	2.5	1.5
145	261	14,800	26,600	DB	DF	165.5	117.5	228.5	261.5	1.5	1
305	475	31,000	48,500	DB	DF	226	150	232	288	2	1
243	380	24,700	38,500	DB	_	253	183	232	288	2	1.5
310	490	31,500	50,000	DB	_	260.5	184.5	232	297.5	2	1
310	490	31,500	50,000	_	DF	260.5	184.5	232	297.5	2	1
365	600	37,500	61,000	_	DF	235	143	232	307.5	2	1
465	780	47,500	79,500	DB	DF	217.5	105.5	234	326	2.5	1
385	650	39,500	66,000	DB	DF	291	179	234	326	2.5	1
560	975	57,000	99,000	DB	DF	244	114	238	382	3	1.5
805	1,450	82,000	148,000	DB	DF	284.5	108.5	242	438	4	2
251	405	25,600	41,000	DB	_	270.8	191	242	317.5	2	1.5
104	010	10.000	01.500	DD	DE	104	100	050	000	0	4
164	310	16,800	31,500	DB	DF	184	128	250	290	2	1
315	510	32,000	52,000	DB	DF	238	162	252	308	2	1
360	605	36,500	62,000	_ DD	DF	204.5	124.5	252	317.5	2	1
320	530	32,500	54,000	DB	DF	279	199	252	317.5	2	1.5
320	530 535	32,500	54,000	DB	_ DE	279 207 F	199	252	317.5	2	1.5
345	575	35,000	59,000	DB	DF	207.5	127.5	252	328	2	1.5
455	795	46,000	81,000	DB	DF	229.5	117.5	254	346	2.5	1
405	710	41,500	72,500	DB	DF	308	196	254	346	2.5	1
680	1,260	69,000	129,000	DB	DF	271	127	258	422	3	1.5
840	1,590	85,500	162,000	DB	DF	309	119	262	478	4	2
275	445	28,000	45,500	DB	_	282.5	212.5	262	328	2	1
380	650	38,500	66,000	DB	DF	202.5	127	264	335.5	2.5	1.5
300	050	30,300	00,000	DB	DF	۵۱۵	14/	20 4	555.5	۷.5	1.5

(DB)

(DF)

d 260∼340mm

Boundary dimensions				contact angle	dynamic	Basic Id	oad ratings dynamic	static	Bearing numbers	Drawing No.	• Load center	Mass		
			mm			g.c	a,a		ngle	o.ao	single			single
							ŀ	κN	k	cgf			mm	kg
d	D	B	C	$r_{\rm s min}$	$r_{ m lsmin}$	α	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			a	(approx.)
												_		
	320	28	_	2	1	30	127	192	12,900	19,600	7852	Α	97.5	4.83
	360	46	_	2.1	1.1	30	258	375	26,300	38,000	7952	Α	112	14
	369.5	46	_	2.5	1.5	40	235	340	23,900	34,500	SF5206		155	16.1
	369.5	46	_	2.5	1.5	40	235	340	23,900	34,500	SF5225		155	15.7
	369.5	46	_	2.5	1.5	40	235	340	23,900	34,500	SF5224		155	15.7
260	369.5	46	_	2.5	1.5	30	242	350	24,700	35,500	SF5210	D	114	15.7
	379.5	56	_	4	2	40	264	385	26,900	39,500	SF5218	Α	162.5	19.1
	400	65	_	4	1.5	30	315	455	32,000	46,500	7052	Α	128	28.7
	400	65	_	4	1.5	40	282	410	28,700	41,500	7052B	Α	171	29
	480	80	_	5	2	30	480	750	48,500	76,500	7252	Α	147	66
	540	102	_	6	3	30	590	960	60,000	98,000	7352	Α	166.5	115
	250	33	_	0	1	20	164	247	16.700	05.000	7056	^	107 F	7.17
	350	33 46	_	2		30	164		16,700	25,200	7856 7956	A	107.5	
	380		_	2.1	1.1	30	261	385	26,600	39,500	SF5606	A	118	14.8
	389.5	46		2.1	1.1	40	223	325	22,700	33,000			163.5	16
280	389.5	46	_	2.5	1.5	30	250	370	25,500	38,000	SF5608		119.5	16
	420	65	_	4	1.5	30	390	595	40,000	60,500	7056	A	133.5	30.7
	420	65	_	4	1.5	40	350	540	35,500	55,000	7056B	A	179.5	30.9
	500	80	_	5	2	30	535	860	54,500	87,500	7256	A	152.5	69.7
	580	108	_	6	3	30	670	1,140	68,000	116,000	7356	Α	178	140
285	380	46	-	2.5	2	40	206	305	21,000	31,000	SF5702	Α	162.5	14.7
290	419.5	60	_	5	2.5	40	292	455	29,800	46,500	SF5803	В	179	26.9
	380	38	_	2.1	1.1	30	193	290	19,700	29,500	7860	Α	117	10.1
	420	56	_	3	1.1	30	325	520	33,500	53,000	7960	A	132	23.7
300	460	74	_	4	1.5	30	440	715	45,000	73,000	7060	A	146.5	43.4
300	460	74	_	4	1.5	40	395	645	40,500	66,000	7060B	A	196.5	43.7
	540	85	_	5	2	30	550	930	56,500	94,500	7260	A	164	87.2
310	429.5	60	_	4	2	40	297	470	30,500	48,000	SF6203	A	185.5	26.7
310	120.0	50		•	_	10	201	170		10,000	0.0200	, ,	100.0	20.7
	400	38	_	2.1	1.1	30	197	305	20,100	31,000	7864	Α	123	10.7
320	440	56	_	3	1.1	30	330	540	34,000	55,000	7964	Α	137.5	24.7
320	480	74	_	4	1.5	30	450	760	46,000	77,500	7064	Α	152.5	45.7
	580	92	_	5	2	30	635	1,120	64,500	114,000	7264	Α	176	109
340	420	38		2.1	1.1	30	204	325	20,800	33,500	7868	Α	128.5	11.3
4	Drowing d	-4-:1	a abauu	in Dogo	D 15									

<sup>Drawing details are shown in Page B-15.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Equivalent bearing load dynamic Pr=XFr+YFa

Con-			Sin	gle		DB, DF				
tact	e	$F_{\rm a}/I$	$F_{\rm a}/F_{\rm r} \leq e$		r>e	$F_{\rm a}/I$	7r ≦ e	$F_a/F_r > e$		
angle		X	Y	X	Y	X	Y	X	Y	
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24	
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93	

static

 $P_{\text{or}} = X_0 F_{\text{r}} + Y_0 F_{\text{a}}$

Con- tact	Sin	gle	DB, DF				
angle	X_0	Y_0	Xo	Yo			
30°	0.5	0.33	1	0.66			
40°	0.5	0.26	1	0.52			

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

dynamic			dynamic static		ring bers olex)	Loa cent mn	ter		Abutmer fillet dime mm	nsions	
			_	DD	DE		DE	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$
C_{r}	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	DB	DF	DB	DF	min	max	max	max
000	005	04.000	00.000	-	D.E.	105.5	400 5	070	040	•	
206	385	21,000	39,000	DB	DF	195.5	139.5	270	310	2	1
420	750	42,500	76,500	DB	DF	270	178	272	348	2	1
380	680	39,000	69,000	_	DF	310.5	218.5	272	357.5	2	1.5
380	680	39,000	69,000	DB	_	310.5	218.5	272	357.5	2	1.5
380	680	39,000	69,000	DB	DF	310.5	218.5	272	357.5	2	1.5
395	695	40,000	71,000	DB	DF	228	136	272	357.5	2	1.5
430	775	44,000	79,000	DB	DF	324.5	212.5	278	361.5	3	2
510	905	52,000	92,500	DB	DF	255.5	125.5	278	382	3	1.5
458	820	46,500	83,500	DB	DF	342	212	278	382	3	1.5
775	1,500	79,000	153,000	DB	DF	294	134	282	458	4	2
960	1,920	98,000	196,000	DB	DF	333	129	288	512	5	2.5
267	495	27,200	E0 E00	DB	DF	215	148	290	340	2	1
425	775	43,000	50,500 79,000	DB	DF	282	190	292	368	2	1
360	650	37,000	66,500	DB	DF	327	235	292	377.5	2	1
405	745	41,500	76,000	DB	DF	239.5	147.5	292	377.5	2	1.5
635	1,190	64,500	121,000	DB	DF	267	137	298	402	3	1.5
570	1,190	58,000	110,000	DB	DF	359	229	298	402	3	1.5
870	1,720	88,500	175,000	DB	DF	305	145	258	478	4	2
1,080	2,270	111,000	232,000	DB	DF	356.5	140.5	308	552	5	2.5
1,000	2,210	111,000	202,000		<i>D</i> 1	000.0	140.5	300	332	5	2.5
335	605	34,000	62,000	DB	DF	325	233	297	368	2	2
475	910	48,500	93,000	DB	_	357.5	237.5	312	397.5	4	2
315	580	32,000	59,000	DB	DF	234.5	158.5	312	368	2	1
530	1,040	54,000	106,000	DB	DF	320	208	314	406	2.5	1
715	1,430	73,000	146,000	DB	DF	293.5	145.5	318	442	3	1.5
640	1,290	65,500	132,000	DB	DF	393	245	318	442	3	1.5
895	1,860	91,500	189,000	DB	DF	327.5	157.5	322	518	4	2
480	945	49,000	96,000	DB	_	370.5	250.5	328	411.5	3	2
320	610	32,500	62,000	DB	DF	246	170	332	388	2	1
540	1,080	55,000	110,000	DB	DF	275.5	163.5	334	426	2.5	1
735	1,520	75,000	155,000	DB	DF	305	152.5	338	462	3	1.5
1,030	2,230	105,000	228,000	DB	DF	352	168	342	558	4	2
330	650	34,000	66,500	DB	DF	257.5	181.5	352	408	2	1

(DB)

face-to-face arrangement (DF)

d 340∼480mm

	Boundary dimensions				contact angle	dynamic	Basic Id	oad ratings dynamic	static	Bearing numbers	Drawing [©]	Load center	Mass	
			mm				·	sii	ngle		single			single
								kN		gf			mm	kg
d	D	В	C	$r_{ m smin}$	$r_{ m lsmin}$	α	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			a	(approx.)
	460	56	_	3	1.1	30	345	575	35,000	59,000	7968	Α	143.5	26.0
	479.5	65	_	4	2	30	395	680	40,500	69,500	SF6807	A	151	36.7
340	520	82	_	5	2	30	520	905	53,000	92,500	7068	A	165	61.1
	620	92	_	5	2	30	650	1,200	66,500	122,000	7268	A	184.5	127
	0_0							.,		,		- ' '		
	440	38	_	2.1	1.1	30	226	365	23,100	37,000	7872	Α	134.5	11.9
	480	56	_	3	1.1	30	350	595	35,500	60,500	7972	Α	149.5	27.3
360	509.5	70	_	5	2	40	390	685	40,000	69,500	SF7203	Α	217.5	45
	540	82	_	5	2	30	530	960	54,500	98,000	7072	Α	171	63.4
	650	95	_	6	3	30	670	1,280	68,500	130,000	7272	Α	193.5	143
	480	46	_	0.1	4 4	20	001	175	20 700	40 500	7876	۸	147	10.5
				2.1	1.1	30	281	475	28,700	48,500		A		19.5
000	519.5	65 65	_	4 4	2 1.5	40	345 390	610 700	35,500	62,500	SF7603 7976	A	221.5 162.5	41.3
380	520 540	164		4	1.5 2	30 40	390 440	700 810	40,000	71,000	SF7601	A A	234	39.6 61
	5 4 0	82		5	2	30	545	1,010	45,000 55,500	83,000 103,000	7076	A	234 176.5	66.3
	360	02		5		30	343	1,010	55,500	103,000	7076	А	176.5	00.3
	500	46	_	2.1	1.1	30	287	500	29,300	51,000	7880	Α	153	20.4
400	540	65	_	4	1.5	30	395	720	40,000	73,500	7980	Α	168	41
	600	90	_	5	2	30	615	1,180	63,000	121,000	7080	Α	189.5	86.1
	520	46	_	2.1	4.4	30	310	555	21 500	56,500	7884	۸	158.5	21.1
400	520 560	46 65		2.1 4	1.1 1.5	30	410	765	31,500 41,500	78,000	7004 7984	A A	174	42.8
420	620	90		5	2	30	630	1,250	64,500	127,000	7984	A	195	42.6 89.7
	020	90		J		30	030	1,230	04,300	127,000	7004	^	195	09.7
	540	46	_	2.1	1.1	30	310	565	31,500	58,000	7888	Α	164.5	22
440	600	74	_	4	1.5	30	445	860	45,500	87,500	7988	Α	187	59.3
	650	94	_	6	3	30	645	1,310	65,500	134,000	7088	Α	204.5	103
	540	40	_	2.1	1.1	30	249	455	25,400	46,000	SF9211	Α	164.5	15.8
	5 4 0 580	56		3	1.1	30	380	725	39,000	74,000	7892	A	178	33.5
460	620	74	_	4	1.5	30	450	885	46,000	90,000	7992	A	193	61.6
	680	100	_	6	3	30	720	1,510	73,500	154,000	7092	A	214.5	119
							. =0	.,0.0	. 5,555			- '		
470	570	50	_	2.1	1.1	30	320	605	32,500	62,000	SF9404	Α	175	25.7
	600	56	_	3	1.1	30	390	760	40,000	77,500	7896	Α	184	34.9
480	650	78	_	5	2	30	530	1,090	54,000	111,000	7996	Α	202	71.8
	700	100	_	6	3	30	715	1,520	73,000	155,000	7096	A	220.5	123
				in Dogo		- •		.,	,000	,				

<sup>Drawing details are shown in Page B-15.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Equivalent bearing load dynamic Pr=XFr+YFa

Con-			Sing Fa/Fr≦e				DB,	DF	
tact	e	$F_{\rm a}/I$			r>e	$F_{\rm a}/I$	7r ≦ e	$F_a/F_r > e$	
angle		X	Y	X	Y	X	Y	X	Y
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
40°	1.14	1			0.35 0.57		1 0.55		0.93

static

 $P_{\text{or}} = X_0 F_{\text{r}} + Y_0 F_{\text{a}}$

Con-	Sin	gle	DB,	DF
angle	X_0	Y_0	X_0	Yo
30°	0.5	0.33	1	0.66
40°	0.5	0.26	1	0.52

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

dynamic	(duplex)		static	num	ring lbers olex)	Loa cent mr	ter		Abutmer fillet dime mm	nsions	•
	KN		kgf			a		$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$
$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	DB	DF	DB	DF	min	max	max	max
560	1,150	57,000	118,000	DB	DF	287	175	354	446	2.5	1
645	1,360	65,500	139,000	_	DF	301.5	171.5	358	461.5	3	2
845	1,810	86,000	185,000	DB	DF	330.5	166.5	362	498	4	2
1,060	2,400	108,000	244,000	DB	DF	369	185	362	598	4	2
370	725	37,500	74,000	DB	DF	269	193	372	428	2	1
565	1,190	57,500	121,000	DB	DF	298.5	186.5	374	466	2.5	1
635	1,370	64,500	140,000	DB	_	435	295	382	487.5	4	2
865	1,920	88,000	196,000	DB	DF	342	178	382	518	4	2
1,090	2,550	111,000	260,000	DB	DF	386.5	196.5	388	622	5	2.5
	2,000	,000	200,000			000.0	100.0	000	022	Ŭ	
455	955	46,500	97,500	DB	DF	294.5	202.5	392	468	2	1
565	1,220	57,500	125,000	DB	_	442.5	312.5	398	501.5	3	2
635	1,400	64,500	142,000	DB	DF	325	195	398	502	3	1.5
715	1,620	73,000	166,000	_	DF	468	304	398	522	3	2
865	1,920	88,000	196,000	DB	DF	342	178	402	538	4	2
	1,320	00,000	190,000	00	Di	072	170	702	300	7	
465	1,000	47,500	102,000	DB	DF	306	214	412	488	2	1
640	1,440	65,500	147,000	DB	DF	336.5	206.5	418	522	3	1.5
1,000	2,370	102,000	241,000	DB	DF	379	199	422	578	4	2
1,000	2,070	102,000	241,000		Di	073	100	722	370	7	
505	1,110	51,500	113,000	DB	DF	317.5	225.5	432	508	2	1
660	1,530	67,500	156,000	DB	DF	348	218	438	542	3	1.5
1,030	2,500	105,000	255,000	DB	DF	390.5	210.5	442	598	4	2
1,000	2,300	103,000	255,000		Di	030.5	210.5	772	330	7	
505	1,130	51,500	116,000	DB	DF	329	237	452	528	2	1
720	1,720	73,500	175,000	DB	DF	374.5	226.5	458	582	3	1.5
1,050	2,630	107,000	268,000	DB	DF	409	220.5	468	622	5	2.5
1,030	2,000	107,000	200,000	- 00	Di	403	221	400	022	J	2.5
405	905	41,500	92,500	DB	_	328.5	248.5	472	528	2	1
620	1,450	63,000	148,000	DB	DF	356.5	244.5	474	566	2.5	1
730	1,430	74,500	180,000	DB	DF	386	238	474	602	3	1.5
117	300			DB	DF	429	236 229	488	652	5	2.5
117	300	12,000	31,000	DD	DF	429	229	400	002	5	2.5
520	1,210	53,000	124,000	DB	_	350	250	482	558	2	1
520	1,410	55,000	124,000	26		330	200	402	556	۷	'
635	1,520	64,500	155,000	DB	DF	368	256	494	586	2.5	1
860	2,180	88,000	223,000	DB	DF	404.5	248.5	502	628	4	2
1,170	3,050	119,000	310,000	DB	DF	404.5 441	246.5 241	502	672	5	2.5
1,170	3,030	113,000	310,000	DD	DF	441	4 1	500	012	5	2.3

face-to-face arrangement (DF)

d 500∼1,060mm

	1	Boundar	y dime	ensions		contact angle	dynamic	Basic static	load ratings dynamic	static	Bearing numbers	Drawing [©] No.	Load center	Mass
			mm			, i	·		single		single			single
								kN		kgf			mm	kg
d	D	B	C	$r_{ m smin}$	$r_{ m ls\;min}$	α	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			a	(approx.)
	620	56	_	3	1.1	30	395	780	40,000	79,500	78/500	Α	189.5	36.5
500	670	78	_	5	2	30	540	1,120	55,000	115,000	79/500	Α	208	74.9
	720	100	_	6	3	30	735	1,590	75,000	163,000	70/500	Α	226	129
				_										
560	700	100	_	5	2.5	30	670	1,450	68,000	147,000	SF10013		223	87.3
	750	85	_	5	2	30	620	1,380	63,500	141,000	79/560	Α	231.5	105
630	780	69	_	4	1.5	30	500	1,140	51,000	116,000	78/630A	Α	238	72.2
670	820	69	_	4	1.5	30	475	1,080	48,000	110,000	78/670	Α	249.5	76.3
070	820	69	_	4	1.5	40	420	945	43,000	96,500	78/670B	Α	347	76.3
700	900	74	_	4	1.5	30	530	1,290	54,000	131,000	SF1400	I A	268	117
1,000	1,420	130	_	7.5	4	30	1,440	4,650	147,000	470,000	SF2000	I A	414.5	654
1,060	1,280	100	_	6	3	30	880	2,680	895,000	273,000	78/1060	Α	387.5	255
,	,							, -	, -	,				

<sup>Drawing details are shown in Page B-15.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Equivalent bearing load dynamic Pr=XFr+YFa

Con-			Sin	gle			DB,	DF	
tact e		$F_a/F_r \leq e$		$F_{\rm a}/F_{\rm r}>e$		$F_a/F_r \leq e$		$F_a/F_r > e$	
angle		X	Y	X	Y	X	Y	X	Y
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93

static

 $P_{\text{or}} = X_0 F_r + Y_0 F_a$

Con- tact	Sin	gle	DB, DF			
angle	X_0	Y_0	Xo	Y_{0}		
30°	0.5	0.33	1	0.66		
40°	0.5	0.26	1	0.52		

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

dynamic	static	ad ratings dynamic uplex)	static	num	ring bers olex)	Loa cent mn	er	1	Abutmer fillet dime mm	ensions	•
	KN kgf		kgf			a		$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$	$r_{ m las}$
$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	DB	DF	DB	DF	min	max	max	max
640	1,560	65,000	159,000	DB	DF	379.5	267.5	514	606	2.5	1
875	2,250	89,000	229,000	DB	DF	416	260	522	648	4	2
1,190	3,200	122,000	325,000	DB	DF	452.5	252.5	528	692	5	2.5
1,080	2,890	111,000	295,000	DB	DF	446.5	246.5	522	678	4	2
1,010	2,760	103,000	281,000	DB	DF	463.5	293.5	582	728	4	2
815	2,270	83,000	232,000	DB	DF	476	338	648	762	3	1.5
770	2,150	78,500	219.000	DB	DF	499	361	688	802	3	1.5
680	1,890	69,500	193,000	DB	DF	694	556	688	802	3	1.5
	,	,	· · ·								
860	2,580	88,000	263,000	DB	DF	536	388	718	882	3	1.5
2,340	9,250	238,000	945,000	DB	DF	828.5	568.5	1,036	1,384	6	3
1,430	5,350	146,000	545,000	DB	DF	775.5	575.5	1,088	1,252	5	2.5

d 100∼190mm

		Bounda	ry dimensi	ons		Contact angle	t dynamic	Basic static	load ratings dynamic	static	Bearing I numbers	Orawing [®] No.
			mm				kN		kg			
d	D	B or B_1	C or C_1	$r_{ m smin}$	$r_{ m lsmin}$	α	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
100	170	60.3	60.3	2.5	2.5	40	160	179	16,300	18,200	DE2010	D
110	169.5	56	56	2.5	_	30	149	186	15,200	18,900	DE2208	В
120	190 190	66 66	66 66	2.5 2.5	1 1	30 30	187 187	236 236	19,000 19,000	24,100 24,100	DE2405 DE2409	F D
130	200	66	66	2.5	_	30	191	251	19,400	25,600	DE2601	В
140	210 210 210	66 66 66	66 66 66	2 1 2.5	- - -	40 40 30	203 179 194	266 248 265	20,700 18,300 19,800	27,100 25,300 27,000	DE2812 DE2806 DE2807	A B B
150	225 225 225 230 230	70 70 73 70 70	70 70 73 70 70	2.5 2.5 2.5 2.5 2	_ _ _ 1.5 2	30 30 30 30 40	222 222 216 222 198	305 305 293 305 275	22,700 22,700 22,000 22,700 20,200	31,500 31,500 29,900 31,500 28,100	DE3010 DE3011 DE3009 DE3007 DE3019	A B A F D
160	215 240	56 76	50 76	2 2.5	1.1 —	40 30	123 252	186 355	12,500 25,700	18,900 36,000	DE3207 DE3201	C A
170	260	84	84	2.5	_	30	300	430	31,000	43,500	DE3402	А
175	280 280	92 92	92 92	2.5 2.5	_ _	40 40	320 320	480 480	32,500 32,500	49,000 49,000	DE3502 DE3501	A A
180	250 250 259.5 259.5 259.5 259.5 259.5 259.5 280	66 70 66 66 66 66 66 66 92	66 70 66 66 66 66 66 66 92	2.5 2.5 2.5 2.5 2.5 2 2.5 2.5 2.5	- 1 1 1 - - - 2.5	40 40 30 30 40 40 30 30 30	185 190 212 212 224 224 251 212 345	275 285 325 325 330 330 380 325 505	18,900 19,300 21,600 21,600 22,800 22,800 25,600 21,600 35,000	28,000 29,100 33,000 34,000 34,000 38,500 33,000 51,500	DE3606 DE3609 DE3610 DE3601 DE3608 DE3615 DE3603 DE3612 DE3605	A F D F B A D
190	269.5 269.5	66 66	66 66	2.5 2.5	1 1	30 30	215 215	335 335	21,900 21,900	34,500 34,500	DE3807 DE3801	D F

<sup>Drawing details are shown in Page B-16.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

(Con-			Sin	gle			DB, DF			
	act	e	$F_{\rm a}/I$	$F_{\rm a}/F_{\rm r} \leq e$		$F_a/F_r > e$		7r ≤ e	$F_a/F_r > e$		
1	angle		X	Y	X	Y	X	Y	X	Y	
ı	30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24	
Ī	40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93	

static $P_{\text{or}} = X_0 F_r + Y_0 F_a$

Con- tact	Sin	gle	DB, DF			
angle	X_0	Yo	X_0	Yo		
30°	0.5	0.33	1	0.66		
40°	0.5	0.26	1	0.52		

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

	Abutmen let dime	nsions	.	Load center mm	Mass
d_{a}	$D_{\rm a}$	$r_{\rm as}$	$r_{ m las}$		kg
min	max	max	max	a	(approx.)
158	112	2	2	143	5.64
157.5	112	2	_	54.5	4.61
184.5	132	2	1	122	7.09
184.5	132	2	1	122	7.09
			-		
188	142	2	-	64	7.54
198	150	2	_	90	8
204.5	152	2	_	90	7.76
198	152	2	_	67	7.72
213	162	2	_	71.5	9.74
213	162	2	_	71.5	9.74
213	162	2	_	72.5	9.69
221.5	162	2	1.5	143	9.74
221.5	158.5	2	2	194	9.74
221.0	100.0		_	101	0.7 1
208	170	2	1	182	5.71
228	172	2	_	76.5	12
				7 0.0	
248	182	2	_	111	16.1
268	187	2	_	119	21.7
268	187	2	_	88.5	21.7
200	107			00.5	21.7
238	192	2	_	106	9.83
244.5	192	2	1	215	10.4
254	192	2	1	160	10.4
254	192	2	1	160	10.4
247.5	192	2	_	109	10.7
249.5	190	2	_	109	10.7
247.5	192	2	_	80	10.7
247.5	192	2	2	160	10.7
268	192	2	_	89.5	20.9
200	132	۷		09.0	۷٠.۵
264	202	2	1	166	11.9
264	202	2	1	166	11.9
207	202	~		100	11.0

d 200∼360mm

		Bounda	ary dimens	ions		Contact angle	t dynamic	Basic I	load ratings dynamic	static	Bearing I	Orawing ^❶ No.
			mm				k	N	kç	gf		
d	D	B or $B_{ m l}$	C or C_1	$r_{ m smin}$	$r_{ m ls\;min}$	α	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
200	279.5 279.5 289.5 289.5 289.5 289.5 289.5 289.5 310	76 76 76 76 76 76 76 102	76 76 76 76 76 76 76 102	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	1.5 - 1.5 2.1 1.5 1.5 1.5	30 30 40 30 30 30 30 30	253 253 260 269 269 269 269 410	405 405 385 420 420 420 420 650	25,800 25,800 26,500 27,500 27,500 27,500 27,500 41,500	41,500 41,500 39,500 42,500 42,500 42,500 42,500 66,000	DE4004 DE4008 DE4010 DE4019 DE4009 DE4002 DE4012 DE4007	F B G D F D A
220	309.5 309.5 309.5 319.5 319.5	76 76 76 92 92	76 76 76 92 92	2.5 2.5 2.1 2.5 2.5	- - 1.1 - -	30 30 30 30 40	325 325 325 375 335	520 520 520 625 550	33,000 33,000 33,000 38,500 34,500	53,000 53,000 53,000 63,500 56,000	DE4403 DE4404 DE4408 DE4409 DE4406	A A D A
230	329.5 329.5 329.5	80 80 80	80 80 80	2.5 2.5 2.5	1.5 1.5 1.5	30 30 30	350 350 350	585 585 585	36,000 36,000 36,000	59,500 59,500 59,500	DE4602 DE4603 DE4605	F D E
240	359.5	112	112	3	1.5	40	440	770	45,000	78,500	DE4803	F
250	340	76	70	2	2	30	272	480	27,800	49,000	DE5004	С
260	369.5 369.5 369.5	92 92 92	92 92 92	2.5 2.5 2.5	_ _ 2.5	40 30 30	380 430 395	680 775 695	39,000 43,500 40,000	69,000 79,000 71,000	DE5213 DE5211 DE5212	A A F
280	389.5	92	92	2.1	1.1	30	405	745	41,500	76,000	DE5605	D
300	429.5	112	112	3	_	30	530	1,040	54,000	106,000	DE6001	А
360	540	164	164	5	_	30	725	1,630	74,000	166,000	DE7201	А
	• Drowing do		anne te B	D.40								

<sup>Drawing details are shown in Page B-16.
Smallest allowable dimension for chamfer dimension r or r_i.</sup>

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

Con-			Sin	gle			DB, DF			
tact	e	$F_{\rm a}/I$	$F_{\rm a}/F_{\rm r} \leq e$		$F_a/F_r > e$		7r ≤ e	$F_a/F_r > e$		
angle		X	Y	X	Y	X	Y	X	Y	
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24	
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93	

static $P_{\text{or}} = X_0 F_r + Y_0 F_a$

Con- tact	Sin	gle	DB, DF				
angle	X_0	Y_0	X_0	$Y_{\rm O}$			
30°	0.5	0.33	1	0.66			
40°	0.5	0.26	1	0.52			

For single, When $P_{\text{or}} < F_{\text{r}}$ use $P_{\text{or}} = F_{\text{r}}$

fil	let dime	ensions		center	
	mm	า		mm	
d_{a}	$D_{\rm a}$	$r_{\rm as}$	$r_{ m las}$		kg
min	max	max	max	a	(approx.)
271	212	2	1.5	177	14.3
267.5	212	2	_	88.5	14.3
281	212	2	1.5	244	16.5
277.5	212	2	2	179	16.4
281	212	2	1.5	180	16.4
281	212	2	1.5	179	16.4
281	212	2	1.5	179	16.4
298	212	2	_	99	28.3
297.5	232	2	_	95.5	17.8
297.5	232	2	_	95.5	17.8
302.5	232	2	1	191	17.8
307.5	232	2	_	101	24.4
307.5	232	2	_	136	24.4
321	242	2	1.5	202	22
321	242	2	1.5	202	22
321	242	2	1.5	202	22
351	254	2.5	1.5	308	39.7
328	262	2	2	208	18.4
357.5	272	2	_	155	31.3
357.5	272	2	_	114	31.3
357.5	272	2	2	228	30.9
382.5	292	2	1	239	33.4
417.5	312	2.5	_	132	52.4

171

131

518

382

Cylindrical Roller Bearings

1. Structure and Characteristics

Since the rollers of the cylindrical roller bearings make line contact with the raceways, these bearings can support heavy radial loads and are suitable for high speed operation.

Assembly and disassembly are comparatively easy even if the inner or outer ring requires a shrink fit, as the bearing is a separation type. Cylindrical roller bearings are classified as single row, double row and four row type, according to how many rollers are used, and there are models as shown in **Table 1** to **3**.

Although designed as a thin wall type, the SL Model double row cylindrical roller bearing can support enormous radial and impact loads. **Table 4** lists the configurations available.

Table 1 Model and characteristics of the single row cylindrical roller bearings

Model code	Drawing	Characteristics
Model NU Model N	Model NU Model N	 Model NU has ribs on the outer ring and the inner ring can be separated from "the arranged set of outer ring, rollers and cage". Model N has ribs on the inner ring and the outer ring can be separated from "the arranged set of inner ring, rollers and cage". This bearing cannot support axial loads. The most suitable model widely used as the free end bearing.
Model NJ Model NF	Model NJ Model NF	 Model NJ has ribs on the outer ring and a rib on the inner ring. Model NF has a rib on the outer ring and ribs on the inner ring. These bearings support axial loads in one direction only. There may be a case to use two bearings adjacent when they are used regardless of the fixed end or free end.
Model NUP Model NH (NJ+HJ)	Model NUP Model NH	 Model NUP has a rib ring added on the side of the inner ring where it did not have a rib. Model NJ with the added ring rib of Model L is Model NH. The inner ring should be fixed along the axial direction since each ring rib will be separated. These bearings support axial loads in either direction. There may be a case to use as the fixed end bearing.

Note: Model E provides higher load capacity designed with increased diameter, length and numbers of rollers but the boundary dimensions are same as the standard type bearings.

Table 2 Model and characteristics of the double row cylindrical roller bearings

Model code	Drawing	Characteristics
Model NNU Model NN	Model NNU Cylindrical hole Tapered hole Model NN Cylindrical hole Tapered hole	 These bearings are used in the main shaft of machine tools, rolling mill rolls and printing machine plate cylinders where thin walled bearings are needed. To use the bearing in the main shaft of machine tools, adjust the radial internal clearance by inserting a tapered inner ring to the tapered shaft.

Table 3 Models and characters of four row cylindrical roller bearings

Drawing	Characteristics
Refer to the drawings. Drawing numbers are listed in the dimensions table.	 The bearing is mainly used for the roll neck of a rolling mill, and is designed so as to handle the maximum rating load for the allowable space in the roll neck part. Carbonized steel may be used to provide better resistance to cracking or impact to the inner ring. Consult NTN Engineering about the fitting and bearing internal clearance when the bearing is used for the preparing roll of a rolling mill. NTN provides bearings with special configurations: with tapered shaft holes; for high speed use; designed to prevent creeping; and, with dust and waterproof seals.

Drawings

Table 4 Model and Characteristics of the Model SL cylindrical roller bearings

	Model	Characteristics
Open type	Model SL01 Model SL02	 Fixed end is Model SL01, free end is Model SL02. Since the outer ring is split in the circumference direction using a special method and fixed as a unit after mounting rollers, the bearing side face should be securely fixed using the shaft or housing shoulder in the axial direction. Outer ring has an oil groove and port. Model SL01 can support axial loads from both directions via rollers. Shoulder dimensions of shaft and bearings generally applies Da and da dimensions in the dimensions table, but J and K dimensions are used when the moment or large axial loads are applied.
Enclosed type	Model SL04	 Model SL04 only with the fixed side. Since the inner ring is split in the circumference direction using a special method and fixed as a unit after mounting rollers, the bearing side face should be securely fixed by using the shaft or housing shoulder in the axial direction. Inner ring has an oil groove and port. Model SL04 can support radial and axial loads in either directions. A sealed bearing prelubricated with grease, the outer ring is fitted with a locating snap ring, making it easy to handle and appropriate for sheaves and other applications. Surface coating is added for rust prevention.

2. Dimensional Accuracy/Rotation Accuracy

Refer to Table 3.3 (Page A-12,13)

3. Recommended Fitting

Refer to Table 4.2 (Page A-24)

4. Bearing Internal Clearance

Refer to Table 5.5 and 5.6 (Page A-31, 32, 33)

5. Permissible slant angle

It varies according to the bearing type and internal specifications, the values in the table below are widely used to avoid edge loads under general load conditions.

When the width series is 0 or 1 \cdots 0.001 rad (3.5') When the width series is 2 \cdots 0.0005 rad (1.5') Double row cylindrical roller bearing \bullet \cdots 0.0005 rad (1.5')

1 This is no applied to high accuracy bearings which are used as the main shaft of machine tools.

Table 5 Tolerance of inscribed circle diameter $F_{\rm w}$ of rollers and circumscribed circle diameter $E_{\rm w}$ of rollers for compatible bearings.

d	mm	Δ	$F_{ m w}$	$\Delta E_{ m w}$		
over	Incl	high	low	low	high	
50	120	+ 20	0	0	- 20	
120	200	+ 25	0	0	- 25	
200	250	+ 30	0	0	- 30	
250	315	+ 35	0	0	- 35	
315	400	+ 40	0	0	- 40	
400	500	+ 45	0	0	- 45	
500	630	+ 70	0	0	- 70	
630	800	+ 80	0	0	- 80	
800	1,000	+ 90	0	0	- 90	
1,000	1,250	+105	0	0	-105	
1,250	1,400	+125	0	0	-125	

 $\Delta F_{
m w}$: Dimensional difference of inscribed circle diameter of rollers. \bullet $\Delta E_{
m w}$: Dimensional difference of circumscribed circle diameter of rollers. \bullet

2 Regulation range of JIS is $d \leq 500$ mm for $\Delta F_{\rm w}$, and $d \leq 400$ mm for $\Delta E_{\rm w}$.

Table 6 Radial internal clearance of Model SL cylindrical roller bearing.

Nominal bore diameter $d \mod$		CN (Normal)		С	3	C 4	
over	Incl	min	max	min	max	min	max
30	50	20	75	40	95	55	110
50	80	30	90	55	115	75	135
80	120	35	105	80	150	105	175
120	180	60	150	110	200	150	240
180	250	90	190	155	255	205	305
250	315	110	225	195	310	255	370
315	400	140	265	245	370	320	445
400	500	180	320	300	440	395	535

6. Radial internal clearance of the Model SL cylindrical roller bearings.

Table 6 lists the radial internal clearance values of the Model SL cylindrical roller bearings.

7. Recommended fit of the Model SL cylindrical roller bearings, and selection of the radial internal clearance.

Table 7 lists the recommended fit for outer ring rotation such as sheaves and wheels, **Table 8** lists the relation between the fitting and the radial internal clearance.

For assembling and disassembling the bearing, it is necessary to evenly load around the circumference of the raceway end on the fitting side.

8. General Operating Cautions

Slippage between the rollers and raceways may occur when bearings are operated under small loads (about $F_{\rm r} \le 0.04 C_{\rm or}$) and may cause smearing. This is most apparent when using large size cylindrical roller bearings due to the large cage mass. Please consult NTN Engineering for further details.

Table 7 Recommended fit

	Conditions	Tolerance range class of shaft	Tolerance range class of housing		
Outer ring rotating load	Heavy load with a thin walled housing. Normal load, heavy load Light load, changing load	g6 or h6	P7 N7 [●] M7		

3 Be sure to use N7 for sheaves

Table 8 Relation between fit and radial internal clearance.

			Housing fit											
		G 7	H 6	J 6	J 7	V.C				147	NG	NI 7	P 6	D 7
		G /	по	36	J/	Νb	K 7	уo	IVI O	IVI /	14 0	IN /	P 0	P /
	g 6													
	h 6													
	j 5													
	j 6		CN	(Nor	mal)					C	3_			
≓	k 5			(140)	l)	Ĺ <u> </u>			
Shaft fit	k 6													
S	m 5													
	m 6													
	n 5			—с	ัว						С	4		
	n 6				l I									
	p 6				С	4								

Note: When the shaft fit is g6, housing fit is N7(N6) and used at low speed (for sheaves), apply CN(normal) clearance.

d 100∼120mm

		Boundary of	dimensions		dynamic	Basic loa	d ratings dynamic	static	Bearing numbers	Dimensions
		mı	m		kN	otatio	,	gf	Tiulingoro	mm
									type	
d	D	В	$r_{ m smin}$	$r_{ m ls\ min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	NU	$F_{ m w}$
	140	00	4.4	4	70.0	00.0	7.100	10.000	NULLOOO	110
	140 150	20 24	1.1 1.5	1 1.1	70.0 93.0	98.0 126	7,100 9,500	10,000 12,800	NU1920	110 113
	180	24 34	2.1	2.1	183	217	18,600	22,200	NU1020 NU220	120
	180	34 34	2.1	2.1	249	305	25,400	31,000	NU220E	119
	180	46	2.1	2.1	2 4 9 258	340	26,300	34,500	NU220E NU2220	120
100	180	46	2.1	2.1	335	445	34,000	45,500	NU2220E	119
	215	47	3	3	299	335	30,500	34,500	NU320	129.5
	215	47	3	3	380	425	38,500	43,500	NU320E	127.5
	215	73	3	3	410	505	42,000	51,500	NU2320	129.5
	215	73	3	3	570	715	58,000	73,000	NU2320E	127.5
	210	70			370	7 10		70,000	11020202	127.0
	160	26	2	1.1	105	142	10,700	14,500	NU1021	119.5
105	190	36	2.1	2.1	201	241	20,500	24,600	NU221	126.8
105	190	65.1	2.1	2.1	360	505	36,500	51,500	NU3221	126.8
	225	49	3	3	320	360	32,500	36,500	NU321	135
	150	20	1.1	1	72.5	106	7,400	10,800	NU1922	120
	170	28	2	1.1	131	174	13,400	17,700	NU1022	125
	200	38	2.1	2.1	240	290	24,500	29,500	NU222	132.5
	200	38	2.1	2.1	293	365	29,800	37,000	NU222E	132.5
	200	53	2.1	2.1	320	415	32,500	42,000	NU2222	132.5
	200	53	2.1	2.1	385	515	39,000	52,500	NU2222E	132.5
110	200	69.8	2.1	2.1	425	605	43,500	62,000	NU3222	132.5
	240	50	3	3	360	400	36,500	41,000	NU322	143
	240	50	3	3	450	525	46,000	53,500	NU322E	143
	240	80	3	3	605	790	61,500	80,500	NU2322	143
	240	80	3	3	675	880	69,000	89,500	NU2322E	143
	240	92.1	3	3	715	985	73,000	100,000	NU3322A	143
	165	22	1.1	1	89.5	134	9,150	13,700	NU1924	132
	165	27	1.1	1	116	188	11,900	19,100	NU2924	132
	180	28	2	1.1	139	191	14,100	19,500	NU1024	135
	215	40	2.1	2.1	260	320	26,500	32,500	NU224	143.5
120	215	40	2.1	2.1	335	420	34,000	43,000	NU224E	143.5
120	215	58	2.1	2.1	350	460	35,500	47,000	NU2224	143.5
	215	58	2.1	2.1	450	620	46,000	63,000	NU2224E	143.5
	215	76	2.1	2.1	540	815	55,000	83,000	NU3224	143.5
	260	55	3	3	450	510	46,000	52,000	NU324	154
	260	55	3	3	530	610	54,000	62,000	NU324E	154

lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 .

Type NU

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N

Abuti	ment and fill	et dimensi	ons	Mass
	mm			kg
$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	type NU
min	max	max	max	(approx.)
105	133.5	1	1	1.01
106.5	142	1.5	1	1.45
111	169	2	2	3.33
111	169	2	2	3.66
111	169	2	2	4.57
111	169	2	2	5.01
113	202	2.5	2.5	7.49
113	202	2.5	2.5	8.57
113	202	2.5	2.5	11.7
113	202	2.5	2.5	12.8
111.5	151	2	1	1.84
116	179	2	2	3.95
116	179	2	2	8.25
118	212	2.5	2.5	8.53
115	143.5	1	1	1.09
116.5	161	2	1	2.33
121	189	2	2	4.63
121	189	2	2	4.27
121	189	2	2	6.56
121	189	2	2	7.4
121	189	2	2	9.85
123	227	2.5	2.5	10
123	227	2.5	2.5	11.1
123	227	2.5	2.5	17.1
123	227	2.5	2.5	19.4
123	227	2.5	2.5	20.2
125	158.5	1	1	1.48
125	158.5	1	1	1.81
126.5	171	2	1	2.44
131	204	2	2	5.57
131	204	2	2	5.97
131	204	2	2	8.19
131	204	2	2	9.18
131	204	2	2	12.2
133	247	2.5	2.5	12.8
133	247	2.5	2.5	13.9

d 120∼150mm

		Boundary	dimensions		dynamic	Basic lo static	ad ratings dynamic	static	Bearing numbers	Dimensions
		m	nm		dynamic k		•	gf	Humbers	mm
									type	
d	D	В	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	NU	$F_{ m w}$
	000				=			00.500	NII 1000 1	
	260	86	3	3	710	920	72,500	93,500	NU2324	154
120	260	86	3	3	795	1,030	81,000	105,000	NU2324E	154
	260	106	3	3	845	1,150	86,000	117,000	NU3324	154
	180	24	1.5	1.1	106	161	10,800	16,400	NU1926	143
	180	30	1.5	1.1	149	248	15,200	25,300	NU2926	143
	200	33	2	1.1	172	238	17,500	24,200	NU1026	148
	230	40	3	3	270	340	27,600	35,000	NU226	156
	230	40	3	3	365	455	37,000	46,000	NU226E	153.5
	230	64	3	3	380	530	38,500	54,000	NU2226	156
130	230	64	3	3	530	735	54,000	75,000	NU2226E	153.5
	230	80	3	3	600	955	61,000	97,500	NU3226	156
	280	58	4	4	560	665	57,000	68,000	NU326	167
	280	58	4	4	615	735	63,000	75,000	NU326E	167
	280	93	4	4	840	1,130	85,500	115,000	NU2326	167
	280	93	4	4	920	1,230	94,000	126,000	NU2326E	167
	280	112	4	4	975	1,360	99,500	139,000	NU3326	167
	190	30	1.5	1.1	151	258	15,400	26,300	NU2928	153
	210	33	2	1.1	176	250	17,900	25,500	NU1028	158
	210	53	2	2	350	585	36,000	60,000	NU3028	158
	250	42	3	3	310	400	31,500	40,500	NU228	169
	250	42	3	3	395	515	40,000	52,500	NU228E	169
	250	68	3	3	445	635	45,500	64,500	NU2228	169
140	250	68	3	3	575	835	58,500	85,000	NU2228E	169
	250	88	3	3	695	1,120	70,500	114,000	NU3228	169
	300	62	4	4	615	745	63,000	76,000	NU328	180
	300	62	4	4	665	795	67,500	81,500	NU328E	180
	300	102	4	4	920	1,250	94,000	127,000	NU2328	180
	300	102	4	4	1,020	1,380	104,000	141,000	NU2328E	180
	210	28	2	1.1	147	219	15,000	22,300	NU1930	165
	210	36	2	1.1	204	335	20,800	34,000	NU2930	165
	225	35	2.1	1.5	202	294	20,600	29,900	NU1030	169.5
150	070	45	3	3	345	435	35,000	44,500	NU230	182
150	270	45	3	3	450	595	45,500	60,500	NU230E	182
	270	73	3	3	500	710	51,000	72,500	NU2230	182
	270	73	3	3	660	980	67,500	100,000	NU2230E	182
	270	96	3	3	800	1,300	81,500	132,000	NU3230	182
			n for abomfor			.,500	,	,		

lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N

Type NU

Abut	ment and fi	llet dimensi	ons	Mass
	mr	n		kg
$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	type NU
min	max	max	max	(approx.)
133	247	2.5	2.5	21.5
133	247	2.5	2.5	26.1
133	247	2.5	2.5	27.1
136.5	172	1.5	1	1.95
136.5	172	1.5	1	2.44
136.5	191	2	1	3.69
143	217	2.5	2.5	6.3
143	217	2.5	2.5	6.9
143	217	2.5	2.5	10.2
143	217	2.5	2.5	11.8
143	217	2.5	2.5	14.6
146	264	3	3	17.4
146	264	3	3	19.4
146	264	3	3	26.9
146	264	3	3	30.9
146	264	3	3	33.1
146.5	182	1.5	1	2.59
146.5	201	2	1	4.05
149	201	2	2	6.8
153	237	2.5	2.5	7.88
153	237	2.5	2.5	8.73
153	237	2.5	2.5	12.9
153	237	2.5	2.5	15.8
153	237	2.5	2.5	19.1
156	284	3	3	21.2
156	284	3	3	23.2
156	284	3	3	33.8
156	284	3	3	38.7
156.5	201	2	1	3.17
156.5	201	2	1	4.08
158	214	2	1.5	4.77
163	257	2.5	2.5	9.92
163	257	2.5	2.5	11
163	257	2.5	2.5	16.3
163	257	2.5	2.5	19.7
163	257	2.5	2.5	24.5

d 150∼180mm

		Boundary	dimensions				ad ratings		Bearing	Dimensions
					dynamic	static N	dynamic	static	numbers	
		11	nm		K	IN	K	gf	type	mm
d	D	В	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	NU	$F_{ m w}$
	320	65	4	4	665	805	67,500	82,500	NU330	193
450	320	65	4	4	760	920	77,500	94,000	NU330E	193
150	320	108	4	4	1,020	1,400	104,000	143,000	NU2330	193
	320	108	4	4	1,160	1,600	118,000	163,000	NU2330E	193
	220	28	2	1.1	154	236	15,700	24,100	NU1932	175
	220	36	2	1.1	213	360	21,700	36,500	NU2932	175
	240	38	2.1	1.5	238	340	24,200	35,000	NU1032	180
	270	86	2.1	2.1	400	565	40,500	57,500	NU3132	189
	290	48	3	3	430	570	43,500	58,000	NU232	195
400	290	48	3	3	500	665	51,000	68,000	NU232E	195
160	290	80	3	3	630	940	64,500	96,000	NU2232	195
	290	80	3	3	810	1,190	82,500	121,000	NU2232E	193
	340	68	4	4	700	875	71,000	89,500	NU332	208
	340	68	4	4	860	1,050	87,500	107,000	NU332E	204
	340	114	4	4	1,070	1,520	109,000	155,000	NU2332	208
	340	114	4	4	1,310	1,820	134,000	186,000	NU2332E	204
	230	28	2	1.1	160	254	16,300	25,900	NU1934	185
	230	36	2	1.1	222	385	22,600	39,500	NU2934	185
	260	42	2.1	2.1	278	400	28,300	41,000	NU1034	193
	310	52	4	4	475	635	48,500	65,000	NU234	208
470	310	52	4	4	605	800	61,500	81,500	NU234E	207
170	310	86	4	4	715	1,080	73,000	110,000	NU2234	208
	310	86	4	4	965	1,410	98,500	144,000	NU2234E	205
	310	110	4	4	1,020	1,690	104,000	172,000	NU3234	208
	360	72	4	4	795	1,010	81,500	103,000	NU334	220
	360	120	4	4	1,220	1,750	125,000	179,000	NU2334	220
	250	33	2	1.1	215	335	21,900	34,000	NU1936	197
	250	42	2	1.1	293	495	29,900	50,500	NU2936	197
	280	46	2.1	2.1	340	485	35,000	49,500	NU1036	205
	280	74	2.1	2.1	610	1,030	62,000	105,000	NU3036	205
180	320	52	4	4	495	675	50,500	69,000	NU236	218
100	320	52	4	4	625	850	64,000	87,000	NU236E	217
	320	86	4	4	745	1,140	76,000	117,000	NU2236	218
	320	86	4	4	1,010	1,510	103,000	154,000	NU2236E	215
	320	112	4	4	1,010	1,700	103,000	174,000	NU3236	218
	380	75	4	4	905	1,150	92,000	118,000	NU336	232

lacktriangledown Minimal allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N

Type NU

Abuti	ment and fi	llet dimensi	ons	Mass
	mr	n		kg
d_{a}	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	type NU
min	max	max	max	(approx.)
166	304	3	3	25.3
166	304	3	3	28.4
166	304	3	3	40.6
166	304	3	3	47.2
166.5	211	2	1	3.35
166.5	211	2	1	4.3
168	229	2	1.5	5.9
171	259	2	2	20.6
173	277	2.5	2.5	13.7
173	277	2.5	2.5	15.7
173 173	277	2.5	2.5	22
	277	2.5	2.5	25.1
176	324	3	3	31.3
176	324	3	3	34
176	324	3	3	50.5
176	324	3	3	56
176.5	221	2	1	3.52
176.5	221	2	1	4.53
181	249	2	2	7.88
186	294	3	3	17
186	294	3	3	19.6
186	294	3	3	27.2
186	294	3	3	31
186	294	3	3	37.4
186	344	3	3	37
186	344	3	3	59.5
186.5	241	2	1	5.21
186.5	241	2	1	6.63
191	269	2	2	10.3
191	269	2	2	17.8
196	304	3	3	17.7
196	304	3	3	20.4
196	304	3	3	28.4
196	304	3	3	31.9
196	304	3	3	39.6
196	364	3	3	44.2
130	004	J	J	77.4

d 180∼240mm

		Boundary of	dimensions		dynamic	Basic lo static	ad ratings dynamic	static	Bearing numbers	Dimensions
		m	nm			N	•	gf	Humbers	mm
									type	
d	D	В	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	NU	$F_{ m w}$
	380	126	4	4	1,380	1,990	141,000	203,000	NU2336	232
180	380	150	4	4	1,600	2,410	163,000	246,000	NU3336	232
	260	42	2	1.1	299	515	30,500	52,500	NU2938	207
	290	46	2.1	2.1	350	510	36,000	52,000	NU1038	215
	340	55	4	4	555	770	56,500	78,500	NU238	231
	340	55	4	4	695	955	71,000	97,500	NU238E	230
100	340	92	4	4	830	1,290	84,500	131,000	NU2238	231
190	340	92	4	4	1,100	1,670	113,000	170,000	NU2238E	228
	340	120	4	4	1,240	2,160	126,000	220,000	NU3238	231
	400	78	5	5	975	1,260	99,500	129,000	NU338	245
	400	132	5	5	1,520	2,220	155,000	226,000	NU2338	245
	400	155	5	5	1,550	2,280	158,000	233,000	NU3338	245
	280	38	2.1	2.1	259	405	26,400	41,500	NU1940	220
	280	48	2.1	1.5	365	630	37,000	64,500	NU2940	220
	310	51	2.1	2.1	390	580	40,000	59,500	NU1040	229
	310	82	2.1	2.1	735	1,240	75,000	127,000	NU3040	227
	340	112	3	3	1,130	1,820	115,000	186,000	NU3140A	235
	360	58	4	4	620	865	63,500	88,500	NU240	244
200	360	58	4	4	765	1,060	78,000	108,000	NU240E	243
	360	98	4	4	925	1,440	94,000	147,000	NU2240	244
	360	98	4	4	1,220	1,870	125,000	191,000	NU2240E	241
	360	128	4	4	1,260	2,150	128,000	219,000	NU3240	244
	420	80	5	5	975	1,270	99,500	130,000	NU340	260
	420	138	5	5	1,510	2,240	154,000	229,000	NU2340	260
	420	165	5	5	1,870	2,930	190,000	299,000	NU3340	260
	300	48	2.1	1.5	390	705	39,500	72,000	NU2944	240
	340	56	3	3	500	750	51,000	76,500	NU1044	250
	340	90	3	3	860	1,490	87,500	152,000	NU3044	250
	370	120	4	4	1,180	2,090	120,000	213,000	NU3144	262
220	400	65	4	4	760	1,080	77,500	110,000	NU244	270
	400	108	4	4	1,140	1,810	116,000	184,000	NU2244	270
	400	144	4	4	1,540	2,680	157,000	273,000	NU3244	270
	460	88	5	5	1,190	1,570	122,000	161,000	NU344	284
	460	145	5	5	1,780	2,620	181,000	268,000	NU2344	284
240	320	48	2.1	1.5	400	755	41,000	77,000	NU2948	260

lacktriangled Minimal allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N Type NU

Abut	ment and fi	llet dimensi	ons	Mass
	mr	n		kg
$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	type NU
min	max	max	max	(approx.)
196	364	3	3	69.5
196	364	3	3	88
100 =	0=4			
196.5	251	2	1	6.93
201	279	2	2	10.7
206	324	3	3	21.3
206	324	3	3	24.2
206	324	3	3	34.4
206	324	3	3	39.5
206	324	3	3	48.2
210	380	4	4	49.4
210	380	4	4	80.5
210	380	4	4	101
211	269	2	2	7.65
208	269	2	1.5	9.66
211	299	2	2	13.9
211	299	2	2	24.1
213	327	2.5	2.5	42.8
216	344	3	3	25.3
216	344	3	3	28.1
216	344	3	3	41.3
216	344	3	3	47.8
216	344	3	3	58
220	400	4	4	55.8
220	400	4	4	92.6
220	400	4	4	118
231	289	2	1.5	10.5
233	327	2.5	2.5	18.2
233	327	2.5	2.5	31.7
236	354	3	3	55.7
236	384	3	3	37.7
236	384	3	3	59
236	384	3	3	84.2
240	440	4	4	73.4
240	440	4	4	116
248	309	2	1.5	11.3

d 240~320mm

	Boundary dimensions						ad ratings	-1-11-	Bearing	Dimensions
		m	ım		dynamic k	static	dynamic	static gf	numbers	mm
		111	1111		, ,	IN	K	gı	type	111111
d	D	В	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	NU	$F_{ m w}$
										_
	360	56	3	3	530	820	54,000	83,500	NU1048	270
	360	92	3	3	940	1,710	95,500	174,000	NU3048	270
240	440	72	4	4	935	1,340	95,500	136,000	NU248	295
240	440	120	4	4	1,440	2,320	146,000	236,000	NU2248	295
	500	95	5	5	1,430	1,950	146,000	198,000	NU348	310
	500	155	5	5	2,100	3,200	214,000	325,000	NU2348	310
	360	46	2.1	2.1	400	665	41,000	67,500	NU1952	285
	360	60	2.1	2.1	545	985	55,500	100,000	NU2952	285
	400	65	4	4	645	1,000	65,500	102,000	NU1052	296
	400	104	4	4	1,150	2,020	117,000	206,000	NU3052	294
000	440	144	4	4	1,810	3,150	185,000	320,000	NU3152	305
260	480	80	5	5	1,150	1,660	117,000	170,000	NU252	320
	480	130	5	5	1,780	2,930	182,000	299,000	NU2252	320
	540	102	6	6	1,620	2,230	165,000	228,000	NU352	336
	540	165	6	6	2,340	3,600	239,000	365,000	NU2352	336
	540	206	6	6	2,930	4,800	299,000	490,000	NU3352	336
	380	46	2.1	2.1	415	710	42,500	72,500	NU1956	305
	380	60	2.1	2.1	565	1,060	58,000	108,000	NU2956	305
	420	65	4	4	660	1,050	67,000	107,000	NU1056	316
	420	106	4	4	1,240	2,260	126,000	230,000	NU3056	314
280	500	80	5	5	1,190	1,760	121,000	180,000	NU256	340
	500	130	5	5	1,840	3,100	188,000	315,000	NU2256	340
	580	108	6	6	1,820	2,540	185,000	259,000	NU356	362
	580	175	6	6	2,700	4,250	275,000	430,000	NU2356	362
	200	60	0.1	2.1	EOF	1 000	E1 E00	105.000	MHOOGO	204
	380	60 56	2.1		505	1,230 935	51,500	125,000	NU3860	324
	420	56 72	3	3	560	935 1,440	57,000	95,500	NU1960	330
	420	72 74	3 4	3	780	,	79,500	147,000	NU2960	330
300	460 460	74 118	4	4 4	855 1,610	1,340 3,000	87,000 164,000	137,000 305,000	NU1060 NU3060	340 340
	540	85	4 5	4 5					NU260	364
	540 540	85 140	5 5	5 5	1,400 2,180	2,070 3,650	143,000 223,000	211,000 370,000	NU260 NU2260	364
	620	185	7.5	5 7.5	3,250	5,150	330,000	525,000	NU2360	385
	020	100	7.5	7.5	3,230	5,150	330,000	J25,000	1102300	365
000	400	60	2.1	2.1	525	1,310	53,500	134,000	NU3864	344
320	440	56	3	3	580	1,010	59,500	103,000	NU1964	350
	480	74	4	4	875	1,410	89,500	143,000	NU1064	360

lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N Type NU

Abu	tment and fi	llet dimensi	ons	Mass
$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max	$r_{ m las}$ max	kg type NU (approx.)
253 253 256 256 260 260	347 347 424 424 480 480	2.5 2.5 3 4 4	2.5 2.5 3 4 4	19.6 34.7 50.2 80 93.4 147
271 271 276 276 276 280 280 284 284 284	349 349 384 384 424 460 460 516 516	2 2 3 3 4 4 5 5 5	2 2 3 3 4 4 5 5 5	14.9 19.5 29.1 50.4 95.1 66.9 104 117 182 242
291 291 296 296 300 300 304 304	369 369 404 404 480 480 556 556	2 2 3 3 4 4 5 5	2 2 3 4 4 5 5	15.9 20.8 30.9 54.4 70.8 109 142 222
311 313 313 316 316 320 320 332	369 407 407 444 444 520 520 588	2 2.5 2.5 3 3 4 4 6	2 2.5 2.5 3 4 4 6	17.1 25.4 32.6 43.6 75.2 88.2 138 316
331 333 336	389 427 464	2 2.5 3	2 2.5 3	18.1 26.8 46

d 320~420mm

		Boundary	dimensions		dynamic	Basic lo	ad ratings dynamic	static	Bearing numbers	Dimensions
		m	nm		kN			gf		mm
d	D	В	$r_{ m smin}^{ullet}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	type NU	$F_{ m w}$
	480	121	4	4	1,580	2,890	161,000	295,000	NU3064	358
	540	176	5	5	2,530	4,550	258,000	465,000	NU3164	376
000	580	92	5	5	1,600	2,390	164,000	244,000	NU264	390
320	580	150	5	5	2,550	4,350	260,000	445,000	NU2264	390
	670	200	7.5	7.5	3,750	5,800	385,000	595,000	NU2364	410
	460	56	3	3	590	1,040	60,500	107,000	NU1968	370
	460	72	3	3	830	1,610	84,500	164,000	NU2968	370
	520	82	5	5	1,050	1,670	107,000	170,000	NU1068	385
	520	133	5	5	2,030	3,900	207,000	400,000	NU3068	385
340	580	190	5	5	3,050	5,450	310,000	555,000	NU3168	400
	620	165	6	6	2,880	4,650	294,000	475,000	NU2268	410
	620	224	6	6	4,000	7,100	410,000	725,000	NU3268	410
	710	118	7.5	7.5	2,250	3,300	230,000	340,000	NU368	450
	710	212	7.5	7.5	4,250	6,600	430,000	675,000	NU2368	435
	440	60	2.1	2.1	460	1,090	47,000	111,000	NU3872	382
	480	56	3	3	615	1,120	62,500	114,000	NU1972	390
	480	72	3	3	860	1,720	87,500	176,000	NU2972	390
360	540	82	5	5	1,080	1,750	110,000	179,000	NU1072	405
300	540	134	5	5	1,990	4,200	202,000	430,000	NU3072	413
	600	192	5	5	3,150	5,500	320,000	560,000	NU3172A	416
	650	232	6	6	4,150	7,600	425,000	775,000	NU3272	435
	750	224	7.5	7.5	4,500	7,000	460,000	710,000	NU2372	460
	520	65	4	4	740	1,330	75,500	136,000	NU1976	416
	520	82	4	4	1,110	2,230	113,000	227,000	NU2976	416
380	560	82	5	5	1,100	1,840	112,000	187,000	NU1076	425
300	560	135	5	5	2,200	4,450	224,000	455,000	NU3076	426
	680	175	6	6	3,350	5,800	340,000	590,000	NU2276	460
	680	240	6	6	4,300	7,650	440,000	780,000	NU3276	460
	500	75	2.1	2.1	870	2,250	88,500	229,000	NU3880	430
400	600	90	5	5	1,320	2,190	134,000	223,000	NU1080	450
	600	148	5	5	2,520	5,050	257,000	515,000	NU3080	450
400	560	65	4	4	800	1,510	81,500	154,000	NU1984	456
420	560	82	4	4	1,190	2,530	122,000	258,000	NU2984	456
	620	90	5	5	1,350	2,290	138,000	233,000	NU1084	470

lacktriangle Minimal allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N

Type NU

Abut	Abutment and fillet dimensions										
$d_{ m a}$	$D_{ m a}$	$r_{ m as}$	$r_{ m las}$	kg type NU							
min	max	max	max	(approx.)							
336 340 340 340 352	464 520 560 560 638	3 4 4 4 6	3 4 4 4 6	81.2 175 111 172 402							
353 353 360 360 360 364 364 372 372	447 447 500 500 560 596 596 678 678	2.5 2.5 4 4 5 6 6	2.5 2.5 4 4 5 6	28.2 36.2 61.8 108 220 260 316 246 477							
371 373 373 380 380 380 384 392	429 467 467 520 520 580 626 718	2 2.5 2.5 4 4 4 5	2 2.5 2.5 4 4 4 5	20.1 29.6 38 64.7 114 232 356 562							
396 396 400 400 404 404	504 504 540 540 656 656	3 3 4 4 5 5	3 3 4 4 5 5	42.9 54.1 67.5 120 326 400							
411 420 420	489 580 580	2 4 4	2 4 4	35.4 87.6 155							
436 436 440	544 544 600	3 3 4	3 3 4	46.7 59 91							

d 440∼670mm

	Boundary dimensions				dynamic	Basic lo static	ad ratings dynamic	static	Bearing numbers	Dimensions
		m	ım		*	N		gf	Humbers	mm
a	D	D	0	0	C	C	a	C	type	TO.
d	D	В	$r_{ m s min}$	$r_{ m lsmin}^{oldsymbol{0}}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	NU	$F_{ m w}$
	600	95	4	4	1,520	3,100	155,000	320,000	NU2988	480
440	650	94	6	6	1,430	2,430	146,000	248,000	NU1088	493
- 10	650	157	6	6	2,770	5,700	283,000	580,000	NU3088	493
400	580	72	3	3	990	2,230	101,000	227,000	NU2892	490
460	680	100	6	6	1,540	2,630	157,000	269,000	NU1092	516
	650	78	5	5	1,140	2,150	116,000	219,000	NU1996	523
480	650	100	5	5	1,640	3,450	168,000	350,000	NU2996	523
	700	100	6	6	1,580	2,750	161,000	280,000	NU1096	536
	620	72	3	3	1,030	2,390	105,000	244,000	NU28/500	530
500	670	78	5	5	1,160	2,220	118,000	226,000	NU19/500	543
	720	100	6	6	1,610	2,870	164,000	292,000	NU10/500	556
	710	82	5	5	1,290	2,480	132,000	253,000	NU19/530	576
530	710	106	5	5	1,870	4,000	191,000	410,000	NU29/530	576
330	780	112	6	6	1,930	3,450	197,000	350,000	NU10/530	595
	780	185	6	6	3,650	7,400	375,000	755,000	NU30/530	590
	680	72	3	3	1,090	2,680	111,000	273,000	NU28/560	590
	680	90	3	3	1,250	3,200	127,000	325,000	NU38/560	590
560	750	85	5	5	1,470	2,840	150,000	290,000	NU19/560	607
	750	112	5	5	2,010	4,250	205,000	435,000	NU29/560	607
	820	115	6	6	2,190	3,900	223,000	400,000	NU10/560	626
	730	78	3	3	1,210	3,000	124,000	310,000	NU28/600	633
600	800	90	5	5	1,620	3,200	165,000	325,000	NU19/600	650
	800 870	118 200	5 6	5 6	2,270 4,450	4,950 9,350	231,000 455,000	505,000 955,000	NU29/600 NU30/600	650 670
	670	200	0	0	4,450	9,550	455,000	955,000	14030/000	070
	780	88	4	4	1,520	3,650	155,000	370,000	NU28/630	667
630	850	100	6	6	1,910	3,700	195,000	380,000	NU19/630	684
	850 920	128 128	6 7.5	6 7.5	2,710	5,850 4,650	277,000	595,000	NU29/630 NU10/630	684 705
	920	140	7.5	7.5	2,560	4,000	261,000	475,000	140 10/030	705
	820	88	4	4	1,580	3,900	161,000	395,000	NU28/670	707
670	820	112	4	4	2,010	5,500	205,000	560,000	NU38/670	709
	900	103	6	6 .	1,980	3,950	202,000	405,000	NU19/670	729

lacktriangled Minimal allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N

Type NU

Abut	Abutment and fillet dimensions									
$d_{ m a}$	$D_{ m a}$	n $r_{ m as}$	$r_{ m las}$	kg type NU						
min	max	max	max	(approx.)						
456	584	3	3	82.8						
464	626	5	5	105						
464	626	5	5	188						
473	567	2.5	2.5	47.1						
484	656	5	5	122						
500	630	4	4	78.5						
560	630	4	4	101						
504	676	5	5	126						
	070	-	<u> </u>	120						
513	607	2.5	2.5	50.7						
520	650	4	4	81.3						
524	696	5	5	130						
550	690	4	4	95.9						
550	690	4	4	124						
554	756	5	5	192						
554	756	5	5	318						
573	667	2.5	2.5	56.1						
573	667	2.5	2.5	72.7						
580	730	4	4	111						
580	730	4	4	146						
584	796	5	5	216						
613	717	2.5	2.5	70.7						
620	780	4	4	132						
620	780	4	4	173						
624	846	5	5	416						
646	764	3	3	97.5						
654	826	5	5	171						
654	826	5	5	218						
662	888	6	6	302						
686	804	3	3	103						
686	804	3	3	136						
694	876	5	5	195						
20.		-	-							

d 670∼1,250mm

		Boundary of	limensions		dynamic	Basic Io	ad ratings dynamic	static	Bearing numbers	Dimensions
		m	m			N		kgf	type	mm
d	D	В	$r_{ m smin}^{lack}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	NU	$F_{ m w}$
670	900	136	6	6	2,940	6,600	300,000	675,000	NU29/670	729
710	950 950	106 140	6 6	6 6	2,260 3,300	4,600 7,500	231,000 340,000	465,000 765,000	NU19/710 NU29/710	770 770
750	1,000 1,000	112 145	6 6	6 6	2,340 3,600	4,850 8,400	239,000 365,000	495,000 860,000	NU19/750 NU29/750	815 815
800	980 1,060 1,150	106 150 155	5 6 7.5	5 6 7.5	2,310 3,850 4,100	5,950 8,850 7,800	236,000 390,000 415,000	605,000 900,000 795,000	NU28/800 NU29/800 NU10/800	845 865 887
850	1,030 1,120 1,120	106 118 155	5 6 6	5 6 6	2,390 2,920 4,000	6,350 6,150 9,250	244,000 297,000 410,000	645,000 625,000 945,000	NU28/850 NU19/850 NU29/850	895 917 917
1,060	1,400	195	7.5	7.5	6,100	14,500	620,000	1,480,000	NU29/1060	1,145
1,180	1,540	206	7.5	7.5	6,900	17,000	705,000	1,730,000	NU29/1180	1,270
1,250	1,630	170	7.5	7.5	5,550	12,500	565,000	1,280,000	NU19/1250	1,345

Equivalent bearing load dynamic $P_{\rm r}\!\!=\!\!F_{\rm r}$

Type N

Type NU

Abu	Abutment and fillet dimensions											
	mn	า		kg								
$d_{ m a}$	D_{a}	$r_{ m as}$	$r_{ m las}$	type NU								
min	max	max	max	(approx.)								
694	876	5	5	257								
734	926	5	5	221								
734	926	5	5	292								
774	976	5	5	257								
774	976	5	5	332								
820	960	4	4	178								
824	1,036	5	5	380								
832	1,118	6	6	554								
	<u> </u>											
870	1,010	4	4	188								
874	1,096	5	5	329								
874	1,096	5	5	432								
	-											
1,092	1,368	6	6	855								
1,212	1,508	6	6	1,060								
1,282	1,598	6	6	975								

Cylindrical bore Tapered bore taper 1:12

Cylindrical bore Tapered bore taper 1:12

d 100∼180mm

Boundary dimensions				Basic load ratings dynamic static dynamic static				Bearing numbers			
mm			kN			gf	type NNU		type NN		
,		D.	a	~	~	~	~	Cylindrical	tapered	Cylindrical	tapered
d	D	В	$r_{\rm s min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore [●]	bore	bore [●]
	140	40	1.1	131	260	13,300	26,500	NNU4920	NNU4920K	NN4920	NN4920K
100	150	37	1.5	153	256	15,600	26,100	_	_	NN3020	NN3020K
		40		400	222	10.500	07.400				
105	145 160	40 41	1.1 2	133 198	268 320	13,500 20,200	27,400 33,000	NNU4921 _	NNU4921K	NN4921 NN3021	NN4921K NN3021K
	100	41		190	320	20,200	33,000			14145021	MNOUZIK
	150	30	1.1	107	206	10,900	21,000	_	_	NN3922	_
110	150	40	1.1	137	284	14,000	28,900	NNU4922	NNU4922K	NN4922	NN4922K
	170	45	2	229	375	23,300	38,000	NNU3022	NNU3022K	NN3022	NN3022K
	165	45	1.1	183	360	18,700	37,000	NNU4924	NNU4924K	NN4924	NN4924K
120	180	46	2	233	390	23,700	40,000	NNU3024	_	NN3024	NN3024K
	180	37	1.5 1.5	169	315	17,300	32,000	-		NN3926	NN3926K
130	180 200	50 52	1.5 2	220 284	440 475	22,400 29,000	45,000 48,500	NNU4926 NNU3026	NNU4926K	NN4926 NN3026	NN4926K NN3026K
	210	64	2	340	560	35,000	57,000	- ININU3020	_	NN3126	ININGUZOK —
	210	04	۷	340	300		37,000			14145120	
	190	37	1.5	175	335	17,800	34,000	_	_	NN3928	_
140	190	50	1.5	227	470	23,100	48,000	NNU4928	NNU4928K	NN4928	NN4928K
	210	53	2	298	515	30,500	52,500	NNU3028	_	NN3028	NN3028K
	210	45	2	256	475	26,100	48,500	_	_	NN3930	_
	210	60	2	345	690	35,000	70,500	NNU4930	NNU4930K	NN4930	NN4930K
150	225	56	2.1	335	585	34,000	60,000	NNU3030	_	NN3030	NN3030K
	225	75	2.1	435	825	44,500	84,000	_	_	NN4030	_
	250	80	2.1	555	900	56,500	92,000	NNU3130	_	_	_
	220	45	2	265	505	27,000	51,500	_	_	NN3932	NN3932K
160	220	60	2	355	740	36,500	75,500	NNU4932	NNU4932K	NN4932	NN4932K
100	240	60	2.1	375	660	38,000	67,500	_	_	NN3032	NN3032K
	000	4.5	0	000	500	07.400	50.000			NNIOOO	NINIO O ALC
	230 230	45 60	2	268	520	27,400	53,000	NNU4934	NINII IAOO AK	NN3934	NN3934K
170	260	60 67	2 2.1	360 440	765 775	37,000 45,000	78,000 79,000	NNU3034	NNU4934K NNU3034K	NN4934 NN3034	NN4934K NN3034K
	280	67 88	2.1	635	775 1,050	45,000 65,000	107,000	NNU3034 NNU3134	- NNU3U34K	NN3134	ININOUS4K
	200	00	۷.۱		1,000		107,000	111100107		11110104	
180	250	52	2	340	665	35,000	67,500	_	_	NN3936	NN3936K
100	250	69	2	460	965	46,500	98,500	NNU4936	NNU4936K	NN4936	NN4936K

Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$ static

Por = Fr

Type NN

Type NNU

Dimens		Abutment a		· · · · · /		
mr	n	$d_{ m a}$	$egin{array}{c} m{mm} \ D_{f a} \end{array}$	$r_{ m as}$	kį	7
		$\alpha_{ m a}$	$D_{\rm a}$	/ as	type NNU	type NN
$F_{ m w}$	$E_{ m w}$	min	max	max	Cylindrical bore	Cylindrical bore
113	129	106.5	133.5	1	1.83	1.75
- TIO	137	108.3	-	1.5	_	2.26
	107	100		1.0		2.20
118	134	111.5	138.5	1	1.91	1.82
_	146	114	_	2	_	2.89
_	139	116.5	_	1	_	1.54
123	139	116.5	143.5	1	1.99	1.9
127	155	119	161	2	3.87	3.69
134.5	154.5	126.5	158.5	1	2.75	2.63
137	165	129	171	2	4.24	3.98
_	168	138	_	1.5	_	_
146	168	138	172	1.5	3.69	3.52
150	182	139	191	2	6.15	5.92
_	189	139	_	2	_	8.59
_	178	148	_	1.5	_	3.01
156	178	148	182	1.5	3.94	3.76
160	192	149	201	2	6.64	6.44
	196.5	159	_	2	_	4.79
168.5	196.5	159	201	2	6.18	5.9
172	206	161	214	2	8.06	7.81
_	206	161	_	2	-	10.4
177	_	161	239	2	16.4	—
177		101	200		10.4	
_	206.5	169	_	2	_	5.06
178.5	206.5	169	211	2	6.53	6.24
_	219	171	_	2	_	8.92
_	216.5	179	_	2	_	5.33
188.5	216.5	179	221	2	6.87	6.56
196	236	181	249	2	13.3	12.6
201	253	181	269	2	22.3	21.5
_	234	189	_	2	_	7.72
202	234 234	189	241	2	9.9	7.72 9.45
202	۷۵4	103	∠ + I	۷	ਹ.ਹ	3.40

Tapered bore taper 1:12 Cylindrical bore

Tapered bore taper 1:12 Cylindrical bore

d 180∼320mm

Boundary dimensions				Basic load ratings dynamic static dynamic			static	Bearing numbers				
mm			kN		kgf		type NNU		type NN			
								Cylindrical	tapered	Cylindrical	tapered	
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore [●]	bore	bore [●]	
180	280	74	2.1	565	995	57,500	102,000	NNU3036	-	NN3036	NN3036K	
	260	52	2	355	705	36,000	72,000	_	_	NN3938	_	
190	260	69	2	475	1,030	48,500	105,000	NNU4938	NNU4938K	NN4938	NN4938K	
	290	75	2.1	580	1,040	59,000	106,000	NNU3038	_	NN3038	NN3038K	
	280	60	2.1	445	890	45,500	91,000	_	_	NN3940	_	
	280	80	2.1	555	1,180	56,500	120,000	NNU4940	NNU4940K	NN4940	NN4940K	
200	310	82	2.1	655	1,170	66,500	119,000	NNU3040	_	NN3040	NN3040K	
	310	109	2.1	890	1,730	90,500	177,000	_	_	NN4040	_	
	340	112	3	970	1,660	99,000	169,000	_	_	NN3140	_	
	300	60	2.1	470	975	48,000	99,500	_	_	NN3944	NN3944K	
000	300	80	2.1	585	1,300	59,500	132,000	NNU4944	NNU4944K	NN4944	NN4944K	
220	340	90	3	815	1,480	83,000	151,000	NNU3044	_	NN3044	NN3044K	
	370	120	4	1,080	1,890	111,000	193,000	NNU3144	_	NN3144	_	
	320	60	2.1	490	1,060	50,000	109,000	NNU3948	_	NN3948	NN3948K	
240	320	80	2.1	610	1,410	62,500	144,000	NNU4948	NNU4948K	NN4948	NN4948K	
240	360	92	3	855	1,600	87,000	163,000	NNU3048	_	NN3048	NN3048K	
	400	128	4	1,250	2,230	127,000	228,000	_	_	NN3148	_	
	360	75	2.1	660	1,390	67,000	141,000	_	_	NN3952	NN3952K	
000	360	100	2.1	900	2,070	92,000	211,000	NNU4952	NNU4952K	NN4952	NN4952K	
260	400	104	4	1,060	1,990	108,000	203,000	_	_	NN3052	NN3052K	
	400	140	4	1,500	3,100	153,000	315,000	NNU4052	_	NN4052	_	
	350	52	2	320	765	32,500	78,000	NNU3856	_	_	_	
	350	69	2	505	1,300	51,000	132,000	NNU4856	NNU4856K	_	_	
280	380	75	2.1	690	1,510	70,500	154,000	_	_	NN3956	NN3956K	
	380	100	2.1	925	2,200	94,500	224,000	NNU4956	NNU4956K	NN4956	NN4956K	
	420	106	4	1,080	2,080	110,000	212,000	_	_	NN3056	NN3056K	
	420	90	3	945	2,050	96,000	209,000	_	_	NN3960	NN3960K	
200	420	118	3	1,200	2,800	122,000	285,000	NNU4960	NNU4960K	NN4960	NN4960K	
300	460	118	4	1,330	2,560	135,000	261,000	NNU3060	_	NN3060	NN3060K	
	460	160	4	1,890	4,050	193,000	410,000	_	-	NN4060	_	
320	400	80	2.1	610	1,600	62,500	163,000	NNU4864	_	_	_	
32U 0					,	,	*		— e dimension for char	mfer dimension	r.	

Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$ static $P_{\rm or}{=}F_{\rm r}$

Type NN

Type NNU

Dimens	sions	Abutment a	ınd fillet di	s Mass	Mass (approx.)			
mm			mm		k	kg		
		$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	type NNU	type NN		
					Cylindrical	Cylindrical		
$F_{ m w}$	$E_{ m w}$	min	max	max	bore	bore		
209	255	191	269	2	17.4	16.6		
	044	100				0.00		
_	244	199	_	2	_	8.08		
212	244	199	251	2	10.4	9.93		
219	265	201	279	2	18.4	18		
_	261	211	_	2	_	11.4		
00F			060		117	14		
225	261	211	269	2	14.7			
232	282	211	299	2	23.5	21.6		
_	282	211	_	2	_	30.2		
_	304	213	_	2.5	_	41.8		
_	281	231	_	2	_	12.3		
245	281		200	2	15.0			
	_	231	289		15.9	15.2		
254	310	233	327	2.5	31.0	29.3		
263.5	331.5	236	354	3	54.4	52.4		
265	301	251	309	2	13.8	13.3		
265	301	251	309	2	17.2	16.4		
						_		
274	330	253	347	2.5	33.9	32.8		
_	361	256	_	3	_	64.7		
_	336	271	_	2	_	22.9		
292	336	271	349	2	29.6	28.3		
	364	276	_	3		47.4		
200			204		66.0			
298	362	276	384	3	66.2	63.8		
301	_	289	341	2	11.7	_		
301	_	289	341	2	15.6	_		
_	356	291	_	2	_	24.4		
312	356	291	369	2	31.6	30.2		
012			503		51.0			
	384	296		3		51.1		
_	391	313	_	2.5	_	38.4		
339	391	313	407	2.5	48.6	46.4		
346	418	316	444	3	73.4	70.8		
- 418		316	_	3	_	96		

Type NNU Tapered bore taper 1:12 Cylindrical bore

Tapered bore taper 1:12 Cylindrical bore

d 320∼500mm

Bou	ındary c	dimensi	ions	dynamic		ad ratings dynamic	static	Bearing numbers			
	mn	า		•	:N	ko		type	NNU	type	NN
							,	Cylindrical	tapered	Cylindrical	tapered
d	D	B	$r_{\rm smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore ⁰	bore	bore ⁰
	440	90	3	975	2,180	99,000	222,000	_	_	NN3964	NN3964K
220	440	118	3	1,240	2,970	126,000	305,000	NNU4964	NNU4964K	NN4964	NN4964K
320	480	121	4	1,350	2,670	138,000	272,000	NNU3064	_	NN3064	NN3064K
	540	176	5	2,160	3,950	220,000	400,000	NNU3164	_	_	_
	460	118	3	1,280	3,150	131,000	320,000	NNU4968	NNU4968K	NN4968	NN4968K
340	520	133	5	1,620	3,200	165,000	325,000	NNU3068	_	NN3068	NN3068K
	400	00	0	1 000	0.400	105.000	040,000			NN10070	
	480	90	3	1,030	2,430	105,000	248,000		- NINILIAOZOK	NN3972	_
360	480	118	3 5	1,290	3,250	131,000	330,000	NNU4972	NNU4972K	- NINIOOZO	- NINIOOTOM
	540	134		1,650	3,300	169,000	340,000	NNU3072	_	NN3072	NN3072K
	540	180	5	2,470	5,550	252,000	570,000	NNU4072			
000	520	140	4	1,630	4,050	167,000	415,000	NNU4976	NNU4976K	_	_
380	560	135	5	1,690	3,450	172,000	355,000	NNU3076	_	NN3076	NN3076K
	500	100	2.1	1,070	2,950	109,000	300,000	NNU4880	_	_	_
400	540	140	4	1,690	4,300	172,000	435,000	NNU4980	NNU4980K	_	_
400	600	148	5	2,040	4,150	208,000	420,000	_	—	NN3080	NN3080K
	000			2,010	.,		120,000				
	560	106	4	1,370	3,350	140,000	340,000	_	_	NN3984	_
420	560	140	4	1,740	4,500	177,000	460,000	NNU4984	NNU4984K	_	_
420	620	150	5	2,080	4,300	212,000	440,000	_	_	NN3084	NN3084K
	700	224	6	3,400	6,400	345,000	650,000	NNU3184	_	_	_
	600	160	4	2,150	5,550	219,000	565,000	NNU4988	NNU4988K	_	_
440	650	157	6	2,420	5,100	247,000	520,000	NNU3088	_	NN3088	NN3088K
110	650	212	6	3,250	7,750	330,000	790,000	NNU4088	_	-	_
	000	100	4	0.000	F 050	000 000	F0F 000	NAULIAGOS	NINII 400017		
460	620	160	4	2,220	5,850	226,000	595,000	NNU4992	NNU4992K	-	-
	680	163	6	2,550	5,350	260,000	545,000	_		NN3092	NN3092K
	600	90	3	1,010	2,570	103,000	262,000	-	_	NN3896	_
480	650	170	5	2,280	5,900	233,000	600,000	NNU4996	NNU4996K	_	_
	790	248	7.5	4,100	8,100	420,000	825,000	_	_	NN3196	_
	620	90	3	1,140	2,880	116,000	293,000	NNU38/500	_	_	_
500	670	170	5	2,360	6,200	240,000	635,000	NNU49/500	NNU49/500K	_	_
	720	167	6	2,650	5,750	270,000	590,000	— —		NN30/500	_
Α									e dimension for char		

Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$

static Por=Fr

Type	ΝN
------	----

Type NNU

Dimen	sions	Abutment a	nd fillet di	ns Mass	Mass (approx.)		
mr		Abatilloit	mm		is iviass (
1111	11	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	type NNU Cylindrical	type NN Cylindrical	
$F_{ m w}$	$E_{ m w}$	min	max	max	bore	bore	
_	411	333	_	2.5	_	40.5	
359	411	333	427	2.5	51.4	49	
366	438	336	464	3	79.3	76.2	
383	_	340	520	4	170	_	
379	431	353	447	2.5	54.2	52.2	
393	473	360	500	4	105	102	
_	451	373	_	2.5	_	44.8	
398	_	373	467	2.5	57	_	
413	493	380	520	4	111	107	
415	_	380	520	4	136	_	
425	_	396	504	3	84.5	_	
432	512	400	540	4	117	113	
430.5	_	411	489	2	46.1		
445	_	416	524	3	88.2	_	
_	547	420	_	4	-	146	
				_			
_	522	436	_	3	_	71.7	
465	_	436	544	3	92	_	
_	567	440	_	4	_	154	
500	_	444	676	5	359	_	
492	_	456	584	3	127	_	
500	596	464	626	5	184	178	
505	_	464	626	5	248	_	
512	_	476	604	3	132	_	
_	622	484	—	5	_	202	
	022	+0+		J		202	
_	566	493	_	2.5	_	57.5	
534	_	500	630	4	156	_	
_	710	512	_	6	_	482	
532	_	513	607	2.5	61.9	_	
	_	520	650	4	162	_	
556		320	000		102		

d 530∼950mm

Bou	ındary di	imensi	ons	dynamic		ad ratings dynamic	static		Bearing n	umbers	
	mm				kN		gf	type		type	
d	D	В	$\gamma_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Cylindrical bore	tapered bore [●]	Cylindrical bore	tapered bore [●]
530	650 710	90 180	3 5	1,060 2,740	2,840 7,150	108,000 279,000	289,000 730,000	NNU49/530	 NNU49/530K	NN38/530 —	_
				•			. 55,555				
ECO	680 750	90 190	3 5	1,060	2,960 8,450	108,000 325,000	300,000 860,000	— NNI 140/560	- NNII IAO/EGOV	NN38/560	_
560	750 820	195	5 6	3,150 3,550	7,700	365,000	785,000	NNU49/560 NNU30/560	NNU49/560K	NN49/560 —	_
600	730	128	3	1,840	5,400	188,000	550,000	NNU48/600	_	-	_
	870	200	6	3,700	8,250	375,000	845,000			NN30/600	_
620	780	150	4	2,200	6,200	224,000	630,000	NNU48/630	_	_	_
630	850	165	6	5,750	5,300	585,000	1,560,000	NNU39/630	_	_	_
	920	128	5	2,340	6,450	238,000	660,000	NNU38/750	_	_	_
750	1,000	250	6	4,850	3,200	495,000	1,340,000	NNU49/750	_	_	_
	000	400		0.400	0.700	0.40.000	000 000	NNU 100/000			
800	980 1,060	136 195	5 6	2,430 3,900	6,700 10,200	248,000 400,000	680,000 1,040,000	NNU38/800 NNU39/800	_ _		
		.00				•		11110007000			
950	1,250	300	7.5	7,150	1,200	730,000	2,160,000	_	_	NN49/950	_

Equivalent bearing load dynamic $P_{\rm r}{=}F_{\rm r}$ static $P_{\rm or}{=}F_{\rm r}$

Type NN

Type NNU

	nsions nm	Abutment	Abutment and fillet dimensions Mass k						
		$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$	type NNU	type NN			
$F_{ m w}$	$E_{ m w}$	min	max	max	Cylindrical bore	Cylindrical bore			
_	616	543	_	2.5	_	62.9			
588	_	550	690	4	206	_			
_	647	573	_	2.5	_	66.1			
618	702	580	730	4	242	233			
634	_	584	796	5	358	_			
635	_	613	717	2.5	113	_			
_	800	624	_	5	_	392			
673	_	646	764	3	162	_			
684	_	654	826	5	275	_			
798	_	770	900	4	186	_			
824	_	774	976	5	560	_			
852	_	820	960	4	223	_			
878	_	824	1,036	5	483	_			
_	- 1,176		_	6	_	977			

d 100∼170mm

		Bounda	ry dimens	sions		dynamic	Basic static	load ratings dynamic	static	Bearing [®] numbers	Drawing [®] No.
			mm			kN		dynamic	kgf	numbers	NO.
d	D	B_1	C_1	$r_{ m smin}$	r _{ls min} ●	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
100	150	74	74	2	2	262	510	26,700	52,500	4R2035	А
120	180 180	92 105	92 105	2.5 2.5	2.5 2.5	400 445	785 855	40,500	80,000	4R2437 4R2438	A A
				2.5	2.5	445	000	45,500	87,000	402430	
130	200	104	104	2.5	2.5	490	955	49,500	97,000	4R2628	А
140	190 210	119 116	119 116	1.5 2.5	1.5 2.5	495 510	1,190 1,030	50,500 52,000	121,000 105,000	4R2832 4R2823	B ²⁾ A
145	210 225	155 156	155 156	2.5 2.5	2.5 2.5	705 810	1,640 1,750	71,500 82,500	168,000 178,000	4R2906 4R2904	A A
150	220 220 220 230 230 230 250	127 150 150 130 156 168 150	120 150 150 130 156 168 150	2.5 2.5 2.5 2.5 2.5 2.5 2	2.5 2.5 2.5 2.5 2.5 2.5 2	615 750 750 725 930 845 885	1,280 1,640 1,640 1,520 2,040 1,950 1,640	63,000 76,500 76,500 73,500 95,000 86,000 90,500	130,000 168,000 168,000 155,000 208,000 199,000 167,000	4R3036 4R3031 4R3056 4R3029 4R3040 4R3042 4R3039	A A A A A
151.5	230	168	168	1.5	2.5	850	2,060	87,000	210,000	4R3033K	А
160	220 230 230 230 230 230 240	180 130 168 168 168 180 170	180 130 168 168 168 180 170	2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	920 665 915 895 895 920 980	2,490 1,340 2,170 2,200 2,210 2,490 2,290	93,500 68,000 93,500 91,500 91,000 93,500 100,000	254,000 136,000 222,000 225,000 225,000 254,000 234,000	4R3224 4R3226 4R3232 4R3229 4R3231 4R3228 4R3225	D ³⁾ A A A A D ³⁾
170	230 230 240 240 250 250 255 260	120 120 156 160 168 168 180 150	120 120 156 160 168 168 180 150	2.5 2 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5	620 620 905 905 970 1,030 1,100 835	1,520 1,520 2,170 2,180 2,220 2,390 2,430 1,750	63,000 63,000 92,500 92,000 99,000 105,000 112,000 85,000	155,000 155,000 222,000 222,000 226,000 243,000 247,000 179,000	4R3426 4R3443 4R3429 4R3423 4R3432 4R3428 4R3425 4R3433	A C A A A A

 [&]quot;K" indicates bearings have tapered bore with a taper ratio of 1: 12.
 Drawing details are shown in Page B-38.
 Minimal allowable dimension for chamfer dimension r or n.

A	Abutment a	nd fillet din	nensions		Mass
		mm			kg
	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	
$F_{ m w}$	min	max	max	max	(approx.)
115	109	141	2.0	2.0	4.68
107	131	160	2	2	0.0
137 135	131	169 169	2 2	2 2	8.2 9.3
100	101	109	۷		9.0
150	141	189	2	2	12.1
154	148	182	1.5	1.5	9.93
160	151	199	2	2	13.9
166	156	199	2	2	18
169	156	214	2	2	23.3
168	161	209	2	2	15.7
168	161	209	2	2	19.4
168	161	209	2	2	19.6
174	161	219	2	2	20
174	161	219	2	2	24.5
178	159	221	2	2	25.8
177	161	239	2	2	29.6
179	159.5	219	1.5	2	25.4
177	171	209	2	2	20.2
180	171	219	2	2	16.6
179	171	219	2	2	23.4
180	171	219	2	2	23.2
182	171	219	2	2	23.2
177 183	171 169	219	2 2	2 2	24.8 27.8
103	109	229	2		27.0
187	181	219	2	2	14.2
187	179	221	2	2	14.6
189	181	229	2	2	22.2
190	181	229	2	2	22.8
193	181	239	2	2	28.2
193	181	239	2	2	28.5
193	181	244	2	2	19.3
192	181	249	2	2	29.5

d 170∼230mm

		Bounda	ry dimens	sions		dynamic	Basic lo static	ad ratings dynamic	static	Bearing [®] numbers	Drawing [©] No.
			mm			kľ		kį			
d	D	B_1	C_1	$r_{ m smin}$	$r_{ m ls\ min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
170	260	225	225	2.5	2.5	1,310	3,150	134,000	320,000	4R3431	А
180	250 250 260 265	156 168 168 180	156 168 168 180	2.5 2 2.5 2.5	2.5 2 2.5 2.5	895 885 1,020 1,090	2,180 2,470 2,400 2,510	91,500 90,000 104,000 111,000	223,000 252,000 244,000 256,000	4R3625 4R3639 4R3628 4R3618	A A A
190	260 270 270 270 270 280 280	168 170 200 200 200 200	168 170 200 200 200 200	2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5	980 1,090 1,260 1,230 1,240 1,240	2,600 2,660 3,100 3,200 2,910 2,910	100,000 111,000 128,000 125,000 126,000 126,000	265,000 272,000 315,000 330,000 297,000 297,000	4R3820 4R3818 4R3821 4R3817 4R3823 4R3830	A A A B C
200	270 280 280 280 280 280 280 290	170 152 170 190 200 200 192	170 152 170 190 200 200 192	2.5 2.1 2.5 2.5 2.5 2.5 2.5	2.5 2.1 2.5 2.5 2.5 2.5 2.5	970 1,000 1,040 1,190 1,310 1,250 1,290	2,610 2,320 2,430 3,150 3,300 3,350 3,150	99,000 102,000 106,000 121,000 134,000 127,000 132,000	266,000 237,000 248,000 320,000 335,000 340,000 320,000	4R4039 4R4054 4R4048 4R4026 4R4037 4R4027 4R4041	A B ²⁾ A A A A
210	290	192	192	2.5	2.5	1,230	3,350	126,000	340,000	4R4206	А
220	290 300 300 310 310 310 310 310 320 320 320	192 160 160 192 192 204 215 225 225 160 210	192 160 160 192 192 204 215 225 225 160 210	2.5 2.5 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	1,190 1,000 1,000 1,350 1,390 1,420 1,530 1,480 1,590 1,190 1,550 1,560	3,350 2,590 2,590 3,550 3,400 3,750 3,750 3,950 3,950 2,550 3,650 3,600	122,000 102,000 102,000 138,000 141,000 156,000 151,000 162,000 121,000 158,000 159,000	340,000 264,000 360,000 350,000 385,000 380,000 405,000 400,000 260,000 370,000	4R4413 4R4419 4R4445 4R4410 4R4426 4R4425 4R4420 4R4416 4R4449 4R4428 4R4429 4R4444	A A C A A A A A A
230	330 330	206 206	206 206	2.5 2.5	2.5 2.5	1,510 1,520	3,900 3,800	154,000 155,000	395,000 385,000	4R4610 4R4614	A A

<sup>Drawing details are shown in Page B-38.
Minimal allowable dimension for chamfer dimension r or r.</sup>

^	hutment a	nd fillet din	nansions		Mass
_	ibulinent a	na met am	ilensions		IVIASS
		mm			kg
	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	
$F_{ m w}$	min	max	max	max	(approx.)
400	404	0.40	0	0	4.4
196	181	249	2	2	44
200	191	239	2	2	23.2
202	189	241	2	2	25.6
202	191	249	2	2	29.4
204	191	254	2	2	34.2
212	201	249	2	2	26.9
213	201	259	2	2	31.7
212	201	259	2	2	37.5
212	201	259	2	2	37.2
214	201	269	2	2	41.5
214	201	269	2	2	42.8
					1-1-
222	211	259	2	2	28.5
222	211	269	2	2	29.5
222	211	269	2	2	33
223	211	269	2	2	36.7
222	211	269	2	2	40.5
224	211	269	2	2	38.8
226	211	279	2	2	42.5
236	221	279	2	2	39.5
239	231	279	2	2	33.8
245	231	289	2	2	32.8
245	231	289	2	2	33.7
247	231	299	2	2	46.3
246	231	299	2	2	46.9
247	231	299	2	2	49.8
242	231	299	2	2	51.5
245	231	299	2	2	54.9
244	231	299	2	2	54.3
245	233	307	2.5	2.5	46.5
248	231	309	2	2	60.5
246	231	309	2	2	57.3
260	241	319	2	2	58.3
258	241	319	2	2	58.6
230	∠ † I	019	_	_	50.0

d 230∼300mm

		Bounda	ry dimens	sions		dynamic	Basic Id	oad ratings dynamic	static	Bearing numbers	Drawing [®] No.
			mm			kN		•	gf		
d	D	B_1	C_1	$r_{ m smin}$	$r_{ m ls\ min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
230	340	260	260	3	3	2,050	5,100	209,000	520,000	4R4611	А
	330	220	220	3	3	1,490	4,150	152,000	420,000	4R4811	С
	330	220	220	3	3	1,610	4,250	164,000	435,000	4R4819	Α
	330	220	220	3	3	1,490	4,150	152,000	420,000	4R4821	С
240	330	220	220	3	3	1,520	4,250	155,000	435,000	4R4804	Α
	340	220	220	3	3	1,670	4,200	170,000	425,000	4R4806	Α
	360	220	220	2.5	2.5	1,760	4,050	179,000	415,000	4R4807	Α
	360	220	220	2.5	2.5	1,760	4,050	179,000	415,000	4R4813	Α
250	350	220	220	3	3	1,730	4,300	176,000	440,000	4R5008	А
	360	220	200	2.5	2.5	1,540	4,150	157,000	426,000	4R5221	D
	360	260	260	2.5	2.1	1,830	4,850	187,000	495,000	4R5231	C ¹⁾
000	370	220	220	3	3	1,760	4,450	179,000	455,000	4R5208	Α
260	370	220	220	3	3	1,760	4,450	179,000	455,000	4R5217	A ¹⁾
	380	280	280	3	3	2,420	6,250	247,000	635,000	4R5213	Α
	400	290	290	4	2	3,050	7,150	315,000	730,000	4R5218	E ⁴⁾
265	370	234	234	1.5	1.5	2,020	5,000	206,000	510,000	4R5306	A ¹⁾
070	380	280	280	2.5	2.5	2,260	5,750	231,000	585,000	4R5407	А
270	380	280	280	2.5	2.5	2,580	6,850	263,000	700,000	4R5405	F ⁴⁾
	350	208	208	2.5	2.5	1,290	3,950	132,000	405,000	4R5614	А
	390	220	220	3	3	1,780	4,650	181,000	475,000	4R5611	Α
280	390	220	220	3	3	1,820	4,800	186,000	490,000	4R5604	Α
	390	275	275	2.5	2.5	2,290	6,250	233,000	635,000	4R5612	D ₃₎
	420	280	280	4	4	2,430	6,150	248,000	630,000	4R5605	Α
200	410	240	240	3	3	2,240	5,550	228,000	565,000	4R5806	А
290	420	300	300	3	3	2,830	7,500	288,000	765,000	4R5805	Α
	400	300	300	3	3	2,480	7,500	253,000	765,000	4R6014	А
	420	240	240	3	3	2,020	5,450	206,000	555,000	4R6017	$A^{1)}$
300	420	240	240	3	3	2,020	5,450	206,000	555,000	4R6012	Α
300	420	240	240	3	3	2,010	5,450	205,000	555,000	4R6023	A ¹⁾
	420	240	240	3	3	2,280	5,750	233,000	585,000	4R6027	Α
	420	300	300	3	3	2,990	8,150	305,000	835,000	4R6030	F ¹⁾

<sup>Drawing details are shown in Page B-38.
Minimal allowable dimension for chamfer dimension r or r.</sup>

Al	butment a	nd fillet din	nensions		Mass
		mm			kg
	$d_{ m a}$	D_{a}	$r_{ m as}$	$r_{ m las}$	
$F_{ m w}$	min	max	max	max	(approx.)
261	243	327	2.5	2.5	82.6
270	253	317	2.5	2.5	56.8
264	253	317	2.5	2.5	57.1
268	253	317	2.5	2.5	57.1
270	253	317	2.5	2.5	57.1
268	253	327	2.5	2.5	63.6
274	251	349	2	2	79.6
274	251	349	2	2	80.1
278	263	337	2.5	2.5	66
292	271	349	2	2	62.7
287	271	349	2	2	81.5
292	273	357	2.5	2.5	77.1
292	273	357	2.5	2.5	76.5
294	273	367	2.5	2.5	109
296	276	391	3	2	135
200	210	001	<u> </u>	_	100
300	273	362	1.5	1.5	78.9
297	281	369	2	2	101
299.7	281	369	2	2	105
298	291	339	2	2	46.4
312	293	377	2.5	2.5	81.3
312	293	377	2.5	2.5	82
312	291	379	2	2	105
323	296	404	3	3	139
320	303	397	2.5	2.5	103
327	303	407	2.5	2.5	141
<u></u>					
328	313	387	2.5	2.5	104
334	313	407	2.5	2.5	106
334	313	407	2.5	2.5	105
336	313	407	2.5	2.5	105
332	313	407	2.5	2.5	105
331	313	407	2.5	2.5	136

d 300∼380mm

		Bounda	ry dimens	sions				ad ratings		Bearing [●]	Drawing [®]
			mm			dynamic k	static N	dynamic เ	static cgf	numbers	No.
						,		'	·9i		
d	D	B_1	C_1	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
											_
	420	300	300	3	3	2,720	7,600	278,000	775,000	4R6015	A1)
	420	300	300	3	3	2,900	7,850	295,000	800,000	4R6020	F ¹⁾
300	420	320	300	3	3	2,900	7,850	295,000	800,000	4R6018	F ²⁾
	430	240	240	3	3	2,160	5,150	220,000	525,000	4R6021	A
	460	270	270	3	3	2,510	5,350	256,000	545,000	4R6019	Α
310	430	240	240	3	3	2,240	5,950	228,000	605,000	4R6202	А
	440	240	230	3	3	2,290	6,050	234,000	615,000	4R6414	Α
	450	240	240	3	3	2,370	6,150	242,000	630,000	4R6411	Α
320	460	340	340	3	3	3,400	9,450	345,000	960,000	4R6412	Α
	470	350	350	3	3	4,150	10,900	425,000	1,110,000	4R6406	F ⁴⁾
	440	200	000	-	0	1 000	4.050	100.000	405.000	4D0000	-
	440	200	200	3	3	1,820	4,850	186,000	495,000	4R6603	B B ¹⁾
330	440	200	200	5	3	1,720	4,550	176,000	465,000	4R6608	_
	460	340	340	4	4	3,250	8,850	330,000	905,000	4R6605	A
	460	340	340	4	4	3,300	9,550	335,000	975,000	4R6602	А
	480	350	350	4	4	3,950	10,900	400,000	1,110,000	4R6819	FM ¹⁾
340	480	370	350	5	5	3,450	9,650	350,000	985,000	4R6811	Α
340	490	300	300	4	4	3,350	8,300	340,000	845,000	4R6804	Α
	490	300	300	5	5	3,100	7,950	315,000	810,000	4R6805	Α
356.76	550	400	400	4	4	5,100	13,800	520,000	1,410,000	4R7105K	E
	480	290	290	3	3	2,990	8,150	305,000	830,000	4R7207	А
000	510	370	370	4	4	3,550	9,700	365,000	990,000	4R7212	C
360	510	400	380	4	2	4,350	11,900	445,000	1,210,000	4R7205	E ¹⁾
	510	400	400	5	5	4,250	11,500	435,000	1,170,000	4R7203	В
	480	230	230	5	5	2,100	6,250	214,000	635,000	4R7405	А
	480	250	250	3	3	2,200	6,450	225,000	660,000	4R7408	A
370	520	380	380	5	5	3,900	10,800	400,000	1,100,000	4R7411	A
	520	400	400	5	5	4,650	13,500	475,000	1,370,000	4R7404	A
	520	280	280	4	4	3,400	9,150	350,000	935,000	4R7605	Α
000	520	290	290	4	4	3,400	9,150	350,000	935,000	4R7617	A
380	520	300	300	4	4	3,550	9,600	360,000	*	4R7607	G ¹⁾
	520 540	400	400	4	4				980,000	4R7607 4R7604	$G^{2)}$
	540			-	4	5,200	15,200	530,000	1,550,000	411/004	G

 [&]quot;K" indicates bearings have tapered bore with a taper ratio of 1: 12.
 Drawing details are shown in Page B-38.
 Minimal allowable dimension for chamfer dimension r or n.

Al	outment and	fillet di	mensions		Mass
		mm			kg
	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{\rm las}$	
$F_{ m w}$	min	max	max	max	(approx.)
334	313	407	2.5	2.5	125
332	313	407	2.5	2.5	130
332	313	407	2.5	2.5	136
338	313	417	2.5	2.5	115
344	313	447	2.5	2.5	162
344.5	323	417	2.5	2.5	108
351	333	427	2.5	2.5	106
358	333	437	2.5	2.5	125
360	333	447	2.5	2.5	178
361.7	333	457	2.5	2.5	212
360	343	427	2.5	2.5	83.6
360	350	427	4	2.5	85.6
365	346	444	3	3	181
368	346	444	3	3	177
378	356	464	3	3	211
378	360	460	4	4	198
377	356	474	3	3	187
380	360	470	4	4	189
426	372.757	534	3	3	354
388	373	467	2.5	2.5	148
400	376	494	3	3	244
399	376	509	3	2	251
397	380	490	4	4	262
400	390	460	4	4	106
401	383	467	2.5	2.5	118
409	390	500	4	4	256
409	390	500	4	4	273
417	396	504	3	3	174
417	396	504	3	3	185
416	396	504	3	3	210
422	396	524	3	3	325
122	000	027	J	J	020

d 380∼500mm

		Bounda	ry dimens	sions		Basic load ratings dynamic static dynamic static			static	Bearing numbers	Drawing [®] No.
			mm			•	N	kį			
d	D	B_1	C_1	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
380	540 540	400 400	400 400	4 5	4 5	4,950 4,550	14,400 12,700	505,000 465,000	1,470,000 1,300,000	4R7618 4R7613	FM ¹⁾ B ^{1) 3)}
400	560 560 590	400 410 420	400 410 420	5 4 4	5 4 4	4,250 5,750 5,150	11,800 17,000 13,000	430,000 585,000 525,000	1,210,000 1,730,000 1,330,000	4R8007 4R8010 4R8011	B F A
420	560 580 600 620	280 230 440 400	280 230 440 400	4 4 6 5	4 4 2.5 5	3,150 2,430 6,350 5,000	8,750 6,250 18,100 13,400	320,000 248,000 650,000 510,000	895,000 635,000 1,850,000 1,360,000	4R8403 4R8404 4R8407 4R8401	A A F ¹⁾ D ³⁾
430	591	420	420	5	5	5,500	17,400	560,000	1,770,000	4R8605	FM ^{1) 4)}
440	600 600 620 620	450 450 450 450	450 450 450 450	1.5 1.5 5 5	5 5 5 5	6,000 6,350 6,450 6,450	17,900 19,100 18,700 18,700	615,000 645,000 660,000 660,000	1,820,000 1,950,000 1,910,000 1,910,000	4R8806 4R8805 4R8803 4R8801	FR ²⁾ FR ¹⁾ F ¹⁾
460	620 620 620 650	400 400 460 470	400 400 460 470	4 4 4 5	4 4 4 5	5,350 4,950 5,950 7,150	16,700 15,000 19,100 20,600	545,000 505,000 605,000 730,000	1,700,000 1,530,000 1,950,000 2,100,000	4R9211 4R9209 4R9223 4R9216	GS A FM ¹⁾ F ¹⁾
470	660	470	470	5	5	7,300	21,300	745,000	2,170,000	4R9403	FM ¹⁾
480	600 650 650 680	236 420 420 500	236 420 420 500	3 5 5 6	3 5 5 6	2,620 5,700 5,950 7,950	7,850 17,200 18,100 24,000	267,000 585,000 605,000 810,000	805,000 1,750,000 1,840,000 2,450,000	4R9610 4R9613 4R9607 4R9604	A G ¹⁾ G F
500	680 680 690 690 700 710 720 720	420 420 470 510 515 480 530 530	405 405 470 510 515 480 530 530	5 5 5 5 6 5 5 8 B	5 5 5 5 6 5 5	7,100 6,300 7,650 7,750 7,900 8,650 8,250 8,250	22,900 18,800 22,500 24,600 24,100 24,700 25,000	725,000 640,000 780,000 790,000 805,000 880,000 840,000 840,000	2,340,000 1,920,000 2,290,000 2,500,000 2,450,000 2,520,000 2,550,000 2,550,000	4R10010 4R10020 4R10016 4R10006 4R10011 4R10008 4R10015 4R10024	F ²⁾ F ²⁾ F ¹⁾ F F F ¹⁾ F ¹⁾ F ¹⁾

<sup>Drawing details are shown in Page B-38.
Minimal allowable dimension for chamfer dimension r or r.</sup>

A	butment a	nd fillet din	nensions		Mass
		mm			kg
	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	
$F_{ m w}$	min	max	max	max	(approx.)
422	396	524	3	3	309
424	400	520	4	4	298
446	420	540	4	4	303
445	416	544	3	3	349
450	416	574	3	3	399
457	436	544	3	3	189
466	436	564	3	3	181
469.6	444	589	5	2	423
478	440	600	4	4	410
476	450	571	4	4	362
480	448	580	1.5	4	392
480	448	580	1.5	4	392
487	460	600	4	4	450
487	460	600	4	4	437
			•	•	
502	476	604	3	3	383
502	476	604	3	3	341
502	476	604	3	3	417
509	480	630	4	4	540
517	490	640	4	4	529
	400	F07	0.5	0.5	155
510	493	587	2.5	2.5	155
523	500	630	4	4	423
523	500	630	4	4	369
532	504	656	5	5	640
550	520	660	4	4	495
550	520	660	4	4	451
547	520	670	4	4	590
552	520	670	4	4	640
554	520	680	4	4	680
556	524	686	5	5	675
568	520	700	4	4	780
568	520	700	4	4	745
			-	-	

d 510 \sim 680mm

		Boundar	y dimensi mm	ons		dynamic kN	Basic lo static	oad ratings dynamic kg	static	Bearing numbers	Drawing [®] No.
			111111			KIN		ky	ı		
d	D	B_1	C_1	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
510	670	320	320	5	5	4,550	13,500	465,000	1,380,000	4R10201	G ₁)
510	700	540	540	6	6	8,300	25,000	845,000	2,550,000	4R10202	F ¹⁾
	700	540	540	6	6	8,200	25,500	835,000	2,600,000	4R10403	F ¹⁾
520	720	550	550	5	5	9,400	27,700	960,000	2,820,000	4R10406	FR ¹⁾
	735	535	535	5	5	9,000	26,600	915,000	2,710,000	4R10402	F ²⁾
	700	540	540	6	6	7,850	25,400	800,000	2,590,000	4R10603	F ¹⁾
530	760	520	520	6	6	9,150	26,700	935,000	2,730,000	4R10601	F ¹⁾
550	780	570	570	6	6	10,300	29,100	1,050,000	2,970,000	4R10602	F ¹⁾
	780	570	570	7.5	6	10,300	29,100	1,050,000	2,970,000	4R10606	FM ¹⁾
536.18	762.03	558.8	558.8	5	6	10,100	29,200	1,030,000	2,980,000	4R10704	F ²⁾
550	800	520	520	6	6	9,450	27,000	965,000	2,750,000	4R11001	F ¹⁾
560	680	360	360	3	3	4,650	16,500	475,000	1,680,000	4R11202	А
	800	514	514	2.5	6	10,200	29,200	1,040,000	2,970,000	4R11404	FR ¹⁾
570	815	594	594	6	6	11,800	34,500	1,200,000	3,500,000	4R11402	F
	820	575	575	7.5	7.5	10,000	31,500	1,020,000	3,200,000	4R12006	FM ¹⁾
600	870	540	540	7.5	7.5	10,600	29,600	1,090,000	3,000,000	4R12002	F ¹⁾
	870	640	640	7.5	7.5	13,600	40,500	1,390,000	4,150,000	4R12001	F
610	870	660	660	9.5	7.5	12,600	40,000	1,280,000	4,100,000	4R12202	F ^{1) 4)}
628	922	600	600	3	6	13,600	38,500	1,390,000	3,900,000	4R12602	F ¹⁾
640	880	600	600	6	6	11,500	36,000	1,170,000	3,650,000	4R12802	F ²⁾
	920	670	670	7.5	4	14,600	46,000	1,490,000	4,700,000	4R13005	F ¹⁾
650	920	680	680	7.5	7.5	14,800	47,000	1,520,000	4,800,000	4R13010	FR ¹⁾
	920	690	690	7.5	7.5	14,300	46,500	1,460,000	4,750,000	4R13003	F
660	820	440	440	5	4	7,300	27,800	745,000	2,840,000	4R13201	F
600	1,020	650	650	6	6	15,700	48,000	1,600,000	4,900,000	4R13603	FM ²⁾
680	1,020	680	680	3	5	17,300	49,500	1,760,000	5,050,000	4R13604	F ²⁾

<sup>Drawing details are shown in Page B-38.
Minimal allowable dimension for chamfer dimension r or r.</sup>

Ak	outment and	d fillet dime	ensions		Mass
		mm			kg
	$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$	$r_{ m las}$	
$F_{ m w}$	min	max	max	max	(approx.)
	=00	0.50			
554	530	650	4	4	335
558	534	676	5	5	689
564	544	676	5	5	658
566	540	700	4	4	715
574.5	540	715	4	4	740
574	554	676	5	5	626
590	554	736	5	5	800
601	554	756	5	5	1,010
595	562	756	6	5	978
600	556.176	738.03	4	5	859
622	574	776	5	5	965
590	573	667	2.5	2.5	265
626	581	776	2	5	849
628	594	791	5	5	1,040
660	632	788	6	6	941
672	632	838	6	6	1,150
672	632	838	6	6	1,330
680	650	838	8	6	1,400
702	641	898	2.5	5	1,430
700	664	856	5	5	1,150
723	682	904	6	3	1,500
723	682	888	6	6	1,510
723	682	888	6	6	1,550
702	680	804	4	3	580
803	704	996	5	5	1,970
775		1,000	2.5	4	2,060
		.,		•	_,550

d 690∼860mm

		Boundar	y dimens	ions		Basic load ratings dynamic static dynamic static			static	Bearing numbers	Drawing [●] No.
			mm			kľ		kg			
d	D	B_1	C_1	$r_{ m s min}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
690	980 980	715 750	715 750	7.5 7.5	7.5 7.5	16,800 16,500	54,500 53,000	1,720,000 1,680,000	5,550,000 5,400,000	4R13802 4R13803	F ²⁾ FM ²⁾
710	1,000	715	715	9.5	6	16,800	54,500	1,710,000	5,550,000	4R14205	FS ⁴⁾
725	1,000	700	700	6	6	15,900	53,500	1,620,000	5,450,000	4R14501	F ¹⁾
750	1,050 1,090	745 745	720 720	7.5 7.5	7.5 7.5	17,600 19,100	58,000 60,500	1,790,000 1,950,000	5,900,000 6,150,000	4R15001 4R15002	FM ²⁾ FM ²⁾
755	1,070	750	750	7.5	7.5	18,700	58,500	1,910,000	5,950,000	4R15101	F ¹⁾
760	1,030 1,080 1,100	750 805 745	750 790 720	7.5 6 7.5	7.5 6 7.5	17,300 18,700 19,100	59,500 61,000 60,500	1,760,000 1,900,000 1,950,000	6,050,000 6,250,000 6,150,000	4R15204 4R15207 4R15203	FM ¹⁾ FM ²⁾ FM ²⁾
761.43	1,079.6	787.4	787.4	9.5	7.5	19,800	63,000	2,020,000	6,400,000	4R15201	F ¹⁾
800	1,080 1,080	700 750	700 750	7.5 6	7.5 6	16,500 17,300	55,000 59,000	1,680,000 1,760,000	5,600,000 6,000,000	4R16004 4R16005	F ¹⁾
820	1,130 1,130 1,130 1,130 1,160	800 800 800 825 840	800 800 800 800 840	7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5 7.5 7.5	19,600 21,500 19,600 19,600 21,600	66,500 72,000 66,500 66,500 71,000	2,000,000 2,200,000 2,000,000 2,000,000 2,200,000	6,800,000 7,300,000 6,800,000 6,800,000 7,250,000	4R16406 4R16413 4R16415 4R16405 4R16403	FM ¹⁾ FMS ²⁾ F ²⁾ FM ¹⁾ F ²⁾
830	1,080	710	710	6	6	16,200	59,500	1,660,000	6,100,000	4R16601	F ²⁾
840	1,160	840	840	5	7.5	21,600	71,000	2,200,000	7,250,000	4R16801	F ¹⁾
850	1,150 1,150 1,150 1,180 1,180 1,180	650 800 840 650 850	650 800 840 650 850	9.5 6 6 7.5 9.5 7.5	9.5 6 6 7.5 9.5 7.5	15,700 19,700 22,000 16,400 24,100 21,700	51,000 71,000 77,500 51,500 78,500 72,000	1,610,000 2,010,000 2,240,000 1,670,000 2,460,000 2,210,000	5,200,000 7,250,000 7,900,000 5,250,000 8,000,000 7,350,000	4R17001 4R17003 4R17009 4R17004 4R17002 4R17014	F ¹⁾ F ¹⁾ F ¹⁾ F ¹⁾ F F ²⁾
860	1,140	750	750	7.5	7.5	17,200	61,000	1,750,000	6,200,000	4R17202	F ²⁾

<sup>Drawing details are shown in Page B-38.
Minimal allowable dimension for chamfer dimension r or r.</sup>

Al	butment and	d fillet dime	ensions	i	Mass
	J	mm			kg
\overline{U}	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	$r_{ m las}$	()
$F_{ m w}$	min	max	max	max	(approx.)
767.5	722	948	6	6	1,850
766	722	948	6	6	1,900
700	122	3-10	-	O	1,000
787.5	750	976	8	5	1,900
796	749	976	5	5	1,730
830	782	1,018	6	6	2,180
845	782	1,058	6	6	2,530
0.10	702	1,000			2,000
837	787	1,038	6	6	2,260
828	792	998	6	6	2,000
845	784	1,056	5	5	2,550
855	792	1,068	6	6	2,560
846	801.425	1,047.6	8	6	2,420
870	832	1,048	6	6	1,950
880	824	1,056	5	5	2,090
903	852	1,098	6	6	2,450
903	852	1,098	6	6	2,530
903	852	1,098	6	6	2,530
903	852	1,098	6	6	2,520
910	852	1,128	6	6	2,930
896	854	1,056	5	5	1,780
920	860	1,128	4	6	2,840
941	890	1,110	8	8	1,980
930	874	1,126	5	5	2,430
928	874	1,126	5	5	2,640
945	882	1,148	6	6	2,270
928	890	1,140	8	8	2,970
940	882	1,148	6	6	2,980
938	892	1,108	6	6	2,200

d 860∼1,200mm

		Bounda	ary dimens	sions		Basic load ratings dynamic static dynamic static kN kgf				Bearing numbers	Drawing [●] No.
d	D	B_1	C_1	$r_{ m s min}$	$r_{ m ls\ min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
860	1,160	735	710	6	6	17,800	62,500	1,810,000	6,400,000	4R17201	F ¹⁾
900	1,230	895	870	7.5	7.5	24,700	88,000	2,520,000	9,000,000	4R18001	FM ²⁾
920	1,280	865	850	7.5	7.5	26,200	88,500	2,670,000	9,000,000	4R18401	F
1,000	1,310 1,360	880 800	880 800	9.5 7.5	9.5 7.5	23,400 25,000	88,500 85,000	2,380,000 2,550,000	9,000,000 8,650,000	4R20001 4R20002	F ¹⁾
1,030	1,380	850	850	7.5	7.5	24,400	89,000	2,490,000	9,100,000	4R20601	F ¹⁾
1,200	1,590	1,050	1,050	7.5	7.5	36,000	133,000	3,650,000	13,600,000	4R24002	FS

<sup>Drawing details are shown in Page B-38.
Minimal allowable dimension for chamfer dimension r or r.</sup>

Ab	utment an	d fillet dim	ensions		Mass
		mm			kg
	$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$	$r_{ m las}$	
$F_{ m w}$	min	max	max	max	(approx.)
940	884	1,136	5	5	2,310
		,			,
985	932	1,198	6	6	3,250
300	302	1,100		0	0,200
1,015	952	1,248	6	6	3,560
1,013	932	1,240	U	U	3,300
1,080	1,040	1,270	8	8	3,260
,	,		-	_	•
1,090	1,032	1,328	6	6	3,530
1,124	1,062	1,348	6	6	3,800
1,295	1,232	1,558	6	6	6,220

SL01-48 type SL01-49 type (Fixed side)

SL02-48 type SL02-49 type (Free side)

d 100∼280mm

	Bounda	ry dime	ensions	dvnamic		ad ratings dynamic	static	Bearing	numbers		Dimensi	ons	
		mm		. ,	:N	•	gf				mm		
d	D	В	$r_{ m smin}$	C_{r}	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Fixed side	Free side	J	K	M	e^{0}
100	140	40	1.1	194	400	19,800	41,000	SL01-4920	SL02-4920	116	125	126.5	2
110	150	40	1.1	202	430	20,600	44,000	SL01-4922	SL02-4922	125	134	135.5	2
120	165	45	1.1	226	480	23,100	49,000	SL01-4924	SL02-4924	138.5	148.5	150.5	3
130	180	50	1.5	262	555	26,700	56,500	SL01-4926	SL02-4926	149	160	162	4
140	190	50	1.5	272	595	27,700	60,500	SL01-4928	SL02-4928	159.5	170	172.5	4
150	190	40	1.1	235	575	23,900	58,500	SL01-4830	SL02-4830	165.5	173.5	175.5	2
	210	60	2	410	865	41,500	88,000	SL01-4930	SL02-4930	171.5	186	189.5	4
160	200	40	1.1	241	605	24,600	62,000	SL01-4832	SL02-4832	173.5	182.5	184	2
	220	60	2	425	935	43,500	95,000	SL01-4932	SL02-4932	185	199	203	4
170	215	45	1.1	265	650	27,000	66,500	SL01-4834	SL02-4834	186.5	196.5	198	3
	230	60	2	435	980	44,500	100,000	SL01-4934	SL02-4934	194	208	211.5	4
180	225	45	1.1	275	695	28,000	71,000	SL01-4836	SL02-4836	199	209	211	3
	250	69	2	550	1,230	56,000	125,000	SL01-4936	SL02-4936	206	222	225.5	4
190	240	50	1.5	315	785	32,000	80,000	SL01-4838	SL02-4838	208.5	219.5	221.5	4
	260	69	2	565	1,290	57,500	131,000	SL01-4938	SL02-4938	216.5	232.5	235.5	4
200	250	50	1.5	320	825	33,000	84,000	SL01-4840	SL02-4840	219	230	232	4
	280	80	2.1	665	1,500	68,000	153,000	SL01-4940	SL02-4940	232	250	253.5	5
220	270	50	1.5	340	905	34,500	92,500	SL01-4844	SL02-4844	240	251	253	4
	300	80	2.1	695	1,620	70,500	165,000	SL01-4944	SL02-4944	249.5	267.5	271	5
240	300	60	2	510	1,330	52,000	136,000	SL01-4848	SL02-4848	261	275	276.5	4
	320	80	2.1	730	1,770	74,000	181,000	SL01-4948	SL02-4948	272.5	290.5	294	5
260	320	60	2	535	1,450	54,500	148,000	SL01-4852	SL02-4852	283	297	300	4
	360	100	2.1	1,070	2,520	109,000	257,000	SL01-4952	SL02-4952	297	320	324.5	6
280	350	69	2	685	1,860	69,500	189,000	SL01-4856	SL02-4856	308	324	327	4
	380	100	2.1	1,110	2,710	114,000	277,000	SL01-4956	SL02-4956	319	342	346	6

¹ Maximum allowable dimension for chamfer dimension r. **2** Allowable axial move.

Fixed side

Free side

	outment ar t dimensio		Mass	(approx.)
	mm		k	g
d_{a}^{\bullet}	$D_{\rm a}^{\ \ 0}$	$r_{ m as}$	Eivad aida	Eroo oido
min	max	max	Fixed side	Free side
106.5	133.5	1	1.95	1.9
116.5	143.5	1	2.15	2.1
126.5	158.5	1	2.95	2.85
138	172	1.5	3.95	3.8
148	182	1.5	4.2	4.1
156.5	183.5	1	2.9	2.8
159	201	2	6.65	6.45
166.5	193.5	1	3.05	2.9
169	211	2	7	6.8
176.5	208.5	1	4.1	3.95
179	221	2	7.35	7.1
186.5	218.5	1	4.3	4.15
189	241	2	10.7	10.5
198	232	1.5	5.65	5.45
199	251	2	11.2	10.9
	0.40	4.5	5.0	
208 211	242 269	1.5 2	5.9 15.7	5.7 15.3
211	209		15.7	15.5
228	262	1.5	6.4	6.2
231	289	2	17.1	16.6
249	291	2	10.2	9.9
251	309	2	18.4	17.9
269	311	2	11	10.6
271	349	2	32	31.2
289	341	2	16	15.6
291	369	2	33.9	33.1

 $[{]f 3}$ Use J and K dimensions for bearings operating at inclined or large axial loads.

SL01-48 type SL01-49 type (Fixed side)

SL02-48 type SL02-49 type (Free side)

d 300~440mm

	Bounda	ry dim	ensions	dynamic		ad ratings dynamic	static	Bearing	numbers		Dimens	sions	
		mm			:N		gf				mm	า	
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Fixed side	Free side	J	K	M	$e^{oldsymbol{arrho}}$
300	380 420	80 118	2.1 3	805 1,580	2,160 3,800	82,000 161,000	220,000 385,000	SL01-4860 SL01-4960	SL02-4860 SL02-4960	330 344	348 371	351 377	6 6
320	400 440	80 118	2.1 3	835 1,650	2,310 4,100	85,000 168,000	236,000 415,000	SL01-4864 SL01-4964	SL02-4864 SL02-4964	353 371	371 398	374 404	6 6
340	420 460	80 118	2.1 3	855 1,690	2,430 4,300	87,500 172,000	248,000 440,000	SL01-4868 SL01-4968	SL02-4868 SL02-4968	370 388	388 416	391 421	6 6
360	440 480	80 118	2.1 3	885 1,730	2,580 4,500	90,000 176,000	264,000 460,000	SL01-4872 SL01-4972	SL02-4872 SL02-4972	393 406	411 434	414 439	6 6
380	480 520	100 140	2.1 4	1,290 2,300	3,600 5,900	132,000 235,000	370,000 600,000	SL01-4876 SL01-4976	SL02-4876 SL02-4976	422 437	444 469	449 475	6 7
400	540	140	4	2,410	6,200	246,000	635,000	SL01-4980	SL02-4980	450	484	490	7
420	560	140	4	2,470	6,500	252,000	665,000	SL01-4984	SL02-4984	472	505	512	7
440	600	160	4	3,000	7,850	305,000	800,000	SL01-4988	SL02-4988	503	540	546	7

Fixed side

Free side

	butment a		Mass (approx.)		
ı (3	mm D₃		k	9	
$d_{ m a}^{oldsymbol{6}}$ min	D_{a} max	$r_{ m as}$ max	Fixed side	Free side	
311 313	369 407	2 2.5	23 53	22.2 51.9	
331 333	389 427	2 2.5	24.3 56	23.5 54.9	
351 353	409 447	2 2.5	25.6 59	24.8 57.8	
371 373	429 467	2 2.5	27 62	26 60.8	
391 396	469 504	2 3	45.3 92.3	44 90.5	
416	524	3	96.4	94.6	
436	544	3	101	98.6	
456	584	3	139	137	

d 100∼380mm

		Bound	ary dimens	sions		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			, kN	J	kç	gf	
d	D	В	C	t	r	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
100	150	67	66	1.5	1	330	580	33,500	59,500	SL04-5020NR
110	170	80	79	1.8	1.5	385	695	39,000	71,000	SL04-5022NR
120	180	80	79	1.8	1.5	400	750	41,000	76,500	SL04-5024NR
130	200	95	94	1.8	1.5	535	1,000	55,000	102,000	SL04-5026NR
140	210	95	94	1.8	1.5	600	1,120	61,000	115,000	SL04-5028NR
150	225	100	99	2	1.5	690	1,290	70,500	131,000	SL04-5030NR
160	240	109	108	2	2	720	1,390	73,500	142,000	SL04-5032NR
170	260	122	121	2	2	925	1,790	94,500	182,000	SL04-5034NR
180	280	136	135	2	2	1,090	2,140	111,000	218,000	SL04-5036NR
190	290	136	135	2	2	1,120	2,230	114,000	227,000	SL04-5038NR
200	310	150	149	2	2	1,310	2,650	133,000	270,000	SL04-5040NR
220	340	160	159	2.5	2	1,640	3,300	167,000	335,000	SL04-5044NR
240	360	160	159	2.5	2	1,710	3,550	175,000	365,000	SL04-5048NR
260	400	190	189	3	2.5	2,130	4,500	217,000	460,000	SL04-5052NR
280	420	190	189	3	2.5	2,170	4,700	221,000	475,000	SL04-5056NR
300	460	218	216	3	2.5	2,670	5,850	272,000	600,000	SL04-5060NR
320	480	218	216	3	2.5	2,720	6,100	278,000	620,000	SL04-5064NR
340	520	243	241	3.5	3	3,650	8,000	370,000	815,000	SL04-5068NR
360	540	243	241	3.5	3	3,750	8,300	380,000	845,000	SL04-5072NR
380	560	243	241	3.5	3	3,800	8,750	385,000	895,000	SL04-5076NR

Note 1. The above are greased bearings. 2. The above are treated for rust prevention.

3. The above are non contact shielded bearings. Also, contact sealed can be applied upon request.

	E	Dimen :			Abutment and fillet dimensions			Mass kg
J	(approx.)	f	Cf	S	$d_{ m a}$	E_1	Cf_1^{\bullet}	(approx.)
118.5	156	2.5	54	6	106	180	54	4.03
131.5	176	2.5	65	7	116.5	200	65	7
141.5	188	3	65	7	126.5	210	65	7.5
158	208	3	77	8.5	136.5	230	77	11.4
167	218	3	77	8.5	146.5	245	77	12.1
178	233	3	81	9	157	260	81	14.6
191	248	3	89	9.5	167	275	89	18.2
203	270	4	99	11	177	300	99	24.6
220	290	4	110	12.5	187	320	110	32.3
226	300	4	110	12.5	197	330	110	33.7
245.5	320	4	120	14.5	207	350	120	43.5
260	356	6	130	14.5	228.5	380	130	55.5
280.5	376	6	130	14.5	248.5	400	130	59.5
315.5	416	7	154	17.5	270	445	154	90.7
325	436	7	154	17.5	290	465	154	96.2
363	480	8	176	20	310	510	176	137
376	500	8	176	20	330	530	176	144
406	544	8	194	23.5	352	580	194	194
421	564	10	194	23.5	372	600	194	203
442 ① (584 Cf_1 deviation				392 L04-5034N			

Bearing

Basic load ratings

d 400~440mm

Boundary dimensions

			,			dynamic	static	dynamic	static	numbers
			mm			k	N	ا	kgf	
d	D	В	C	t	r	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
400	600	272	270	3.5	3	4,250	9,950	435,000	1,010,000	SL04-5080NR
420	620	272	270	3.5	3	4,350	10,300	445,000	1,050,000	SL04-5084NR
440	650	280	278	4.5	4	4,500	11,000	460,000	1,120,000	SL04-5088NR

	sions		butment et dimen		Mass			
	_	m	m			mm		kg
	E							
J	(approx.)	f	Cf	S	$d_{ m a}$	E_1	Cf_1^{\bullet}	(approx.)
470	626	12	210	30	412	675	210	281
470	020	12	210	00	712	075	210	201
400	0.40	10	010	00	400	005	010	000
486	646	12	210	30	432	695	210	292
518	676	12	210	34	456	725	210	331

1. Type, Structure and Characteristics

Tapered roller bearings are designed such that their conical rollers and raceways are arranged so that all elements of the roller and race way cones meet at a common apex on the bearing axis. (Refer to **Fig.1**) The rolling elements perform the real rotating movement on the raceway; the synthesized force from the inner and outer ring raceways guides the rollers, pressing them to the large rib on the inner ring. Metric and inch series are considered standard and both systems are widely used.

The inner ring, rollers and cage can be separated as a unit, or the CONE, from the outer ring, or the CUP. The cup and cone are called sub-units. Sub-unit dimensions for the nominal cup small inside diameter and bearing contact angle, as shown in **Fig. 2**, are standardized by ISO and ABMA and are compatible between sub-units. Double row and four row bearings are available in addition to single row bearings. Models and characteristics are shown in **Tables 1** and **2**.

Fig.1

Fig.2

Table 1 Structure and characteristics of double row tapered roller bearings

Model	Drawing	Nominal number	Characteristics
Double row with vertex of contact angles outside of the bearing		413XXX 423XXX 430XXX 432XXX CRI	 These bearings are designed with one double row outer ring and two pairs of inner rings with rollers. Bearings are adjusted so that their internal clearance becomes the specified value, the parts which have the same serial numbers should be assembled according to the assembly codes. These bearings support radial and axial loads. Since the cone pressure apex is wide, bearings are suitable where moment loads are applied. These bearings have the same function as the back-to-back duplex arrangement of single row bearings.
Double row with vertex of contact steep angles outside of the bearing		CRI	 This bearing model has a larger and steeper contact angle than the double row with vertex of contact angles outside the bearing. These bearings are used when the axial load is large. Since these bearings are adjusted so that the internal clearance is a specified value (like the double row with vertex of contact angles outside of bearing) the parts which have the same serial numbers should be assembled according to the assembly codes.
Double row with vertex of contact angles inside of the bearing		3230XX 3231XX CRD	 These bearings are designed with one double row inner ring with rollers and two pairs of outer rings and an outer ring spacer. These bearings accept the radial and axial loads. Since the cone pressure apex is short, bearings are not suitable when the moment is applied. Since these bearings are adjusted so that the internal clearance is the specified value (like the double row with vertex of contact angles outside of bearing) the parts which have the same serial numbers should be assembled according to the assembly codes.
Double row with vertex of contact steep angles inside of the bearing		CRD	 This bearing model has a larger and steeper contact angle than the double row with vertex of contact angles inside the bearing. These bearings are used when the axial load is large or only axials are applied. Models without an outer ring spacer and with a key groove or notch on the inner ring (refer to the drawing) are also available. Consult NTN Engineering about this bearing's fit. These bearings may be pressurized by using a spring between the housing shoulder and outer ring end.

Table 2 Structure and characteristics of the four row tapered roller bearings

Model	Drawing	Nominal numbers	Characteristics
Four row tapered roller bearing		6259XX 6230XX 6231XX CRO	 These bearings are designed with two double row inner rings with rollers, one double row outer ring, two single outer ring and outer ring spacer/inner ring spacer. Bearings are adjusted so that their internal clearance becomes the specified value, the parts which have the same serial numbers should be assembled according to the assembly codes. The bearing is mainly used for the roll neck of rolling mill, and designed so as to become the maximum rating load for the allowable space in the roll neck part. The bearing uses the clearance-fit to make assemble and disassembley easier. For this purpose, bearings are designed with a helical groove on the inner ring bore to prevent wearing of the inner ring bore when creep occurs and uses the carbonized steel to prevent cracks on inner ring and improve the shock resistance. Please consult with NTN Engineering for fitting and bearing internal clearance.
Four row tapered roller bearing enclosed type		CRO…LL	 Bearings are designed with oil seals on both side of the bearing which is the same as the four row tapered roller bearings. Please consult with NTN Engineering for fitting and bearing internal clearance.

2. Dimensional Accuracy/Rotation Accuracy

Metric system bearingsTable 3.4 (Page A-14) Inch system bearingsTable 3.5 (Page A-16)

3. Recommended Fitting

Metric system bearingsTable 4.2 (Page A-24)
Inch system bearingsTable 4.5, 4.6 (Page A-27)

4. Bearing Internal Clearance

Metric system bearingsTable 5.7 (Page A-32) Inch system bearingsTable 5.9 (Page A-34)

5. General Operating Cautions

Slippage between the balls and raceways may occur when bearings are operated under small loads, or when the ratio between axial and radial loads of the duplexed bearings exceeds the value "e," and may cause smearing. This is most apparent when using large size tapered roller bearings due to the large cage mass. Please consult NTN Engineering for further details.

Inch system sizes: Tapered Roller Bearings (Single row · Double row) index

Bearing number	ABMA	Page
CONE / CUP	Туре	i age
	Турс	
8573/8520	TS	B-109
8573/8520D+A	TDO	B-140
8575/8520	TS	B-109
8575/8520D+A	TDO	B-140
8578/8520	TS	B-111
8578/8520D+A	TDO	B-140
29875/29820	TS	B-111
29875/29820D+A	TDO	B-142
29880/29820	TS	B-111
29880/29820D+A	TDO	B-142
38880/38820	TS	B-111
38885/38820	TS	B-111
67983/67920	TS	B-107
67983/67920D+A	TDO	B-138
67985/67920	TS	B-107
67985/67920D+A	TDO	B-140
67989/67920	TS	B-109
67989/67920D+A	TDO	B-140
80170/80217	TS	B-117
80176/80217	TS	B-117
80180/80217	TS	B-117
80385/80325	TS	B-117
80780/80720	TS	B-121
87737/87111	TS	B-107
87737/87112D+A	TDO	B-138
87750/87111	TS	B-107
87750/87112D+A	TDO	B-138
87762/87111	TS	B-107
87762/87112D+A	TDO	B-138
93708/93125	TS	B-107
93750/93125	TS	B-107
93750/93127D+A	TDO	B-138
93787/93125	TS	B-107
93787/93727D+A	TDO	B-138
93800/93125	TS	B-107
93800/93127D+A	TDO	B-138
93800D/93125+A	TDI	B-161
93825/93125	TS	B-109
93825/93127D+A	TDO	B-140
94649/94113	TS	B-105
94649/94114D+A	TDO	B-138
94687/94113	TS	B-105
94687/94114D+A	TDO	B-138
94700/94113	TS	B-107
94700/94114D+A	TDO	B-138
94706D/94113+A	TDI	B-161
96900/96140	TS	B-109
96900/96140D+A	TDO	B-140
96925/96140	TS	B-140
96925/96140D+A	TDO	B-109
EE113089/113170	TS	B-140
EE113099/113170	TS	B-109
EE113091/113170	TDO	B-140
EE114080/114160	TS	B-140
EE114000/114100	13	D-10/

Bearing number	ABMA	Page
CONE / CUP	Type	
EE114080/114161D+A	TDO	B-138
EE117063/117148	TS	B-105
EE126096D/126150+A	TDI	B-161
EE126097/126150	TS	B-111
EE126097/126151D+A	TDO	
EE126098/126151D+A	TDO	
EE126098/126150	TS	B-111
EE127095/127135	TS	B-111
EE127095/127136D+A	TDO	B-140
EE127097D/127135+A	TDI	B-161
EE128111/128160	TS	B-113
EE128111/128160D+A	TDO	-
EE128112/128160	TS	B-113
EE129120X/129172	TS	B-113
EE129120X/129120D+A	TDO	B-144
EE130902/131400	TS	B-109
EE130902/131401D+A	TDO	B-140
EE134100/134143	TS	B-111
EE134100/134144D+A	TDO	B-142
EE134102/134143	TS	B-111
EE134102/134144D+A	TDO	B-142
EE135111D/135155+A	TDI	B-163
HH144642/HH144614	TS	B-107
EE147112/147198D+A	TDO	-
EE161300/161900	TS	B-115
EE161300/161901D+A	TDO	-
EE161363/161900	TS	B-115
EE161363/161901D+A	TDO	-
EE161400/161850	TS	B-115
EE161400/161900	TS	B-115
EE161400/161901D+A	TDO	B-144
L163149/L163110	TS	B-115
L163149/L163110D+A	TDO	
L163149D/L163110+A	TDI	B-163
EE170950/171450	TS	B-111
EE170950/171451D+A	TDO	
EE170975/171450	TS	B-111
EE170975/171451D+A	TDO	
EE170975D/171450+A	TDI	_
EE192150/192200	TS	B-115
EE192150/192201D+A	TDO	_
EE219068/219117	TS	B-105
EE219068/219122	TS	B-105
EE221025D/221575+A	TDI	B-161
EE221026/221575	TS	B-111
EE221026/221576D+A	TD0	B-142
EE222070/222127D+A	TDO	
EE231400/231975	TS	B-130
EE231400/231976D+A	TDO	
EE231401D/231975+A	TDI	B-140
EE231462/231975	TS	B-103
EE231462/231976D+A	TDO	
HH231637/HH231615	TS	B-140
HH231649/HH231610	TS	B-105
	13	פטוים

Bearing number	ABMA	Page
CONE / CUP	Type	
HH231649/HH231615	TS	B-105
HH234031/HH234010	TS	B-105
HH234031/HH234011D+A	TDO	B-138
HH234048/HH234010	TS	B-105
HH234048/HH234011D+A	TDO	B-138
EE234156/234213D+A	TDO	B-146
EE234156/234215	TS	B-117
EE234156/234216D+A	TDO	B-146
EE234160/234213D+A	TDO	B-146
EE234160/234215	TS	B-117
HM237532/HM237510	TS	B-105
HM237532/HM237510D+A	TDO	B-138
HM237535/HM237510	TS	B-105
HM237535/HM237510D+A	TDO	B-138
HM237542/HM237510	TS	B-105
HM237542/HM237510D+A	TDO	B-138
HM237545/HM237510	TS	B-107
HM237545/HM237513	TS	B-107
HM237545/HM237510D+A	TDO	B-138
HM237546D/HM237510+A	TDI	B-161
H238140/H238110	TS	B-105
H238148/H238110	TS	B-105
H239640/H239610	TS	B-107
H239640/H239612D+A	TDO	B-138
H239649/H239610	TS	B-107
H239649/H239612	TS	B-107
H239649/H239612D+A	TDO	B-138
H239649D/H239610+A	TDI	B-161
LM241149/LM241110	TS	B-107
LM241149/LM241110D+A	TDO	B-138
M241547/M241510	TS	B-107
M241543/M241510	TS	B-107
M241543/M241510D+A	TDO	B-138
M241547/M241510D+A	TDO	B-138
M241549/M241510	TS	B-107
M241549/M241510D+A	TDO	B-138
EE241701/242375	TS	B-117
EE241701/242377D+A	TDO	B-146
H242649/H242610	TS	B-107
H242649/H242610D+A	TDO	B-140
H242649D/H242610+A	TDI	B-161
EE243190/243250	TS	B-119
EE243190/243251D+A	TDO	B-146
EE243192/243250	TS	B-119
EE243192/243251D+A	TDO	B-148
EE243196/243250	TS	B-119
EE243196/243251D+A	TDO	B-148
EE244180/244235	TS	B-119
EE244180/244236D+A	TDO	B-146
M244249/M244210	TS	B-109
M244249/M244210D+A	TDO	B-140
M244249D/M244210+A	TDI	B-161
H244849D/H244810+A	TDI	B-161
M246942/M246910	TS	B-109

Inch system sizes: Tapered Roller Bearings (Single row · Double row) index

Bearing number	ABMA	Page
CONE / CUP	Type	. ugo
OONE / OOI	Турс	
M246949/M246910	TS	B-109
H247535/H247510	TS	B-107
H247535/H247510D+A	TDO	B-138
H247549/H247510	TS	B-109
H247549/H247510D+A	TDO	B-140
LM247748D/LM247710+A	TDI	B-161
H249148/H249111D+A	TDO	B-140
M249732/M249710	TS	B-109
M249732/M249710D+A	TDO	B-140
M249734/M249710	TS	B-109
M249734/M249710D+A	TDO	B-140
M249736/M249710	TS	B-109
M249736/M249710D+A	TDO	B-140
M249748D/M249710+A	TDI	B-161
M249749/M249710	TS	B-111
M249749/M249710D+A	TDO	B-142
HH249749/HH249910D+A	TDO	B-142
HH249949/HH249910	TS	B-111
HH249949D/HH249910+A	TDI	B-161
M252337/M252310	TS	B-111
HM252343/HM252310	TS	B-111
HM252343/HM252310D+A	TDO	B-142
HM252344/HM252310D+A	TDO	B-142
M252349D/M252310+A	TDI	B-161
HM252348/HM252310	TS	B-111
HM252348/HM252310D+A	TDO	B-142
HM252349/HM252310D+A	TDO	B-142
M252330/M252310	TS	B-109
M252349/M252310	TS	B-113
HH255149D/HH255110+A	TDI	B-161
M255449/M255410	TS	B-113
M255449/M255410D+A	TDO	B-144
M255449D/M255410A+A	TDI	B-163
HM256849/HM256810	TS.	B-113
HM256849/HM256810D+A	TDO	B-144
HM256849D/HM256810+A	TDI	B-163
M257149D/M257110+A	TDI	B-163
M257248D/M257210+A	TDI	B-163
HH258248/HH258210	TS	B-103
HH258248/HH258210D+A	TDO	B-113
LM258648D/LM258610+A	TDI	B-163
HM259048/HM259010	TS	B-103
HM259049/HM259010D+A	TDO	B-113
HM259049D/HM259010D+A	TDI	B-144
HM261049/HM261010		
	TS	B-115
HM261049/HM261010D+A	TDO	B-144
HM261049D/HM261010+A	TDI	B-163
M262449D/M262410+A	TDI	B-163
HM262749/HM262710	TS	B-115
HM262749/HM262710D+A	TDO	B-144
HM262749D/HM262710+A	TDI	B-163
HM262748/HM262710	TS	B-115
LM263149D/LM263110+A	TDI	B-163
M263349D/M263310+A	TDI	B-163

Bearing number	ABMA	Page
CONE / CUP	Туре	3 -
	TDO	D 440
HM265049/HM265010D+A	TDO	B-146
HM265049D/HM265010+A	TDI	B-163
HM265049/HM265010	TS	B-115
HM266447/HM266410	TS	B-117
HM266448/HM266410	TS	B-117
HM266449/HM266410 HM266449/HM266410D+A	TS	B-117
HM266446/HM266410D+A	TDO	B-146
HM266446/HM266410D+A	TS TDO	B-117 B-146
HM266448/HM266410D+A	TDO	B-146
HM266449D/HM266410+A M268730/M268710	TDI TS	B-163 B-117
HM268730/HM268710D+A	TDO	
	TS	B-146 B-117
M268749/M268710 M268749/M268710D+A	TDO	B-117
M268749D/M268710D+A	TDI	B-146
M270749/M270710	TS	B-117
M270749/M270710D+A	TDO	B-146
M270749D/M270710+A	TDI	B-165
LM272235/LM272210	TS	B-119
LM272249/LM272210	TS	B-119
LM272249/LM272210D+A	TDO	B-146
LM272249D/LM272210+A	TDI	B-165
M272647D/M272610+A	TDI	B-165
M272749/M272710	TS	B-119
M272749/M272710D+A	TDO	B-146
M272749D/M272710+A	TDI	B-165
M274149/M274110	TS	B-119
M274149D/M274110+A	TDI	B-165
LM274449D/LM274410+A	TDI	B-165
EE275095/275155	TS	B-111
EE275095/275156D+A	TDO	B-140
EE275100/275155	TS	B-111
EE275100/275156D+A	TDO	B-142
EE275105/275155	TS	B-111
EE275105/275156D+A	TDO	B-142
EE275108/275155	TS	B-113
EE275108/275156D+A	TDO	B-142
EE275109D/275155+A	TDI	B-161
M275349D/M275310+A	TDI	B-165
M276449/M276410	TS	B-119
M276449/M276410D+A	TDO	B-148
M276449D/M276410+A	TDI	B-165
M276448D/M276410+A	TDI	B-165
M278749/M278710	TS	B-119
M278749/M278710D+A	TDO	B-148
M278749D/M278710+A	TDI	B-165
M280049D/M280010+A	TDI	B-167
M280349D/M280310+A	TDI	B-167
EE280626/281200	TS	B-105
M281049D/M281010+A	TDI	B-167
L281148/L281110	TS	B-121
L281148/L281110D+A	TDO	B-148
L281149D/L281110+A	TDI	B-167

Bearing number	ABMA	Page
CONE / CUP	Туре	
M281649D/M281610+A	TDI	B-167
LM281849D/LM281810+A	TDI	B-167
LM282549D/LM282510+A	TDI	B-167
LM283649/LM283610	TS	B-121
LM283649D/LM283649+A	TDI	B-167
M284148D/M284111+A	TDI	B-167
M284249D/M284210+A	TDI	B-167
LM286249D/LM286210+A	TDI	B-167
LM287649D/LM287610+A	TDI	B-167
LM287849D/LM287810+A	TDI	B-167
EE291175/291750	TS	B-113
EE291175/291751D+A	TDO	B-144
EE291200D/291750+A	TDI	B-161
EE291201/291750	TS	B-113
EE291201/291751D+A	TDO	B-144
EE291250/291750	TS	B-115
EE291250/291751D+A	TDO	B-144
EE295102/295193	TS	B-111
EE295102/295192D+A	TDO	B-142
EE295110/295193	TS	B-113
EE295110/295192D+A	TDO	B-142
EE329119D/329172+A	TDI	B-163
EE333137/333197	TS	B-115
EE333137/333203D+A	TDO	B-144
EE333140/333197	TS	B-115
EE333140/333203D+A	TDO	B-146
M348449/M348410	TS	B-111
M349549/M349510	TS	B-111
EE350701/351687	TS	B-107
EE350750/351687	TS	B-107
L357049/L357010	TS	B-113
L357049/L357010D+A	TDO	B-144
LM361649/LM361610	TS	B-115
LL365340/LL365310D+A	TDO	B-146
LL365348/LL365310	TS	B-117
LM377449/LM377410	TS	B-119
LM377449/LM377410D+A	TDO	B-148
LM377449D/LM377410+A	TDI	B-165
EE380080/380190	TS	B-107
EE380081/380190	TS	B-107
EE420751/421437	TS	B-107
EE420751/421451D+A	TDO	B-138
EE420750D/421437+A	TDI	B-161
EE420800D/421437+A	TDI	B-161
EE420801/421437	TS	B-107
EE420801/421451D+A	TDO	B-138
EE426200/426330	TS	B-119
EE426200/426331D+A	TDO	B-148
EE430900/431575	TS	B-109
EE430900/431576D+A	TDO	B-140
EE435102/435165	TS	B-111
EE435102/435165D+A	TDO	B-142
HH437549/HH437510	TS	B-105
LM446349/LM446310	TS	B-109

Inch system sizes: Tapered Roller Bearings (Single row · Double row) index

Bearing number	ABMA	Page
CONE / CUP	Type	
1 11440040# 11440040P A	TD 0	D 440
LM446349/LM446310D+A	TDO	B-140
EE450601/451212	TS	B-105
EE450601/451215D+A	TDO	B-138
450900D/451212	TDI	B-161
LM451345/LM451310	TS	B-111
LM451345/LM451310D+A	TDO	B-142
LM451349/LM451310	TS	B-111
LM451349/LM451310D+A	TDO	B-142
LM451349D/LM451310+A	TDI	B-161
L467549/L467510	TS	B-117
L476549/L476510	TS	B-119
L476549/L476510D+A	TDO	B-148
LL481448/LL481411	TS	B-121
EE526130/526190	TS	B-115
EE526130/526191D+A	TDO	B-144
EE529091D/529157+A	TDI	B-161
EE542220/542290	TS	B-119
EE542220/542291D+A	TDO	B-148
HM542948/HM542911	TS	B-107
543085/543114	TS	B-109
543085/543115D+A	TDO	B-140
544090/544118	TS	B-109
544091/544118	TS	B-109
545112/545141	TS	B-113
545112/545142D+A	TDO	B-144
LM545849/LM545810	TS	B-109
EE547341D/547480+A	TDI	B-167
L555233/L555210	TS	B-113
L555233/L555210D+A	TDO	B-142
L555249/L555210	TS	B-113
L555249/L555210D+A	TDO	B-144
LL562749/LL562710	TS	B-115
LM565943/LM565910	TS	B-115
LM565949/LM565910	TS	B-117
LM565949/LM565912	TS	B-117
LL566848/LL566810	TS	B-117
LM567949/LM567910	TS	B-117
L570649/L570610	TS	B-117
EE571703/572650	TS	B-117
EE571703/572651D+A	TDO	B-146
LL575343/LL575310	TS	B-119
LL575349/LL575310	TS	B-119
EE626210/626321D+A	TDO	B-148
EE640192/640260	TS	B-119
EE640192/640261D+A	TDO	B-113
EE649240/649310	TS	B-121
EE649240/649311D+A	TDO	B-148
EE649241D/649310+A	TDI	B-140
LM654642/LM654610	TS	B-107
LM654642/LM654610D+A	TDO	B-113
LM654648D/LM654610+A	TDI	B-142
LM654648D/LM654610+A		B-103
	TS	
LM654649/LM654610D+A	TDO	B-144
EE655270/655345	TS	B-121

Bearing number CONE / CUP	ABMA Type	Page
EE655271D/655345+A	TDI	B-167
LM665949/LM665910	TS.	B-117
LM665949/LM665910D+A	TDO	
M667935/M667911	TS	B-117
M667947D/M667910+A	TDI	B-165
M667948/M667910	TS	B-117
EE671801/672873	TS	B-119
EE671801/672875D+A	TDO	B-146
680235/680270	TS	B-121
LL687949/LL687910	TS	B-121
LL687949/LL687910D+A	TDO	B-148
EE722110/722185	TS	B-113
EE722110/722186D+A	TDO	B-142
EE722115/722185	TS	B-113
EE722115/722186D+A	TDO	B-144
EE724120/724195	TS	B-113
EE724120/724196D+A	TDO	B-142
LM742745/LM742710	TS	B-109
LM742745/LM742710D+A	TDO	B-140
LM742747/LM742710	TS	B-109
LM742749/LM742710	TS	B-109
LM742749/LM742710D+A	TDO	B-140
LM742749D/LM742710+A	TDI	B-161
EE743240/743320	TS	B-121
EE743240/743321D+A	TDO	B-148
HM746646/HM746610	TS	B-109
HM746646/HM746610D+A	TDO	B-140
EE752305/752380	TS	B-121
EE755280/755360	TS	B-121
EE755280/755361D+A	TDO	B-148
EE755281D/755360+A	TDI	B-167
EE755285/755360	TS	B-121
EE755285/755361D+A	TDO	-
LM757049/LM757010	TS	B-113
M757449D/M757410+A	TDI	B-163
LM761649D/LM761610+A	TDI	B-163
EE763330/763410	TS	B-121
LM763449D/LM763410+A LM767745D/LM767710+A	TDI	B-163
	TDI TDI	B-165
LM767749D/LM767710+A LM769349D/LM769310+A	TDI	B-165
L770847D/L770810+A	TDI	B-165
L770847D/L770810+A	TDI	B-165
LM770949/LM770910	TS	B-103
LL771948/LL771911	TS	B-119
LM772748/LM772710	TS	B-119
LM772748/LM772710D+A	TDO	B-118
LM772749D/LM772710+A	TDI	B-140
EE776420/776520	TS	B-103
EE776430/776520	TS	B-121
LL778149/LL778110	TS	B-119
LM778549D/LM778510+A	TDI	B-165
LL788345/LL788310	TS	B-121
LL/00343/LL/00310	13	D-121

Bearing number	ABMA	Page
CONE / CUP	Type	
FF700444/700004	TC	B-113
EE790114/790221	TS TS	B-113
EE790120/790221 EE833160X/833232		B-115
	TS	
EE833160XD/833232+A	TDO	B-165
HH840249/HH840210	TS	B-107
EE843220/843290	TS	B-119
EE843220/843291D+A	TDO	B-148
EE843220D/843290+A	TDI	B-165
H852849/H852810	TS	B-113
L853049/L853010	TS	B-113
L860048/L860010	TS	B-115
L860049/L860010	TS	B-115
L865547/L865512	TS	B-115
LM869448/LM869410	TS	B-117
LM869448/LM869410D+A	TDO	B-146
LM869449D/LM869410+A	TDI	B-165
L879946/L879910	TS	B-121
L879947/L879910	TS	B-121
LL889049/LL889010	TS	B-121
LL889049/LL889010D+A	TDO	B-148
EE911600/912400	TS	B-117
EE911600/912401D+A	TDO	B-146
EE923095/923175	TS	B-111
EE923095/923176D+A	TDO	B-140
HH926744/HH926710	TS	B-105
HH926744/HH926716	TS	B-105
HH926749/HH926710	TS	B-105
HH932132/HH932110	TS	B-105
HH932145/HH932110	TS	B-105
HH932145/HH932115	TS	B-105
H936340/H936310	TS	B-105
H936340/H936316	TS	B-105
H936349/H936310	TS	B-105
EE941205/941950	TS	B-113
HH949549/HH949510	TS	B-109
HH949549/HH949510D+A	TDO	B-140
HH953749/HH953710	TS	B-111
HH953749/HH953710D+A	TDO	B-142
LM961548/LM961511D+A	TDO	B-144
LM961548/LM961511	TS	B-115
H961649/H961610	TS	B-115
H961649/H961610D+A	TDO	B-144
EE971354/972100	TS	B-115
EE971354/972102D+A	TDO	B-144

Inch system sizes: Tapered Roller Bearings (Four Row) index

Bearing number CONE / CUP	ABMA Type	Page
T-8576D/8520/8520D	TQO	B-185
9974D/9920/9920D	TQO	B-183
T-46791D/46720/46721D	TQO	B-181
T-48290D/48220/48220D	TQO	B-181
T-48393D/48320/48320D	TQO	B-181
T-48680D/48620/48620D	TQO	B-181
67791D/67720/67721D	TQO	B-183
T-67885D/67820/67820D	TQO	B-183
T-67986D/67920/67920D	TQO	B-183
81576D/81962/81963D	TQO	B-181
82681D/82620/82620D	TQO	B-183
EE126096D/126150/126151D	TQO	B-185
EE127097D/127137/127137D	TQO	B-185
EE132082D/132125/132126D	TQO	B-183
EE134102D/134143/134144D	TQO	B-185
EE135111D/135155/135156D	TQO	B-187
L163149D/L163110/L163110D	TQO	B-191
EE171000D/171450/171451D	TQO	B-185
EE181455D/182350/182351D	TQO	B-191
EE221027D/221575/221576D	TQO	B-185
M224749D/M224710/M224710D	TQO	B-181
T-M231649D/M231610/M231610D	TQO	B-181
EE234161D/234215/234216D	TQO	B-191
M238849D/M238810/M238810D	TQO	B-183
M240648D/M240611/M240611D	TQO	B-183
M241538D/M241510/M241510D	TQO	B-183
EE244181D/244235/244236D	TQO	B-193
T-M244249D/M244210/M244210D	TQO	B-185
LM247748D/LM247710/LM247710D	TQO	B-185
T-M249748D/M249710/M249710D	TQO	B-185
T-M252349D/M252310/M252310D	TQO	B-187
HM252349D/HM252310/HM252310D	TQO	B-185
M255449D/M255410/M255410D	TQO	B-187
HM256849D/HM256810/HM256810DG2	TQO	B-187
M257149D/M257110/M257110D	TQO	B-187

Bearing number CONE / CUP	ABMA Type	Page
M257248D/M257210/M257210D	TQO	B-189
LM258649D/LM258610/LM258610D	TQO	B-189
T-HM259049D/HM259010/HM259010D	TQO	B-189
HM261049D/HM261010/HM261010DA	TQO	B-189
M262449D/M262410/M262410DG2	TQO	B-189
T-HM262749D/HM262710/HM262710DG2	TQO	B-189
LM263149D/LM263110/LM263110D	TQO	B-109
M263349D/M263310/M263310D	TQO	B-191
HM265049D/HM265010/HM265010DG2	TQO	B-191
HM266449D/HM266410/HM266410DG2	TQO	B-191
M268749D/M268710/M268710DG2		
	TQO	B-193
M270749D/M270710/M270710DG2	TQO	B-193
LM272249D/LM272210/LM272210DG2	TQO	B-193
M274149D/M274110/M274110DG2	TQO	B-195
LM274449D/LM274410/LM274410D	TQO	B-195
EE275106D/275155/275156D	TQO	B-185
EE275109D/275160/275161D	TQO	B-187
M275349D/M275310/M275310DG2	TQO	B-195
M276449D/M276410/M276410DG2	TQO	B-195
M278749D/M278710/M278710DG2	TQO	B-195
LM278849D/LM278810/LM278810D	TQO	B-195
M280049D/M280010/M280010DG2	TQO	B-197
M280349D/M280310/M280310DG2	TQO	B-197
EE280700D/281200/281201D	TQO	B-183
L281149D/L281110/L281110DG2	TQO	B-197
M281649D/M281610/M281610DG2	TQO	B-197
LM281849D/LM281810/LM281810DG2	TQO	B-197
M282249D/M282210/M282210D	TQO	B-197
M283449D/M283410/M283410D	TQO	B-199
LM283649D/LM283610/LM283610DG2	TQO	B-199
M284148D/M284111/M284110DG2	TQO	B-199
M284249D/M284210/M284210DG2	TQO	B-199
M285848D/M285810/M285810D	TQO	B-199
LM286249D/LM286210/LM286210DG2	TQO	B-199
LM287649D/LM287610/LM287610DG2	TQO	B-199

Inch system sizes: Tapered Roller Bearings (Four Row) index

Bearing number CONE / CUP	ABMA Type	Page
LM288949D/LM288910/LM288910D	TQO	B-199
EE291202D/291750/291751D	TQO	B-187
EE329119D/329172/329173D	TQO	B-187
LM377449D/LM377410/LM377410DG2	TQO	B-195
T-LM451349D/LM451310/LM451310D	TQO	B-185
EE522126D/523087/523088D	TQO	B-195
EE526131D/526190/526191D	TQO	B-189
EE531201D/531300/531301XDG2	TQO	B-195
EE547341D/547480/547481DG2	TQO	B-199
T-EE640193D/640260/640261DG2	TQO	B-193
EE649241D/649310/649311DG2	TQO	B-197
T-LM654644D/LM654610/LM654610D	TQO	B-187
T-LM654648D/LM654610/LM654610D	TQO	B-187
LM665949D/LM665910/LM665910D	TQO	B-191
EE655271D/655345/655346DG2	TQO	B-197
M667947D/M667911/M667911DG2	TQO	B-193
EE700090D/700167/700168D	TQO	B-185
EE722111D/722185/722186D	TQO	B-187
EE724121D/724195/724196DG2	TQO	B-189
EE736173D/736238/736239D	TQO	B-193
EE737179D/737260/737260D	TQO	B-193
T-LM742749D/LM742714/LM742714D	TQO	B-183
EE755280D/755360/755361DG2	TQO	B-197
EE755281D/755360/755361DG2	TQO	B-197
M757448D/M757410/M757410D	TQO	B-187
M757449D/M757410/M757410D	TQO	B-189
LM761648D/LM761610/LM761610D	TQO	B-189
LM761649D/LM761610/LM761610D	TQO	B-189
LM763449D/LM763410/LM763410DG2	TQO	B-191
LM765149D/LM765110/LM765110D	TQO	B-191
LM767745D/LM767710/LM767710DG2	TQO	B-191
LM767749D/LM767710/LM767710DG2	TQO	B-191
LM769349D/LM769310/LM769310D	TQO	B-193
L770849D/L770810/L770810DG2	TQO	B-193
LM772749D/LM772710/LM772710DA	TQO	B-195

Bearing number	ABMA	Page
CONE / CUP	_	i age
CONE / COP	Туре	
LM778549D/LM778510/LM778510DG2	TQO	B-195
EE822101D/822175/822176D	TQO	B-185
EE833161D/833232/833233D	TQO	B-193
EE843221D/843290/843291D	TQO	B-195
T-LM869449D/LM869410/LM869410DG2	TQO	B-193
EE911603D/912400/912401D	TQO	B-193
EE921150D/921875/921876D	TQO	B-187
EE931170D/931250/931251XDG2	TQO	B-193
EE971355D/972100/972103D	TQO	B-189

NTN

Metric system sizes

d 100∼120mm

		Boundary d	imensions					ic load r		ototio	Bearing
		mr	n				dynamic kN	static	dynamic kç	static of	numbers
									`	,	
d	D	T	В	C	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	4.40	0.5	05	00	4.5	4.5	404	000	10.000	04.000	00000
	140 140	25 25	25 24	20 20	1.5 1.5	1.5 1.5	121 97.5	206 162	12,300 9,950	21,000 16,500	32920XU 32920@
	150	25 32	24 32	20 24	2	1.5	170	281	17,300	28,600	32920 3 32020XU
	150	39	32 39	32.5	2	1.5	224	390	22,800	39,500	33020U
	180	37	34	29	3	2.5	258	335	26,300	34,500	30220U
100	180	49	46	39	3	2.5	330	465	33,500	47,500	32220U
	215	51.5	47	39	4	3	410	500	41,500	51,000	30320U
	215	51.5	47	39	3	3	345	400	35,000	40,500	303200
	215	56.5	51	35	4	3	355	435	36,000	44,000	31320XU
	215	77.5	73	60	4	3	570	770	58,500	78,500	32320U
	2.0	77.0	, 0		•		0.0			7 0,000	
	145	25	25	20	1.5	1.5	126	219	12,800	22,400	32921XA@
	160	35	35	26	2.5	2	201	335	20,500	34,000	32021XU
	160	43	43	34	2.5	2	245	420	25,000	43,000	33021U
	190	39	36	30	3	2.5	287	380	29,300	38,500	30221U
105	190	53	50	43	3	2.5	380	540	38,500	55,500	32221U
	225	53.5	49	41	4	3	435	535	44,500	54,500	30321U
	225	53.5	49	41	3	3	365	420	37,000	43,000	30321@
	225	58	53	36	4	3	380	470	39,000	47,500	31321XU
	225	81.5	77	63	4	3	610	825	62,500	84,500	32321U
	150	25	25	20	1.5	1.5	127	226	13,000	23,100	32922XA@
	170	38	38	29	2.5	2	236	390	24,000	39,500	32022XU
	170	47	47	37	2.5	2	288	500	29,400	51,000	33022U
	200	41	38	32	3	2.5	325	435	33,000	44,000	30222U
	200	56	53	46	3	2.5	420	605	43,000	62,000	32222U
110	240	54.5	50	42	4	3	480	590	49,000	60,000	30322U
	240	54.5	50	42	3	3	400	465	40,500	47,000	303220
	240	63	57	38	4	3	430	535	44,000	54,500	31322XU
	240	84.5	80	65	4	3	705	970	72,000	98,500	32322U
	240	84.5	80	65	3	3	620	830	63,500	84,500	323220
				_							
	165	29	29	23	1.5	1.5	162	294	16,500	30,000	32924XU
	165	29	27	23	1.5	1.5	118	205	12,000	20,900	32924@
120	180	38	38	29	2.5	2	245	420	25,000	43,000	32024XU
120	215	43.5	40	34	3	2.5	345	470	35,500	48,000	30224U
	215	61.5	58	50	3	2.5	460	680	47,000	69,500	32224U
	260	59.5	55	46	4	3	560	695	57,000	71,000	30324U
	260	59.5	55	46	3	3 This book	465	550	47,500	56,000	30324@

Minimal allowable dimension for chamfer dimension r or r.
This bearing does not incorporate the subunit dimensions.

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$rac{F}{F}$	$\frac{r_a}{r} > e$
X	Y	X	Y
1	0	0.4	Y_2

static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below.

		Ab	utment an	nd fillet din	nensions	3			Load center mm	Constant		ial actors	Mass kg
$d_{ m a}$	$d_{ m b}$	I) _a	D_{b}	S_{a}	$S_{ m b}$	$r_{ m as}$	r_{1as}					.vg
min	max	max	∽a min	min	min	min	max	max	a	e	Y_2	Y_{o}	(approx.)
111111	max	max		111111			mux	mux	- CO		12	10	(approx.)
108.5	107.5	131.5	127.5	135.5	4	5	1.5	1.5	24.5	0.33	1.82	1.00	1.14
108.5	107.5	131.5	127.5	135.5	4	5	1.5	1.5	25	0.35	1.73	0.95	1.08
110	109	141.5	134	144	6	8	2	1.5	32.5	0.46	1.31	0.72	1.91
110	108	141.5	135	143	7	6.5	2	1.5	29.5	0.29	2.09	1.15	2.37
114	116	168	157	168	5	8	2.5	2	36	0.42	1.43	0.79	3.78
114	114	168	154	171	5	10	2.5	2	41.5	0.42	1.43	0.79	5.12
118	127	201	184	200	5	12.5	3	2.5	41.5	0.35	1.74	0.96	8.56
118	127	201	184	200	5	12.5	3	2.5	42	0.35	1.73	0.95	7.72
118	121	201	168	202	7	21.5	3	2.5	69	0.83	0.73	0.40	8.67
118	121	201	177	200	5	17.5	3	2.5	53	0.35	1.74	0.96	12.7
113.5	113.5	136.5	131.5	140.5	5	5	1.5	1.5	25	0.34	1.76	0.97	1.2
117	116	150	143	154	6	9	2	2	34.5	0.44	1.35	0.74	2.42
117	116	150	145	153	7	9	2	2	31	0.28	2.12	1.17	3
119	122	178	165	178	6	9	2.5	2	38	0.42	1.43	0.79	4.39
119	119	178	161	180	6	10	2.5	2	44	0.42	1.43	0.79	6.25
123	132	211	193	209	6	12.5	3	2.5	43.5	0.35	1.74	0.96	9.79
123	132	211	193	209	6	12.5	3	2.5	43.5	0.35	1.73	0.95	8.93
123	126	211	176	211	7	22	3	2.5	71.5	0.83	0.73	0.40	9.68
123	128	211	185	209	6	18.5	3	2.5	55	0.35	1.74	0.96	14.5
440.5	447.5	444.5	107	445.5	_	_	4 =	4.5	00.5	0.00	4.00	0.00	4.00
118.5	117.5	141.5	137	145.5	5	5	1.5	1.5	26.5	0.36	1.69	0.93	1.23
122	122	160	152	163	7	9	2	2	36.5	0.43	1.39	0.77	3.07
122	121	160	152	161	7	10	2	2	33.5	0.29	2.09	1.15	3.8
124	129	188	174	188	6	9	2.5 2.5	2	40	0.42	1.43	0.79	5.18
124 128	126 141	188 226	170 206	190 222	6	10 12.5		2 2.5	47 45.5	0.42 0.35	1.43 1.74	0.79 0.96	7.43
128	141	226	206	222	6 6	12.5	3 3	2.5	45.5 44	0.35	1.74	0.95	11.4 10.5
128	135	226	188	224	7	25	3	2.5	74	0.83	0.73	0.40	11.9
128	135	226	198	222	6	19.5	3	2.5	57.5	0.35	1.74	0.40	18
128	135	226	198	222	6.5	19.5	3	2.5	56	0.35	1.74	0.95	16.9
120	133	220	190	222	0.5	19.5		2.5	50	0.33	1.73	0.95	10.9
128.5	128.5	156.5	150	160	6	6	1.5	1.5	29.5	0.35	1.72	0.95	1.77
128.5	130.5	156.5	147.5	159.5	6	6	1.5	1.5	31	0.37	1.60	0.88	1.63
132	131	170	161	173	7	9	2	2	39	0.46	1.31	0.72	3.25
134	140	203	187	203	6	9.5	2.5	2	44	0.44	1.38	0.76	6.23
134	136	203	181	204	6	11.5	2.5	2	51.5	0.44	1.38	0.76	9.08
138	152	246	221	239	6	13.5	3	2.5	49	0.35	1.74	0.96	14.2
138	152	246	221	239	6	13.5	3	2.5	48.5	0.35	1.73	0.95	13.2

NTN

Metric system sizes

d 120∼160mm

		Boundary di	mensions			Basic load ratings dynamic static dynamic static					Bearing numbers
		mm	า					kN	•	gf	numbers
d	D	T	В	C	$r_{ m smin}$	$r_{ m ls\ min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	260	68	62	42	4	3	515	655	52,500	67,000	31324XU
120	260	90.5	86	69	4	3	815	1,130	83,000	116,000	32324U
	200	00.0			•		0.0	1,100		110,000	
	180	32	32	25	2	1.5	194	350	19,800	36,000	32926XU
	180	32	30	26	2	2	142	252	14,500	25,700	32926@
	200	45	45	34	2.5	2	320	545	32,500	55,500	32026XU
130	230	43.75	40	34	4	3	375	505	38,000	51,500	30226U
100	230	67.75	64	54	4	3	530	815	54,000	83,000	32226U
	280	63.75	58	49	5	4	650	830	66,000	84,500	30326U
	280	72	66	44	5	4	600	780	61,500	79,500	31326XU
	280	98.75	93	78	4	4	895	1,240	91,000	126,000	32326
	190	32	32	25	2	1.5	200	375	20,400	38,000	32928XU
	210	45	45	34	2.5	2	330	580	33,500	59,500	32028XU
	250	45.75	42	36	4	3	420	570	43,000	58,500	30228U
	250	45.75	42	36	3	3	375	485	38,000	49,500	30228@
140	250	71.75	68	58	4	3	610	920	62,500	94,000	32228U
0	300	67.75	62	53	5	4	735	950	75,000	97,000	30328U
	300	67.75	62	53	4	4	640	780	65,000	80,000	30328@
	300	77	70	47	5	4	685	905	70,000	92,500	31328XU
	300	107.75	102	85	4	4	985	1,370	101,000	140,000	32328
						_					
	210	38	38	30	2.5	2	268	490	27,300	50,000	32930XU
	225	48	48	36	3	2.5	370	655	37,500	67,000	32030XU
	270	49	45	38	4	3	450	605	46,000	61,500	30230U
150	270	77	73	60	4	3	700	1,070	71,500	109,000	32230U
	320	72	65	55	5	4	825	1,070	84,000	109,000	30330U
	320	72	65	55	4	4	680	875	69,500	89,000	30330@
	320	82	75	50	5	4	775	1,030	79,000	105,000	31330XU
	320	114	108	90	4	4	1,160	1,750	119,000	179,000	32330
	220	38	38	30	2.5	2	276	520	28,200	53,000	32932XU
	240	51	51	38	3	2.5	435	790	44,500	80,500	32032XU
	290	52	48	40	4	3	525	720	53,500	73,500	30232U
160	290	84	80	67	4	3	890	1,420	90,500	145,000	32232U
100	340	75	68	58	5	4	915	1,200	93,500	122,000	30332U
	340	75	68	58	4	4	755	975	77,000	99,500	30332@
	340	121	114	95	4	4	1,230	1,840	126,000	188,000	32332
		ala dimanajan fa						,	ata tha aubunit		

Minimal allowable dimension for chamfer dimension r or r.This bearing does not incorporate the subunit dimensions.

$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
X	Y	X	Y
1	0	0.4	Y_2

static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below.

			Abu	utment and		ensions	S			Load center	Constant		ial actors	Mass
			_		mm	~	~			mm				kg
	$d_{ m a}$	$d_{ m b}$	L		$D_{\rm b}$	S_{a}	$S_{ m b}$	$r_{ m as}$	$r_{ m 1as}$					
	min	max	max	min	min	min	min	max	max	a	e	Y_2	$Y_{\rm o}$	(approx.)
	138	145	246	203	244	9	26	3	2.5	82.5	0.83	0.73	0.40	15.4
	138	145	246	213	239	6	21.5	3	2.5	61.5	0.35	1.74	0.96	22.4
-														
	140	139	171.5	163.5	174	6	7	2	1.5	31.5	0.34	1.77	0.97	2.36
	140	139	170	163.5	174	6	6	2	2	34	0.37	1.60	0.88	2.22
	142	144	190	178	192	8	11	2	2	43.5	0.43	1.38	0.76	4.96
	148	152	216	203	218	7	9.5	3	2.5	45.5	0.44	1.38	0.76	7.25
	148	146	216	193	219	7	13.5	3	2.5	57	0.44	1.38	0.76	11.2
	152	164	262	239	255	8	14.5	4	3	53.5	0.35	1.74	0.96	17.4
	152	155.5	262	214.5	263	9	28	4	3	87.5	0.83	0.73	0.40	19
	148	160.5	262	230	264	2.4	20	3	3	67.5	0.35	1.73	0.95	27.2
-														
	150	150	181.5	177	184	6	6	2	1.5	34	0.36	1.67	0.92	2.51
	152	153	200	187	202	8	11	2	2	46	0.46	1.31	0.72	5.28
	158	163	236	219	237	7	9.5	3	2.5	48.5	0.44	1.38	0.76	9.26
	158	163	236	219	237	7	9.5	2.5	2.5	47.5	0.43	1.39	0.77	8.37
	158	158	236	210	238	9	13.5	3	2.5	61	0.44	1.38	0.76	14.1
	162	179	282	251	273	9	14.5	4	3	56.5	0.35	1.74	0.96	21.2
	162	179	282	252	273	9	14.5	4	3	57	0.35	1.73	0.95	20.4
	162	165	282	234	280	9	30	4	3	94	0.83	0.73	0.40	23
	158	170.5	282	244	281	1.5	20	3	3	74.5	0.35	1.73	0.95	33.2
	162	162	200	192	202	7	8	2	2	36.5	0.33	1.83	1.01	3.92
	164	164	213	200	216	8	12	2.5	2	49.5	0.33	1.31	0.72	6.37
	168	175	256	234	255	7	11	3	2.5	51.5	0.44	1.38	0.72	11.2
	168	175	256 256	23 4 226	253 254		17	3	2.5	64.5	0.44	1.38	0.76	18.2
	172	193	302	269	292	8 8	17	4	3	61	0.44	1.74	0.76	25.5
	172	193	302	269	292		17			62.5	0.35	1.60		23.5 24.7
						8		4	3				0.88	
	172	176	302	250	302	9	32	4	3	100	0.83	0.73	0.40	27.7
	168	184	302	254	298	4.3	24	3	3	80	0.37	1.60	0.88	42
	172	170.5	210	199	213.5	7	8	2	2	38.5	0.35	1.73	0.95	4.15
	174	175	228	213	231	8	13	2.5	2	52.5	0.46	1.31	0.72	7.8
	178	189	276	252	272	8	12	3	2.5	55.5	0.44	1.38	0.76	12.9
	178	182	276	242	275	10	17	3	2.5	70	0.44	1.38	0.76	23.5
	182	205	322	286	310	10	17	4	3	64	0.35	1.74	0.96	29.9
	182	205	322	286	311	10	17	4	3	65.5	0.37	1.60	0.88	29.2
	178	197.5	322	272	318.5	2.3	26	3	3	85	0.37	1.60	0.88	49
	., 0	107.0	022	-, -	0.0.0	2.0	20	0	0	00	0.07	1.00	0.00	10

NTN

Metric system sizes

d 170∼220mm

		Boundary	dimensions	s			B dynamic	asic load r	atings dynamic	static	Bearing numbers
		r	mm				•	(N		gf	nambers
	_		_		•			_			
d	D	T	В	C	$r_{ m smin}$	$r_{ m ls\ min}$	C_{r}	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	230	38	38	30	2.5	2	286	560	29,200	57,000	32934XU
	260	57	57	43	3	2.5	500	895	51,000	91,000	32034XU
	310	57	52	43	5	4	610	845	62,000	86,500	30234U
170	310	91	86	71	5	4	1,000	1,600	102,000	163,000	32234U
170	360	80	72	62	5	4	1,010	1,320	103,000	135,000	30334U
	360	80	72	62	4	4	845	1,100	86,000	113,000	30334@
	360	127	120	100	4	4	1,310	1,940	133,000	198,000	32334
	250	45	45	34	2.5	2	350	700	36,000	71,500	32936XU
	280	64	64	48	3	2.5	645	1,170	66,000	119,000	32036XUE1
180	320	57	52	43	5	4	630	890	64,000	91,000	30236U
100	320	91	86	71	5	4	1,030	1,690	105,000	172,000	32236U
	380	83	75	64	4	4	910	1,190	93,000	121,000	30336
	380	134	126	106	4	4	1,440	2,150	147,000	219,000	32336
	260	45	45	34	2.5	2	355	710	36,000	72,000	32938XU
	260	45	42	36	2.5	2.5	280	525	28,600	53,500	32938@
	290	64	64	48	3	2.5	655	1,210	67,000	124,000	32038XUE1
190	340	60	55	46	5	4	715	1,000	73,000	102,000	30238U
	340	97	92	75 75	5	4	1,150	1,850	117,000	189,000	32238U
	340	97	92 78	75 65	4	4	1,000	1,670	102,000	171,000	32238@
	400 400	86 140	78 132	65 109	5 5	5 5	935 1,590	1,200 2,390	95,000 162,000	123,000 244,000	30338 32338
	400	140	132	109	5	5	1,390	2,390	162,000	244,000	32336
	280	51	51	39	3	2.5	485	895	49,000	91,000	32940XUE1
	310	70	70	53	3	2.5	800	1,470	81,500	149,000	32040XUE1
000	360	64 104	58	48	5	4	785	1,110	80,000	113,000	30240U
200	360 360	104	98 98	82 82	5 4	4 4	1,320 1,150	2,130 1,970	134,000 118,000	217,000	32240U 32240 @
	420	89	90 80	62 67	5	5	1,150	1,370	107,000	201,000 140,000	30340
	420	146	138	115	5	5	1,740	2,650	178,000	270,000	32340
	300	51	51	39	3	2.5	480	950	49,000	97,000	32944XUE1
	300	51	48	41	2.5	2.5	345	670	35,500	68,500	32944E1@
	340	76	76	57	4	3	920	1,690	94,000	173,000	32044XU
220	400	72	65	54	4	4	815	1,220	83,000	124,000	30244
	400	114	108	90	4	4	1,390	2,410	142,000	246,000	32244
	460	97	88	73	5	5	1,260	1,690	129,000	172,000	30344
	460	154	145	122	5	5	2,020	3,050	206,000	315,000	32344

Minimal allowable dimension for chamfer dimension r or r.This bearing does not incorporate the subunit dimensions.

$\frac{F_{\rm a}}{F_{ m r}}$	≦ e	$\frac{F}{F}$	$\frac{a}{r} > e$
X	Y	X	Y
1	0	0.4	Y_2

static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below.

		Ak	outment a	nd fillet dir	mensions				Load center	Constant		cial factors	Mass
,	,		D	mm	a	C			mm				kg
$d_{ m a}$	$d_{ m b}$		D_{a} .	D_{b}	S_{a}	$S_{ m b}$.	$r_{ m as}$	r_{1as}			V	v	,
min	max	max	min	min	min	min	max	max	a	e	Y_2	$Y_{\rm o}$	(approx.)
182	183	220	213	222	7	8	2	2	42.5	0.38	1.57	0.86	4.4
184	187	248	230	249	10	14	2.5	2	56	0.44	1.35	0.74	10.5
192	203	292	266	288	8	14	4	3	60.5	0.44	1.38	0.76	17
192	201	292	258	293	10	20	4	3	75	0.44	1.38	0.76	28.7
192	221	342	303	329	10	18	4	3	68	0.35	1.74	0.96	35.3
192	221	342	303	332	10	18	4	3	69.5	0.37	1.60	0.88	34.8
188	209	342	287	336	1.5	27	3	3	89.5	0.37	1.60	0.88	56.5
192	193	240	225	241	8	11	2	2	54	0.48	1.25	0.69	6.54
194	199	268	247	267	10	16	2.5	2	59.5	0.42	1.42	0.78	14.5
202	211	302	274	297	9	14	4	3	63	0.45	1.33	0.73	17.7
202	204	302	267	305	10	20	4	3	77.5	0.45	1.33	0.73	30.7
198	227.5	362	314	345	1.5	19	3	3	72.5	0.37	1.60	0.88	38.9
198	221	362	305	357	2.4	28	3	3	95	0.37	1.60	0.88	67.8
202	204	250	235	251	8	11	2	2	55	0.48	1.26	0.69	6.77
202	204	248	235	251	8	9	2	2	48.5	0.37	1.60	0.88	6.43
204	209	278	257	279	10	16	2.5	2	62.5	0.44	1.36	0.75	15.1
212	228	322	295	316	9	14	4	3	64	0.44	1.38	0.76	20.8
212	216	322	282	323	11	22	4	3	82	0.44	1.38	0.76	36.1
212	216	322	286	323	11	22	4	3	87.5	0.49	1.23	0.68	33.3
212	242	378	335	366.5	2.3	21	4	4	74.5	0.37	1.60	0.88	43.5
212	233.5	378	320	373.5	1.5	31	4	4	100	0.37	1.60	0.88	76.9
214	214	268	254	271	9	12	2.5	2	53.5	0.39	1.52	0.84	8.88
214	221	298	273	297	11	17	2.5	2	66.5	0.43	1.39	0.77	19.3
222	242	342	311	336	10	16	4	3	70	0.44	1.38	0.76	25.4
222	230	342	298	340	11	22	4	3	85	0.41	1.48	0.81	43.6
222	230	342	302	344	11	22	4	3	91.5	0.49	1.23	0.68	43.6
222	252.5	398	350	382.5	5.3	22	4	4	77	0.37	1.60	0.88	51.5
222	243.5	398	335	391.5	3.2	31	4	4	105	0.37	1.60	0.88	88.8
234	234	288	271	290	10	12	2.5	2	59.5	0.43	1.41	0.78	10.2
234	235	288	274	290	10	10	2.5	2	57	0.39	1.55	0.85	9.63
238	243	326	300	326	12	19	3	2.5	72.5	0.43	1.39	0.77	25
238	263	382	334	368	3.4	18	3	3	82	0.49	1.23	0.68	34.7
238	255	382	323	380.5	4.4	24	3	3	102	0.49	1.23	0.68	59.9
242	276.5	438	383	418.5	4.2	24	4	4	86.5	0.37	1.60	0.88	66.7
242	267.5	438	371	431	1.5	32	4	4	112	0.37	1.60	0.88	112.8

Metric system sizes

d 240∼380mm

		Boundary of	limensions				Basic load ratings				Bearing
							dynamic	static	dynamic	static	numbers
		m	m				K	(N	K!	gf	
d	D	T	B	C	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
					_						
	320	51	51	39	3	2.5	490	1,000	50,000	102,000	32948XUE1
	360	76	76	57	4	3	930	1,760	95,000	179,000	32048XU
240	440	79	72	60	4	4	975	1,480	99,500	151,000	30248
240	440	127	120	100	4	4	1,700	2,750	174,000	280,000	32248
	500	105	95	80	5	5	1,480	2,000	151,000	204,000	30348
	500	165	155	132	5	5	2,330	3,600	238,000	365,000	32348
	360	63.5	63.5	48	3	2.5	705	1,430	72,000	146,000	32952XUE1
260	400	87	87	65	5	4	1,200	2,270	123,000	231,000	32052XU
260	480	89	80	67	5	5	1,170	1,810	119,000	185,000	30252
	480	137	130	106	5	5	1,880	3,350	192,000	340,000	32252
	380	63.5	63.5	48	3	2.5	725	1,520	74,000	155,000	32956XUE1
	420	87	87	65	5	4	1,220	2,350	125,000	240,000	32056XU
280	500	89	80	67	5	5	1,240	1,910	126,000	195,000	30256
200	500	137	130	106	5	5	1,980	3,500	202,000	355,000	32256
	580	187	175	145	6	6	3,250	5,250	335,000	535,000	32356
			.,,				0,200	<u> </u>	<u> </u>		02000
	420	76	76	57	4	3	1,010	2,090	103,000	213,000	32960XUE1
300	460	100	100	74	5	4	1,490	2,830	152,000	289,000	32060XU
300	540	96	85	71	5	5	1,420	2,220	145,000	226,000	30260
	540	149	140	115	5	5	2,300	4,100	235,000	420,000	32260
	440	76	76	57	4	3	1,010	2,150	103,000	219,000	32964XUE1
	440	76	72	63	3	3	865	1,880	88,000	192,000	32964E1@
320	480	100	100	74	5	4	1,520	2,940	155,000	300,000	32064XU
	580	104	92	75	5	5	1,660	2,580	170,000	263,000	30264
	580	159	150	125	5	5	2,620	4,650	267,000	470,000	32264
	460	76	76	57	4	3	1,040	2,270	106,000	232,000	32968XUE1
340	460	76	72	63	3	3	910	1,980	93,000	201,000	32968E1@
340	520	112	106	90	5	5	1,650	3,150	169,000	320,000	32068
360	480	76	76	57	4	3	1,050	2,330	107,000	238,000	32972XUE1
300	540	112	106	90	5	5	1,740	3,300	178,000	340,000	32072
	520	87	82	72	4	4	1,140	2,500	116,000	255,000	32976
380	560	112	106	90	5	5	1,920	3,800	196,000	390,000	32076
							•	•	•	,	

$\frac{F_{\rm a}}{F_{ m r}}$	≤ e	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
X	Y	X	Y
1	0	0.4	Y_2

static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below.

d ₄ d ₆ D ₈ D ₈ S ₈ S ₈ r ₁₀₀				Ab	utment ar	nd fillet dir	mensions				Load center	Constant		cial factors	Mass
Mile						mm					mm				kg
254 254 308 290 311 10 12 2.5 2 65.5 0.46 1.31 0.72 10.9 258 261 346 318 346 12 19 3 2.5 78 0.46 1.31 0.72 26.8 258 290 422 368 408 3.9 19 3 3 91 0.49 1.23 0.68 47.7 258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 383 14 22		$d_{ m a}$	$d_{ m b}$	Ì	$D_{\rm a}$	$D_{ m b}$	S_{a}	$S_{ m b}$	$r_{ m as}$	$r_{ m 1as}$					
258 261 346 318 346 12 19 3 2.5 78 0.46 1.31 0.72 26.8 258 290 422 368 408 3.9 19 3 3 91 0.49 1.23 0.68 47.7 258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 301 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 312 458 385 453 2.9 31 <t< td=""><td></td><td>min</td><td>max</td><td>max</td><td>min</td><td>min</td><td>min</td><td>min</td><td>max</td><td>max</td><td>a</td><td>e</td><td>Y_2</td><td>$Y_{\rm o}$</td><td>(approx.)</td></t<>		min	max	max	min	min	min	min	max	max	a	e	Y_2	$Y_{\rm o}$	(approx.)
258 290 422 368 408 3.9 19 3 3 91 0.49 1.23 0.68 47.7 258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 291 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22		254	254	308	290	311	10	12	2.5	2	65.5	0.46	1.31	0.72	10.9
258 277.5 422 365 421.5 4.1 27 3 3 107 0.43 1.39 0.77 78.8 262 301 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 814.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 95.5 0.49 1.23 0.68 63.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 355 462 370 402 14		258	261	346	318	346	12	19	3	2.5	78	0.46	1.31	0.72	26.8
262 301 478 417 456 8.1 25 4 4 94 0.37 1.60 0.88 87.2 262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 63.4 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 301 478 402 464.5 5.9 22 <td< td=""><td></td><td>258</td><td>290</td><td>422</td><td>368</td><td>408</td><td>3.9</td><td>19</td><td>3</td><td>3</td><td>91</td><td>0.49</td><td>1.23</td><td>0.68</td><td>47.7</td></td<>		258	290	422	368	408	3.9	19	3	3	91	0.49	1.23	0.68	47.7
262 291 478 402 467 1.5 33 4 4 120.5 0.37 1.60 0.88 141.9 274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 63.4 282 302 355 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 422 464.5 5.9		258	277.5	422	365	421.5	4.1	27	3	3	107	0.43	1.39	0.77	78.8
274 279 348 325 347 11 15 2.5 2 69.5 0.41 1.48 0.81 18.8 282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 63.4 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.43 1		262	301	478	417	456	8.1	25	4	4	94	0.37	1.60	0.88	87.2
282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.4 31 4 4 102.3 0.49 1.23 0.68 60.6 302 318 478 405 540.5 3.4 42 <		262	291	478	402	467	1.5	33	4	4	120.5	0.37	1.60	0.88	141.9
282 287 382 352 383 14 22 4 3 85.5 0.43 1.38 0.76 39.4 282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.4 31 4 4 102.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42	Ī	274	279	348	325	347	11	15	2.5	2	69.5	0.41	1.48	0.81	18.8
282 312 458 396 438.5 4.2 22 4 4 99.5 0.49 1.23 0.68 63.4 282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 402 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 66.6 302 318 349 405 13 19 3															
282 302 458 385 453 2.9 31 4 4 121.5 0.49 1.23 0.68 103.6 294 298 368 344 368 11 15 2.5 2 75 0.43 1.39 0.76 20 302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19			312		396					4	99.5	0.49			
302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 422 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 <									4	4					
302 305 402 370 402 14 22 4 3 90.5 0.46 1.31 0.72 41.8 302 331 478 422 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 <		294	298	368	344	368	11	15	2.5	2	75	0.43	1.39	0.76	20
302 331 478 422 464.5 5.9 22 4 4 102 0.49 1.23 0.68 66.6 302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34															
302 318 478 405 473 6.4 31 4 4 123.5 0.49 1.23 0.68 110 308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 84.3 322 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338															
308 340.5 552 469.5 540.5 3.4 42 5 5 137.5 0.37 1.60 0.88 222 318 324 406 379 405 13 19 3 2.5 80 0.39 1.52 0.84 31.4 322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 138.7 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13															
322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 84.3 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 172.1 358 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
322 329 442 404 439 15 26 4 3 98 0.43 1.38 0.76 57.2 322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 84.3 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 172.1 358 <t< td=""><td></td><td>318</td><td>324</td><td>406</td><td>379</td><td>405</td><td>13</td><td>19</td><td>3</td><td>2.5</td><td>80</td><td>0.39</td><td>1.52</td><td>0.84</td><td>31.4</td></t<>		318	324	406	379	405	13	19	3	2.5	80	0.39	1.52	0.84	31.4
322 356 518 453 498 4.9 25 4 4 111 0.49 1.23 0.68 84.3 322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 138.7 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 87 0.39 1.55 0.85 36 362 <td< td=""><td></td><td></td><td></td><td></td><td>404</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					404										
322 345 518 438 511.5 2.6 34 4 4 135.5 0.49 1.23 0.68 138.7 338 344 426 398 426 13 19 3 2.5 85 0.42 1.44 0.79 33.1 338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19															
338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
338 344 426 398 425 13 13 3 2.5 85 0.39 1.55 0.85 33.2 342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 <t< td=""><td></td><td>338</td><td>344</td><td>426</td><td>398</td><td>426</td><td>13</td><td>19</td><td>3</td><td>2.5</td><td>85</td><td>0.42</td><td>1.44</td><td>0.79</td><td>33.1</td></t<>		338	344	426	398	426	13	19	3	2.5	85	0.42	1.44	0.79	33.1
342 344.5 462 418.5 463 15 26 4 3 104 0.46 1.31 0.72 60.2 342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7															
342 379 558 485 531.5 4.7 29 4 4 118.5 0.47 1.27 0.70 103.9 342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3															
342 369 558 473 551 3.9 34 4 4 142 0.47 1.27 0.70 172.1 358 362 446 417 446 13 19 3 2.5 90.5 0.44 1.37 0.75 34.9 358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3															
358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3															
358 362 446 414 445.5 13 13 3 2.5 87 0.39 1.55 0.85 36 362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3		358	362	446	417	446	13	19	3	2.5	90.5	0.44	1.37	0.75	34.9
362 374 498 452 496 3.5 22 4 4 103.5 0.37 1.60 0.88 78.7 378 381 466 436 466 13 19 3 2.5 96.5 0.46 1.31 0.72 36.6 382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3															
382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3															
382 393.5 518 476 519 5.5 22 4 4 106 0.37 1.60 0.88 83.7 398 408 502 464.5 503 4 15 3 3 101 0.40 1.49 0.82 51.3		378	381	466	436	466	13	19	3	25	96.5	0.46	1.31	0.72	36.6
		398	408	502	464.5	503	4	15	3	3	101	0.40	1.49	0.82	51.3

Single Row Tapered Roller Bearings

Metric system sizes

d 400∼850mm

		Boundary di					dynamic	asic load r static N	atings dynamic ko	static gf	Bearing numbers
d	D	T	В	C	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
400	540 600	87 125	82 118	71 100	4 5	4 5	1,200 2,180	2,710 4,250	122,000 222,000	276,000 435,000	32980 32080
420	560 620	87 125	82 118	71 100	4 6	4 5	1,230 2,280	2,840 4,550	125,000 233,000	290,000 465,000	32984 32084
440	600 650	100 130	95 122	82 104	4 6	4 6	1,600 2,530	3,450 5,000	164,000 258,000	355,000 510,000	32988 32088
500	640 750	87.36 150	82 140	72 120	4 7.5	4 7.5	1,330 3,100	3,300 6,950	141,000 315,000	335,000 705,000	CR-10010 ☆CR-10024
530	670	100	95	82	5	5	1,540	3,800	157,000	385,000	CR-10601
570	695	57	52	50	3	2.5	865	2,080	88,000	212,000	CR-11402
600	870	118	111	93	6	6	2,870	5,700	292,000	580,000	CR-12006
720	880	80	75	60	5	5	1,300	3,450	132,000	350,000	CR-14403
740	900	80	75	65	5	5	1,370	3,700	140,000	375,000	CR-14803
750	1,000	110	107	80	6	6	2,620	5,800	267,000	590,000	CR-15002
780	925	95	92	75	5	5	2,120	6,600	216,000	675,000	CR-15602
850	1,120	118	112	80	6	6	2,880	7,100	294,000	720,000	CR-17001

$\frac{F_{\rm a}}{F_{ m r}}$	≤ e	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$		
X	Y	X	Y		
1	0	0.4	Y_2		

static P_{or} =0.5 F_{r} + $Y_{\text{o}}F_{\text{a}}$ When P_{or} < F_{r} use P_{or} = F_{r} For values of e, Y_2 and Y_0 see the table below.

		A	butment ar	nd fillet dim	ension	S			Load center	Constant		ial actors	Mass
				mm					mm				kg
$d_{ m a}$	$d_{ m b}$		$D_{\rm a}$	D_{b}	$S_{\rm a}$	$S_{ m b}$	$r_{ m as}$	r_{1as}					
min	max	max	min	min	min	min	max	max	a	e	Y_2	Y_{o}	(approx.)
418 422	427 434.5	522 578	482 526	521.5 575	4 5	16 25	3 4	3 4	106 119	0.42 0.37	1.43 1.60	0.79 0.88	54 115
438 422	445.5 455.5	542 598	501.5 549	543 598	3.5 6.5	16 25	3 4	3 4	111.5 120	0.44 0.37	1.37 1.60	0.76 0.88	56.6 121
458 468	472.5 475	582 622	543 576.5	580.5 627.5	3.5 5	18 26	3 5	3 5	106 127	0.35 0.37	1.70 1.60	0.93 0.88	76 136
518 536	523.5 566.5	622 714	584.5 658.5	627.5 722.5	3.5 1.5	15 30	3 6	3 6	125 154	0.45 0.41	1.34 1.48	0.74 0.81	64.3 224
552	552	648	616.5	653	1.5	18	4	4	111	0.33	1.80	0.99	76.2
584	598.5	683	652.5	675.5	5	7	2.5	2	102.5	0.36	1.67	0.92	41.7
628	656	842	782.5	828	1.5	25	5	5	147	0.37	1.60	0.88	208
742	757	858	818	853.5	5.5	20	4	4	158.5	0.46	1.31	0.72	94
762	775.5	878	839	877.5	5	15	4	4	159	0.46	1.31	0.72	96
778	801.5	972	915	954	7	30	5	5	155	0.37	1.60	0.88	210
802	810	903	873.5	907	9.5	20	4	4	137.5	0.33	1.80	0.99	115
878	920.5	1,092	1,026.5	1,063	8.5	38	5	5	154.5	0.33	1.80	0.99	276

NTN

Inch system sizes

d 114.300~174.625mm

		Boundary di	mensions		Basic load ratings dynamic static dynamic static					
		mm	1		dynamic ki		dynamic	static kgf		
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
114.300	273.050	82.550	82.550	53.975	760	975	77,500	99,500		
	279.400	82.550	82.550	53.975	760	975	77,500	99,500		
120.650	273.050	82.550	82.550	53.975	760	975	77,500	99,500		
127.000	295.275	82.550	87.312	57.150	880	1,190	89,500	122,000		
	304.800	88.900	82.550	57.150	820	1,120	83,500	115,000		
139.700	288.925	82.550	87.312	57.150	880	1,190	89,500	122,000		
	295.275	82.550	87.312	57.150	880	1,190	89,500	122,000		
	307.975	88.900	93.662	66.675	1,010	1,390	103,000	142,000		
146.050	304.800	88.900	82.550	57.150	820	1,120	83,500	115,000		
	311.150	88.900	82.550	57.150	820	1,120	83,500	115,000		
152.400	307.975	88.900	93.662	61.912	880	1,310	89,500	133,000		
	307.975	88.900	93.662	66.675	1,010	1,390	103,000	142,000		
155.575	330.200	85.725	79.375	53.975	875	1,260	89,000	129,000		
	342.900	85.725	79.375	53.975	875	1,260	89,000	129,000		
158.750	304.800	66.675	69.106	42.862	540	780	55,000	79,500		
160.325	288.925	63.500	63.500	47.625	680	1,070	69,000	109,000		
161.925	374.650	87.312	79.375	60.325	845	1,140	86,500	117,000		
165.100	288.925	63.500	63.500	47.625	550	950	56,000	97,000		
	288.925	63.500	63.500	47.625	680	1,070	69,000	109,000		
	311.150	82.550	82.550	65.088	925	1,480	94,500	151,000		
	336.550	92.075	95.250	69.850	1,060	1,510	108,000	154,000		
168.275	330.200	85.725	79.375	53.975	875	1,260	89,000	129,000		
174.625	288.925	63.500	63.500	47.625	550	950	56,000	97,000		
	288.925	63.500	63.500	47.625	680	1,070	69,000	109,000		
	298.450	82.550	82.550	63.500	810	1,330	83,000	136,000		
	311.150	82.550	82.550	63.500	810	1,330	83,000	136,000		
	311.150	82.550	82.550	65.088	925	1,480	94,500	151,000		

Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions r_{m} and r_{mm} are larger than the maximum value.

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤e	$\frac{F_{\rm a}}{F_{\rm r}} > e$						
X	Y	X	Y					
1	0	0.4	Y_2					

static

Bearing numbers		Abutmer	nt and fillet	dimensio		Load [®] center	Constant	A) load f	Mass kg		
				_	$r_{ m as}$	r_{1as}					
	$d_{ m a}$	$d_{ m b}$	$D_{\rm a}$	D_{b}	max	max	a	e	Y_2	$Y_{ m o}$	(approx.)
T-HH926744/HH926710	164	147	230	253	6.4	6.4	6.6	0.63	0.95	0.52	22.2
T-HH926744/HH926716	164	147	233	253	6.4	6.4	6.6	0.63	0.95	0.52	23.5
1-11113207-4-711113207-10	104	177	200	200	0.4	0.4	0.0	0.00	0.33	0.52	20.0
T-HH926749/HH926710	168	147	230	253	6.4	6.4	6.6	0.63	0.95	0.52	21.7
T-HH231637/HH231615	174	150	258	264	13.5	6.4	26.7	0.32	1.88	1.04	27.1
T-HH932132/HH932110	182	172	260	288	6.4	6.4	-1.9	0.73	0.82	0.45	32.8
T-HH231649/HH231610	177	161	255	264	9.7	6.4	26.7	0.32	1.88	1.04	24.4
T-HH231649/HH231615	177	161	258	264	9.7	6.4	26.7	0.32	1.88	1.04	25.8
T-HH234031/HH234010	180	168	276.1	285.5	9.7	6.8	26.7	0.33	1.84	1.01	30.9
T UU022145/UU022110	105	174	060	000	6.4	6.4	1.0	0.70	0.00	0.45	20.6
T-HH932145/HH932110 T-HH932145/HH932115	195 195	174 174	260 262	288 288	6.4 6.4	6.4 6.4	−1.9 −1.9	0.73 0.73	0.82 0.82	0.45 0.45	30.6 32.2
1-00932145/00932115	195	174	202	200	0.4	0.4	-1.9	0.73	0.62	0.45	32.2
T-EE450601/451212	189	177	269	275	9.7	6.8	28.2	0.33	1.84	1.01	29.4
T-HH234048/HH234010	191	179	276	285	9.7	6.8	26.4	0.33	1.84	1.01	29.4
T-H936340/H936310	209	193	282	311	6.4	6.4	-16.9	0.81	0.74	0.41	34.9
T-H936340/H936316	209	193	287	311	6.4	6.4	-16.9	0.81	0.74	0.41	38.4
EE280626/281200	192	180	279	282	6.4	3.3	12.5	0.36	1.67	0.92	20.8
T-HM237532/HM237510	192	181	266	271	7	3.3	11.6	0.32	1.88	1.04	16.0
EE117063/117148	207	197	322	341	6.4	3.3	-11.5	0.71	0.85	0.47	47.9
T 04040/04443	407	400	050	070	7	0.0	2.5	0.47	4.00	0.70	47.4
T-94649/94113	197	186	259	272	7	3.3	0.9	0.47	1.28	0.70	17.1
T-HM237535/HM237510	195	184	266 280	271	7 6.4	3.3	11.6	0.32	1.88	1.04	15.6
T-H238140/H238110 T-HH437549/HH437510	198 196	188 196	280 297	289 308	6.4 3.3	6.4 6.4	18.8 21.4	0.33 0.37	1.81 1.62	1.00 0.89	27.5 36.6
1-111437349/111437310	190	190	291	300	3.3	0.4	21.4	0.37	1.02	0.69	30.0
T-H936349/H936310	218	193	282	311.4	6.4	6.4	-16.9	0.81	0.74	0.41	33.2
T-94687/94113	204	193	259	272	7	3.3	0.9	0.47	1.28	0.70	14.7
T-HM237542/HM237510	202	191	266	271	7	3.3	11.6	0.32	1.88	1.04	14.7
T-EE219068/219117	204	193	269	282	6.4	6.4	15.3	0.38	1.59	0.87	21.1
T-EE219068/219122	204	193	275	282	6.4	6.4	15.3	0.38	1.59	0.87	23.9
T-H238148/H238110	205	195	280	289	6.4	6.4	18.8	0.33	1.81	1.00	23.9

Inch system sizes

d 177.800~206.375mm

		Boundary d	imensions		dynamic	Basic loa	d ratings	static
		mr	m			:N	dynamic	kgf
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
	000 005	CO FOO	60.500	47.005	550	050	FC 000	07.000
	288.925	63.500	63.500	47.625	550	950	56,000	97,000
	288.925	63.500	63.500	47.625	680 680	1,070	69,000	109,000
177.800	%289.974	63.500	63.500	48.000		1,070	69,000	109,000
	319.964	88.900	85.725	65.088	930	1,400	94,500	142,000
	428.625	106.362	95.250	61.912	1,190	1,610	122,000	165,000
%179.975	317.500	63.500	63.500	46.038	615	1,160	63,000	118,000
	282.575	50.800	47.625	36.512	365	615	37,000	63,000
187.325	319.964	88.900	85.725	65.088	925	1,400	94,500	142,000
	320.675	88.900	85.725	65.088	925	1,400	94,500	142,000
	282.575	50.800	47.625	36.512	365	615	37,000	63,000
	317.500	63.500	63.500	46.038	615	1,160	63,000	118,000
190.500	336.550	98.425	95.250	73.025	1,030	1,830	105,000	187,000
190.500	365.049	92.075	88.897	63.500	975	1,600	99,500	164,000
	428.625	106.362	95.250	61.912	1,190	1,610	122,000	165,000
193.675	282.575	50.800	47.625	36.512	365	615	37,000	63,000
	292.100	57.945	57.945	46.038	535	1,030	54,500	105,000
	317.500	63.500	63.500	46.038	615	1,160	63,000	118,000
200.025	384.175	112.712	112.712	90.488	1,460	2,730	149,000	279,000
	393.700	111.125	111.125	84.138	1,340	2,020	137,000	206,000
	276.225	42.862	42.862	34.133	340	690	35,000	70,500
	282.575	46.038	46.038	36.512	360	785	37,000	80,000
	292.100	57.945	57.945	46.038	535	1,030	54,500	105,000
	317.500	63.500	63.500	46.038	615	1,160	63,000	118,000
203.200	346.075	79.375	80.962	60.325	900	1,460	92,000	149,000
	365.049	92.075	88.897	63.500	975	1,600	99,500	164,000
	406.400	92.075	85.725	57.150	960	1,480	98,000	151,000
	482.600	117.475	95.250	73.025	1,310	1,860	134,000	190,000
204.788	292.100	57.945	57.945	46.038	535	1,030	54,500	105,000
	282.575	46.038	46.038	36.512	360	785	37,000	80,000
206.375	336.550	98.425	100.012	77.788	1,110	2,030	113,000	207,000
	482.600	117.475	95.250	73.025	1,310	1,860	134,000	190,000

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e			
X	Y	X	Y			
1	0	0.4 Y ₂				

static

Bearing numbers		Abutmen	t and fillet	dimensior	ıs		Load [®] center	Constant		cial actors	Mass kg
			111111		$r_{ m as}$	$r_{ m 1as}$	111111				Ng
	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{ m h}$	max	max	a	e	Y_2	Y_{o}	(approx.)
		****	— <i>a</i>	_ 5			-		-2	- 0	()
T-94700/94113	207	195	259	272	7	3.3	0.9	0.47	1.28	0.70	14.4
T-HM237545/HM237510	205	194	266	271	7	3.3	11.6	0.32	1.88	1.04	14.4
T-HM237545/HM237513	205	194	267	272	7	3	11.6	0.32	1.88	1.04	14.6
T-H239640/H239610	202	198	293	301	3.5	4.8	22.3	0.32	1.88	1.04	30.2
EE350701/351687	230	221	365	383	6.4	6.4	-13.8	0.76	0.79	0.43	77.7
T 00700/00405	000	004	000	000	0.5		7.0	0.50	4.45	0.00	10.0
T-93708/93125	209	204	286	300	3.5	3.3	-7.9	0.52	1.15	0.63	19.0
T-87737/87111	207	201	261	267	3.5	3.3	-3.8	0.42	1.44	0.79	10.9
T-H239649/H239610	214	205	293	301	5.5	4.8	22.3	0.32	1.88	1.04	28.7
T-H239649/H239612	214	205	293	301	5.5	4.8	22.3	0.32	1.88	1.04	28.9
T-87750/87111	209	203	261	267	3.5	3.3	-3.8	0.42	1.44	0.79	10.6
T-93750/93125	218	212	286	300	4.3	3.3	-7.9	0.52	1.15	0.63	17.9
T-HH840249/HH840210	234	216	290	318	6.4	6.4	5.4	0.58	1.04	0.57	36.4
T-EE420751/421437	227	218	329	334	6.4	3.3	15.4	0.40	1.49	0.82	42.9
EE350750/351687	240	237	365	383	6.4	6.4	-13.9	0.76	0.79	0.43	75.3
T-87762/87111	211	206	261	267	3.5	3.3	-3.8	0.42	1.44	0.79	10.3
T-M241543/M241510	219	215	272	279	3.5	3.3	4.7	0.33	1.80	0.99	11.5
T-93787/93125	225	219	286	300	4.3	3.3	-7.9	0.52	1.15	0.63	18.3
T-H247535/H247510	241	231	346	362	6.4	6.4	28.1	0.33	1.80	0.99	53.0
HH144642/HH144614	235	226	352	357	6.4	6.4	35.1	0.30	2.01	1.11	55.9
LM241149/LM241110	220	214.1	260	267	3.5	3.3	-2.1	0.32	1.88	1.04	6.56
T-67983/67920	222	216	260	275	3.5	3.3	-15.9	0.51	1.18	0.65	7.76
T-M241547/M241510	221	217	272	279	3.5	3.3	4.7	0.33	1.80	0.99	11.2
T-93800/93125	227	222	286	300	4.3	3.3	-7.9	0.52	1.15	0.63	16.5
T-HM542948/HM542911	224	224	315	322	1.5	3.3	9	0.39	1.55	0.85	28.8
T-EE420801/421437	230	227	329	334.4	3.3	3.3	15.4	0.40	1.49	0.82	40.7
EE114080/114160	246	237	349	374	6.4	6.4	-27.9	0.80	0.75	0.41	54.8
☆T-EE380080/380190G2	262	256	402	428	6.4	6.4	-34.3	0.87	0.69	0.38	108
T-M241549/M241510	223	219	272	279	3.5	3.3	4.7	0.33	1.80	0.99	11.0
T-67985/67920	224	219	260	275	3.5	3.3	-15.9	0.51	1.18	0.65	8.4
T-H242649/H242610	231	227	306	318	3.3	3.3	25.4	0.33	1.80	0.99	32.1
☆T-EE380081/380190G2	264	258	402	428	6.4	6.4	-34.3	0.87	0.69	0.38	107

Single Row Tapered Roller Bearings

Inch system sizes

d 209.550~237.330mm

		Boundary d	imensions		dynamic	Basic loa	d ratings dynamic	static
		mr	n		,	:N		gf
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
209.550	282.575 317.500	46.038 63.500	46.038 63.500	36.512 46.038	360 615	785 1,160	37,000 63,000	80,000 118,000
212.725	285.750	46.038	46.038	34.925	380	820	38,500	83,500
215.900	285.750 290.010	46.038 31.750	46.038 31.750	34.925 22.225	380 206	820 405	38,500 21,100	83,500 41,000
216.408	285.750	46.038	49.212	34.925	380	820	38,500	83,500
220.662	314.325	61.912	61.912	49.212	625	1,220	63,500	125,000
228.397	431.800	92.075	85.725	49.212	855	1,240	87,000	126,000
228.460	431.800	92.075	85.725	49.212	855	1,240	87,000	126,000
228.600	300.038 327.025 355.600 355.600 355.600 358.775 400.050 488.950	33.338 52.388 68.262 69.850 69.850 71.438 88.900 123.825	31.750 52.388 66.675 69.850 69.850 71.438 87.312 111.125	23.812 36.512 47.625 49.212 50.800 53.975 63.500 73.025	215 475 640 715 720 815 945 1,570	435 950 1,270 1,260 1,240 1,640 1,620 2,260	22,000 48,500 65,500 73,000 73,500 83,000 96,500 161,000	44,500 97,000 130,000 128,000 127,000 168,000 166,000 231,000
231.775	300.038 336.550 358.775	33.338 65.088 71.438	31.750 65.088 71.438	23.812 50.800 53.975	215 710 815	435 1,410 1,640	22,000 72,500 83,000	44,500 144,000 168,000
234.950	311.150 314.325 327.025 355.600 381.000 384.175	46.038 49.212 52.388 68.262 74.612 112.712	46.038 49.212 52.388 66.675 74.612 112.712	33.338 36.512 36.512 47.625 57.150 90.488	405 470 475 640 885 1,460	820 935 950 1,270 1,790 2,730	41,500 48,000 48,500 65,500 90,500 149,000	83,500 95,500 97,000 130,000 183,000 279,000
237.330	336.550 358.775	65.088 71.438	65.088 71.438	50.800 53.975	710 815	1,410 1,640	72,500 83,000	144,000 168,000

$\frac{F_{ m a}}{F_{ m r}}$	≤ e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	Y_2

static

Bearing numbers		Abutme	nt and fillet	dimensio	ns		Load [®] center	Constant		rial actors	Mass kg
					$r_{\rm as}$	r_{1as}					
	$d_{ m a}$	$d_{ m b}$	$D_{\rm a}$	D_{b}	max	max	a	e	Y_2	$Y_{ m o}$	(approx.)
T-67989/67920	007	221	260	075	0.5	0.0	15.0	0.51	1.18	0.05	7.00
T-93825/93125	227 233	221 227	286	275 300	3.5 4.3	3.3 3.3	-15.9 -7.9	0.51 0.52	1.15	0.65 0.63	7.23 15.8
1-33023/33123	200	221	200	300	4.0	0.0	-7.5	0.52	1.15	0.00	10.0
T-LM742745/LM742710	230	225	266	279	3.5	3.3	-14.2	0.48	1.25	0.69	7.33
T-LM742749/LM742710	233	227	266	279	3.5	3.3	-14.2	0.48	1.25	0.69	7.05
543085/543114	232	226	272	276	3.5	3.3	-12.5	0.38	1.58	0.87	5.20
T-LM742747/LM742710	233	227	266	279	3.5	3.3	-14.2	0.48	1.25	0.69	7.40
T-M244249/M244210	245	235	293	300	6.4	3.3	4.4	0.33	1.80	0.99	13.6
EE113089/113170	274	267	375	397	6.4	6.4	-40.3	0.88	0.68	0.37	59.4
EE113091/113170	274	267	375	397	6.4	6.4	-40.3	0.88	0.68	0.37	59.4
T-544090/544118	244	240	282	287	3.5	3.3	-15.8	0.40	1.49	0.82	6.05
T-8573/8520	255	244	305	313	6.4	3.3	-7.8	0.41	1.48	0.81	12.5
T-96900/96140	260	249	318	334	7	3.3	-16.9	0.59	1.02	0.56	24.3
T-EE130902/131400	257	247	329	330	6.8	1.5	9.9	0.33	1.82	1.00	22.7
HM746646/HM746610	258	248	324	338.7	6.4	6.4	-6	0.47	1.27	0.70	22.7
T-M249732/M249710	256	251	335	343	3.5	3.3	6.9	0.33	1.80	0.99	23.9
EE430900/431575	271	253	360	364	10.5	3.3	2.8	0.44	1.36	0.75	46.0
☆T-HH949549/HH949510G2	297	280	416	456	6.4	6.4	-39.9	0.94	0.64	0.35	111
T-544091/544118	247	243	282	287	3.5	3.3	-15.8	0.40	1.49	0.82	5.81
T-M246942/M246910	258	249	313	322	6.4	3.3	4.7	0.33	1.80	0.99	16.9
T-M249734/M249710	263	254	335	343	6.4	3.3	6.9	0.33	1.80	0.99	23.4
LM446349/LM446310	252	246	294	301	3.5	3.3	-6.6	0.36	1.66	0.91	8.38
T-LM545849/LM545810	252	246	296	306	3.5	3.3	-8.4	0.40	1.51	0.83	9.38
T-8575/8520	259	248	305	313	6.4	3.3	-7.8	0.41	1.48	0.81	11.9
T-96925/96140	265	254	318	334	7	3.3	-16.9	0.59	1.02	0.56	22.5
T-M252330/M252310	271	261	356	364	6.4	3.3	6.2	0.33	1.80	0.99	29.3
T-H247549/H247510	269	259	346	362	6.4	6.4	28.1	0.33	1.80	0.99	45.5
T-M246949/M246910	262	253	313	322	6.4	3.3	4.7	0.33	1.80	0.99	16.2
T-M249736/M249710	267	258	335	343	6.4	3.3	6.9	0.33	1.80	0.99	22.6
		_30		0	٠		0.0				

Inch system sizes

d 241.300~266.700mm

		Boundary d	imensions		dynamic	Basic loa	d ratings dynamic	static
		mr	n		,	N	uynaniic	kgf
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
	327.025	52.388	52.388	36.512	475	950	48,500	97,000
	349.148	57.150	57.150	44.450	550	1,000	56,000	103,000
044 000	368.300	50.800	50.800	33.338	460	810	47,000	83,000
241.300	393.700	73.817	69.850	50.005	780	1,400	79,500	143,000
	444.500	101.600	100.012	76.200	1,390	2,120	142,000	216,000
244.475	381.000	79.375	76.200	57.150	755	1,440	77,000	147,000
	346.075	63.500	63.500	50.800	720	1,450	73,500	148,000
047.050	368.300	50.800	50.800	33.338	460	815	47,000	83,000
247.650	381.000	74.612	74.612	57.150	885	1,790	90,500	183,000
	406.400	115.888	117.475	93.662	1,650	3,000	168,000	305,000
249.250	381.000	79.375	76.200	57.150	755	1,440	77,000	147,000
	323.850	22.225	22.225	15.875	126	315	12,800	32,500
	358.775	71.438	71.438	53.975	815	1,640	83,000	168,000
254.000	365.125	58.738	58.738	42.862	615	1,190	62,500	122,000
254.000	393.700	73.817	69.850	50.005	780	1,400	79,500	143,000
	422.275	86.121	79.771	66.675	1,160	1,800	119,000	184,000
	533.400	133.350	120.650	77.788	1,680	2,610	171,000	266,000
257.175	342.900	57.150	57.150	44.450	580	1,270	59,000	130,000
257.175	342.900	57.150	57.150	44.450	580	1,270	59,000	130,000
	365.125	58.738	58.738	42.862	615	1,190	62,500	122,000
	400.050	69.850	67.470	46.038	710	1,230	72,500	126,000
260.350	419.100	85.725	84.138	61.912	925	1,610	94,000	165,000
	422.275	86.121	79.771	66.675	1,160	1,800	119,000	184,000
	488.950	120.650	120.650	92.075	1,760	2,970	180,000	305,000
263.525	325.438	28.575	28.575	25.400	211	520	21,600	53,000
203.325	355.600	57.150	57.150	44.450	625	1,330	64,000	136,000
	323.850	22.225	22.225	15.875	126	315	12,800	32,500
	325.438	28.575	28.575	25.400	211	520	21,600	53,000
266.700	355.600	57.150	57.150	44.450	625	1,340	54,000	136,000
	355.600	57.150	57.150	44.450	500	995	51,000	101,000
	393.700	73.817	69.850	50.005	780	1,400	79,500	143,000

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	Y_2

static

Bearing numbers		Abutme	nt and fillet mm	dimensio	ons		Load [®] center	Constant	A) load f	Mass kg	
					$r_{ m as}$	r_{1as}					
	$d_{ m a}$	$d_{ m b}$	$D_{\rm a}$	D_{b}	max	max	a	e	Y_2	$Y_{\rm o}$	(approx.)
T-8578/8520	264	253	305	313	6.4	3.3	-7.8	0.41	1.48	0.81	11.2
EE127095/127135	267	257	325	329	6.4	3.3	-3.2	0.35	1.70	0.93	15.9
EE170950/171450	269	260	340	337	6.4	3.3	-6.2	0.36	1.65	0.90	17.2
T-EE275095/275155	278	268	366	378	6.4	6.4	-2.5	0.40	1.49	0.82	34.3
☆T-EE923095/923175G2	277	268	403	407	6.4	4.8	19.3	0.34	1.78	0.98	68.0
EE126097/126150	275	266	343	358	6.4	4.8	-8	0.52	1.16	0.64	32.6
T-M348449/M348410	273	263	321	332	6.4	6.4	1.3	0.34	1.75	0.96	16.2
EE170975/171450	274	264	340	337	6.4	3.3	-6.2	0.36	1.65	0.90	16.5
T-M252337/M252310	280	271	356	364	6.4	3.3	6.2	0.33	1.80	0.99	27.3
HH249949/HH249910	284	275	366	383	6.4	6.4	28.9	0.33	1.80	0.99	55.6
EE126098/126150	279	269	343	358	6.4	4.8	-8	0.52	1.16	0.64	31.7
29875/29820	267	266	310	312	1.5	1.5	-21.1	0.35	1.73	0.95	3.92
T-M249749/M249710	274	270	335	343	3.5	3.3	-6.9	0.33	1.80	0.99	20.1
T-EE134100/134143	281	272	339	347	6.4	6.4	- 5	0.37	1.60	0.88	17.7
T-EE275100/275155	287	277	366	378	6.4	6.4	-2.5	0.40	1.49	0.82	32.1
T-HM252343/HM252310	287	281	392	400	6.8	3.3	9.3	0.33	1.80	0.99	47.1
HH953749/HH953710	328	306.3	455	496	6.4	6.4	-44.7	0.94	0.64	0.35	141
M349549/M349510	201	269	322	333	6.4	3.3	-2.5	0.25	1.73	0.05	12.9
M349549A/M349510	281 289	269	322	333	10.7	3.3	-2.5 -2.5	0.35 0.35	1.73	0.95 0.95	12.9
M0433437/M043310	200	200	OLL	000	10.7	0.0	2.0	0.00	1.70	0.00	12.0
T-EE134102/134143	286	276	339	347	6.4	6.4	- 5	0.37	1.60	0.88	16.8
EE221026/221575	296	280	366	372	9.7	6.4	-1.8	0.39	1.52	0.84	27.0
EE435102/435165	295	285	376	395	6.4	3.3	-20.7	0.61	0.99	0.54	44.4
T-HM252348/HM252310	292	285	392	400	6.8	3.3	9.3	0.33	1.80	0.99	45.7
EE295102/295193	299	290	444	451	6.4	6.4	28.7	0.31	1.92	1.06	90.3
T-38880/38820	275	275	312	315	1.5	1.5	-20.5	0.37	1.64	0.90	4.56
T-LM451345/LM451310	283	275 279	335	343	3.5	3.3	-20.5 -4.7	0.37	1.67	0.90	14.2
		_, _			3.0	0.0	•••	0.00		0.02	
29880/29820	277	275	310	312	1.5	1.5	-21.1	0.35	1.73	0.95	3.28
T-38885/38820	277	277	312	315	1.5	1.5	-20.5	0.37	1.64	0.90	4.35
T-LM451349/LM451310	285	281	335	343	3.5	3.3	-4.7	0.36	1.67	0.92	15.0
T-LM451349A/LM451310	299	281	335	343	10.5	3.3	-4.7	0.36	1.67	0.92	13.8
T-EE275105/275155	296	287	366	378	6.4	6.4	-2.5	0.40	1.49	0.82	29.7

Single Row Tapered Roller Bearings

Inch system sizes

d 266.700~304.800mm

		Douridary di	imensions		dynamic	Basic loa static	ad ratings dynamic	static
		mn	n		1	kN	·	kgf
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
266.700	444.500	120.650	117.475	88.900	1,570	3,050	160,000	310,000
269.875	381.000	74.612	74.612	57.150	885	1,790	90,500	183,000
273.050	393.700	73.817	69.850	50.005	780	1,400	79,500	143,000
276.225	352.425	36.512	34.925	23.812	295	605	30,000	61,500
279.400	374.650 469.900 488.950	47.625 95.250 120.650	47.625 93.662 120.650	34.925 69.850 92.075	470 1,180 1,760	1,010 2,170 2,970	48,000 121,000 180,000	103,000 222,000 305,000
279.982	380.898	65.088	65.088	49.212	660	1,550	67,500	159,000
280.000	406.400	69.850	67.673	53.975	760	1,550	77,500	158,000
280.192	406.400	69.850	67.673	53.975	760	1,550	77,500	158,000
285.750	358.775 380.898	33.338 65.088	31.750 65.088	22.225 49.212	263 660	540 1,550	26,900 67,500	55,000 159,000
288.925	406.400	77.788	77.788	60.325	1,010	2,080	103,000	212,000
292.100	374.650 469.900 558.800	47.625 95.250 136.525	47.625 93.662 136.525	34.925 69.850 98.425	470 1,180 1,950	1,010 2,170 3,800	48,000 121,000 199,000	103,000 222,000 385,000
298.450	444.500	63.500	61.912	39.688	630	1,150	64,000	117,000
%299.974	495.300	141.288	141.288	114.300	2,440	4,900	249,000	500,000
300.038	422.275	82.550	82.550	63.500	1,130	2,400	116,000	245,000
304.800	393.700 406.400 438.048 444.500 495.300 495.300	50.800 63.500 76.200 63.500 76.200 95.250	50.800 63.500 76.992 61.912 74.612 92.075	38.100 47.625 53.975 39.688 53.975 69.850	485 700 805 630 1,140 1,230	1,030 1,580 1,590 1,150 1,940 2,350	49,500 71,500 82,000 64,000 116,000 126,000	105,000 161,000 163,000 117,000 198,000 240,000

Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions $r_{\tiny m}$ and $r_{\tiny m}$ are larger than the maximum value. 2. Bearing numbers marked ""\(z_{\tiny m} " \) designate bearing with hollow rollers and pin type cages.

B-114

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	Y_2

static

Bearing numbers	_	Abutme	nt and fillet	dimensio			Load [®] center	Constant	Axial load factors		Mass kg
	$d_{ m a}$	$d_{ m b}$	D_{a}	$D_{ m b}$	$r_{ m as}$ max	$r_{ m 1as}$ max	a	e	Y_2	Y_{o}	(approx.)
H852849/H852810	315	297	390	422	6.4	0.6	0.3	0.58	1.04	0.57	73.3
T-M252349/M252310	296	287	356	364	6.4	3.3	6.2	0.33	1.80	0.99	25.4
T-EE275108/275155	301	291	366	378	6.4	6.4	-2.5	0.40	1.49	0.82	28.5
L853049/L853010	293	288	332	342	3.5	3.3	-34.8	0.54	1.12	0.62	8.40
L555233/L555210	300	296	355	362	3.5	3.3	-17	0.40	1.49	0.82	13.0
EE722110/722185	321	314	430	433	9.7	3.3	6.3	0.38	1.58	0.87	65.3
EE295110/295193	303	304	444	451	1.3	6.4	28.7	0.31	1.92	1.06	84.9
T-LM654642/LM654610	302	298	356	368	3.5	3.3	-11.5	0.43	1.39	0.76	19.0
EE128112/128160	308	307	378	384	6.4	3.3	-4.4	0.39	1.56	0.86	29.1
EE128111/128160	309	307	378	384	6.8	3.3	-4.4	0.39	1.56	0.86	29.1
545112/545141A	302	298	340	345	3.5	3.3	-33.9	0.49	1.22	0.67	7.54
T-LM654649/LM654610	306	302	356	368	3.5	3.3	-11.5	0.43	1.39	0.76	18.0
M255449/M255410A	316	310	379	388	6.4	3.3	4.1	0.34	1.78	0.98	27.8
L555249/L555210	309	305	355	362	3.5	3.3	-17	0.40	1.49	0.82	11.5
EE722115/722185	330	324	430	433	9.7	3.3	6.3	0.38	1.58	0.87	62.0
EE790114/790221	335	329	501	513	6.4	6.4	23.8	0.39	1.52	0.84	135
EE291175/291750	332	320	416	415	8	1.5	-9.1	0.38	1.58	0.87	33.1
☆HH258248/HH258210G2	342	332	448	467	6.4	6.4	35.4	0.33	1.80	0.99	96.0
☆T-HM256849/HM256810G2	328	319	394	403	6.4	3.3	5.7	0.34	1.78	0.98	31.9
L357049/L357010	329	319	374	380	6.4	3.3	-12.5	0.36	1.67	0.92	13.8
T-LM757049/LM757010	331	322	380	393	6.4	3.3	-16.3	0.44	1.36	0.75	20.1
T-EE129120X/129172	334	328	406	411	6.4	4.8	-7.3	0.42	1.44	0.79	34.8
EE291201/291750	337	324	416	415	8	1.5	-9.1	0.38	1.58	0.87	31.9
EE941205/941950A	339	329	459	463	6.4	3.3	-10	0.40	1.49	0.82	55.8
EE724120/724195	359	330	450	459	16	6.4	0.9	0.40	1.49	0.82	69.7

Inch system sizes

d 304.800~381.000mm

		Boundary d	imensions		dynamic	Basic loa	ad ratings dynamic	static
		mr	n		,	N	•	kgf
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
304.800	558.800	136.525	136.525	98.425	1,950	3,800	199,000	385,000
317.500	444.500 447.675 622.300	63.500 85.725 147.638	61.912 85.725 131.762	39.688 68.262 82.550	630 1,160 2,080	1,150 2,390 3,550	64,000 118,000 212,000	117,000 244,000 365,000
330.200	415.925 415.925 482.600 482.600	47.625 47.625 60.325 85.725	47.625 47.625 55.562 80.167	34.925 34.925 38.100 60.325	445 445 700 955	1,060 1,060 1,430 1,970	45,000 45,000 71,500 97,500	108,000 108,000 146,000 201,000
333.375	469.900	90.488	90.488	71.438	1,350	2,760	138,000	282,000
342.900	450.850 457.098 533.400	66.675 68.262 76.200	66.675 63.500 76.200	52.388 47.625 50.800	785 705 1,070	1,780 1,640 1,730	80,000 72,000 109,000	182,000 167,000 176,000
346.075	482.600 488.950 488.950	60.325 95.249 95.250	55.562 95.250 95.250	38.100 74.612 74.612	700 1,420 1,480	1,430 3,000 3,200	71,500 145,000 151,000	146,000 305,000 325,000
349.250	501.650	90.488	84.138	69.850	1,190	2,280	122,000	233,000
355.600	444.500 469.900 482.600 501.650 501.650	60.325 60.325 60.325 74.612 90.488	60.325 55.562 55.562 66.675 84.138	47.625 38.100 38.100 50.800 69.850	655 700 700 900 1,190	1,740 1,430 1,430 1,830 2,280	67,000 71,500 71,500 92,000 122,000	177,000 146,000 146,000 187,000 233,000
361.950	406.400	23.812	23.812	17.462	173	470	17,600	48,000
368.249	523.875	101.600	101.600	79.375	1,520	3,250	155,000	335,000
371.475	501.650	74.612	66.675	50.800	900	1,830	92,000	187,000
374.650	522.288	85.725	84.138	61.912	1,060	2,270	108,000	232,000
381.000	479.425 508.000	49.212 63.500	47.625 58.738	34.925 38.100	540 540	1,270 1,130	55,500 55,000	130,000 116,000

$\frac{F_{ m a}}{F_{ m r}}$	≤ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$ $X \mid Y$					
X	Y	X	Y				
1	0	0.4	Y_2				

static

Bearing numbers		Abutme	nt and fillet	dimensio	ons		Load [®] center	Constant		cial actors	Mass kg
				_	$r_{\rm as}$	r_{1as}					
	$d_{ m a}$	$d_{ m b}$	D_{a}	D_{b}	max	max	a	e	Y_2	Y_{o}	(approx.)
EE790120/790221	335	335	501	513	1.3	6.4	23.8	0.39	1.52	0.84	131
EE291250/291750	346	334	416	415	8	1.5	-9.1	0.38	1.58	0.87	29.5
T-HM259048/HM259010	341	337	418	428	3.5	3.3	4.8	0.33	1.79	0.99	37.3
☆H961649/H961610G2	410	373	531	582	14.3	12.7	-60.7	0.95	0.63	0.35	203
T-L860048/L860010	367	345	394	402	12.7	3.3	-35.4	0.50	1.20	0.66	13.3
T-L860049/L860010	349	345	394	402	3.5	3.3	-35.4	0.50	1.20	0.66	13.3
T-EE161300/161900	367	356	451	455	7	6.4	-33.6	0.50	1.20	0.66	35.9
EE526130/526190	360	351	449	454	6.4	3.3	-2.8	0.39	1.53	0.84	51.0
HM261049/HM261010A	363	357	439	449	6.4	3.3	5.4	0.33	1.79	0.99	43.4
LM361649/LM361610	373	360	425	435	8.5	3.5	-8.7	0.35	1.71	0.94	25.0
LM961548/LM961511	367	363	423	443	3.3	3.3	-53.6	0.71	0.84	0.46	30.0
EE971354/972100	373	367	501	501	4.8	3.3	-2.5	0.33	1.80	0.99	55.6
T-EE161363/161900	379	368	451	455	7	6.4	-33.6	0.50	1.20	0.66	32.8
T-HM262748/HM262710	377	367	456	467	6.4	3.3	6.4	0.33	1.79	0.99	52.5
☆T-HM262749/HM262710G2	377	367	456	467	6.4	3.3	6.4	0.33	1.79	0.99	49.7
EE333137/333197	382	372	470	478	6.4	3.3	-1.9	0.36	1.65	0.90	56.4
T-L163149/L163110	374	370	422	430	3.5	3.3	-7.2	0.31	1.95	1.07	18.8
T-EE161400/161850	386	375	445	455	7	6.4	-33.6	0.50	1.20	0.66	27.3
T-EE161400/161900	386	375	451	455	7	6.4	-33.6	0.50	1.20	0.66	30.8
T-EE231400/231975	388	379	472	481	6.4	3.3	-19.8	0.44	1.36	0.75	44.9
EE333140/333197	387	377	470	483	6.4	3.3	-1.9	0.36	1.65	0.90	50.8
LL562749/LL562710	372	371	396	401	2.3	1.5	-38.3	0.40	1.49	0.82	3.56
☆HM265049/HM265010G2	400	394	487	499	6.4	6.4	8	0.33	1.80	0.99	61.7
T-EE231462/231975	400	390	472	481	6.4	3.3	-19.8	0.44	1.36	0.75	40.7
LM565943/LM565910	407	397	493	500	6.4	3.3	-7.6	0.39	1.56	0.86	54.5
L865547/L865512 EE192150/192200	407 410	395 400	456 478	465 482	6.4 6.4	3.3 3.3	-42.4 -40.6	0.49 0.53	1.21 1.13	0.67 0.62	20.0 34.4

Inch system sizes

d 381.000~457.200mm

		Boundary d	imensions		dynamic	Basic loa	d ratings dynamic	static
		mr	n			:N	*	kgf
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
	522,288	85.725	84.138	61.912	1,060	2,270	108,000	232,000
	523.875	85.725	84.138	61.912	1,060	2,270	108,000	232,000
381.000	546.100	104.775	104.775	82.550	1,720	3,700	176,000	375,000
361.000	546.100	104.775	104.775	82.550	1,840	4,000	188,000	410,000
	590.550	114.300	114.300	88.900	2,140	4,700	218,000	480,000
	441.325	28.575	28.575	20.638	246	655	25,100	66,500
384.175	546.100	104.775	104.775	82.550	1,720	3,700	176,000	375,000
	546.100	104.775	104.775	82.550	1,840	4,000	188,000	410,000
385.762	514.350	82.550	82.550	63.500	1,230	2,780	126,000	283,000
387.248	546.100	87.312	87.312	68.262	1,390	3,150	142,000	325,000
396.875	546.100	76.200	61.120	55.562	775	1,640	79,500	167,000
403.225	460.375	28.575	28.575	20.638	206	600	21,000	61,500
	508.000	61.912	61.912	47.625	660	1,690	67,500	172,000
	546.100	76.200	61.120	55.562	775	1,640	79,500	167,000
406.400	549.275	85.725	84.138	61.912	1,320	2,920	135,000	298,000
	590.550	107.950	107.950	80.962	1,640	3,400	167,000	345,000
	609.600	92.075	84.138	60.325	1,260	2,400	129,000	245,000
409.575	546.100	87.312	87.312	68.262	1,350	3,050	137,000	310,000
415.925	590.550	114.300	114.300	88.900	2,140	4,700	218,000	480,000
	533.400	46.038	46.038	34.925	555	1,310	56,500	134,000
	552.450	44.450	44.450	31.750	615	1,340	62,500	137,000
431.800	571.500	74.612	74.612	52.388	1,090	2,470	112,000	252,000
	603.250	76.200	73.025	50.800	975	2,050	99,500	209,000
	673.100	88.900	87.833	60.325	1,490	2,670	152,000	272,000
447.675	552.450	44.450	44.450	31.750	615	1,340	62,500	137,000
447.073	635.000	120.650	120.650	95.250	2,420	5,550	247,000	565,000
457.200	552.450	44.450	44.450	31.750	615	1,340	62,500	137,000
1011200	573.088	74.612	74.612	57.150	1,000	2,680	103,000	274,000

Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions r_{m} and r_{m} are larger than the maximum value. 2. Bearing numbers marked "

""

"designate bearing with hollow rollers and pin type cages.

B-118

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤ e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	Y_2

static

Bearing numbers		Abutmer	nt and fillet	dimensior	ıs		Load [®] center	Constant		cial actors	Mass kg
					$r_{\rm as}$	r_{1as}					
	$d_{ m a}$	$d_{ m b}$	D_{a}	$D_{ m b}$	max	max	a	e	Y_2	$Y_{ m o}$	(approx.)
LM565949/LM565910	411	402	493	500	6.4	3.3	-7.6	0.39	1.56	0.86	52.5
LM565949/LM565912	411	402	493	500	6.4	3.3	-7.6	0.39	1.56	0.86	53.2
T-HM266446/HM266410	415	405	507	520	6.4	6.4	7.1	0.33	1.80	0.99	76.0
☆T-HM266447/HM266410G2	415	405	507	520	6.4	6.4	7.1	0.33	1.80	0.99	70.1
☆T-M268730/M268710G2	425	415	549	561	6.4	6.4	9.4	0.33	1.80	0.99	102
LL365348/LL365310	399	393	427	433	3.5	3.3	-30	0.34	1.77	0.97	5.89
T-HM266448/HM266410	417	407	507	519	6.4	6.4	7.1	0.33	1.80	0.99	69.0
☆T-HM266449/HM266410G2	417	407	507	519	6.4	6.4	7.1	0.33	1.80	0.99	69.0
A 1 11111200 110/11111200 110/10	117	107	007	010	0.1	0.1	,	0.00	1.00	0.00	00.0
LM665949/LM665910	415	406	482	495	6.4	3.3	-16.3	0.42	1.43	0.79	41.8
☆M667935/M667911G2	424	414	510	528	6.4	6.4	-16.2	0.42	1.43	0.79	56.6
EE234156/234215	428	418	504	516	6.4	6.4	-35.8	0.47	1.27	0.70	51.5
LL566848/LL566810	418	414	445	452	3.5	3.3	-41.5	0.40	1.49	0.82	6.17
L467549/L467510	426	423	483	492	3.3	3.3	-19.6	0.37	1.63	0.90	25.1
EE234160/234215	435	425	504	516	6.4	6.4	-35.8	0.47	1.27	0.70	48.7
LM567949/LM567910	437	427	519	525	6.4	3.3	-14.7	0.41	1.47	0.81	56.2
EE833160X/833232	448	435	549	561	9.7	6.4	8.5	0.33	1.84	1.01	86.6
EE911600/912400	443	439	567	570	6.8	6.4	-11.5	0.38	1.57	0.86	91.3
M667948/M667911	440	431	510	528	6.4	6.4	-16.2	0.42	1.43	0.79	49.8
☆T-M268749/M268710 G 2	451	441	549	561	6.4	6.4	9.4	0.33	1.80	0.99	87.8
T-80385/80325	450	446	510	510	3.3	3.3	-23.4	0.31	1.94	1.07	19.7
80170/80217	456	452	531	536	3.3	3.3	-27.5	0.32	1.88	1.04	23.1
T-LM869448/LM869410	457	453	537	549	3.3	3.3	-50.1	0.55	1.10	0.60	45.7
EE241701/242375	446	457	558	564	6.4	6.4	-46.5	0.53	1.14	0.63	64.9
EE571703/572650	472	466	630	632.6	6.4	3.3	-21.4	0.40	1.49	0.82	114
80176/80217	467	464	531	536	3.3	3.3	-27.5	0.32	1.88	1.04	20.4
☆M270749/M270710AG2	484	474	591	606	6.4	6.4	8.5	0.33	1.80	0.99	107
80180/80217	474	471	531	536	3.3	3.3	-27.5	0.32	1.88	1.04	18.7
L570649/L570610	474 485	47 i 475	543	558	3.3 6.4	3.3 6.4	-27.5 -26.2	0.32	1.66	0.82	38.9
L3/0043/L3/0010	400	4/5	543	556	0.4	0.4	-20.2	0.40	1.49	0.8∠	30.9

Single Row Tapered Roller Bearings

NTN

Inch system sizes

d 457.200~584.200mm

		Boundary d	imensions		dynamic	Basic loa	nd ratings dynamic	static
		mr	n		•	.N		gf
d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
	596.900	76.200	73.025	53.975	975	2,350	99,500	239,000
457.200	603.250 615.950	85.725 85.725	84.138 85.725	60.325 66.675	1,140 1,350	2,680 3,350	116,000 138,000	274,000 340,000
1011200	730.148	120.650	114.300	82.550	2,540	4,350	259,000	445,000
476.250	565.150	41.275	41.275	31.750	405	1,200	41,500	122,000
479.425	679.450	128.588	128.588	101.600	2,850	6,500	290,000	660,000
400.053	615.950	85.725	85.725	66.675	1,350	3,350	138,000	340,000
482.600	634.873	80.962	80.962	63.500	1,170	3,100	119,000	315,000
400.050	634.873	84.138	84.138	61.912	1,460	3,450	149,000	355,000
488.950	660.400	93.662	94.458	69.850	1,830	4,000	186,000	410,000
489.026	634.873	80.962	80.962	63.500	1,170	3,100	119,000	315,000
498.475	634.873	80.962	80.962	63.500	1,170	3,100	119,000	315,000
501.650	711.200	136.525	136.525	106.362	2,940	6,850	300,000	695,000
508.000	838.200	146.050	139.700	104.775	3,150	6,400	325,000	655,000
533.400	635.000	50.800	50.800	38.100	695	1,680	71,000	171,000
536.575	761.873	146.050	146.050	114.300	3,450	7,600	350,000	775,000
539.750	635.000	50.800	50.800	38.100	695	1,680	71,000	171,000
549.275	692.150	80.962	80.962	61.912	1,350	3,500	138,000	355,000
	736.600	76.200	76.200	50.800	1,200	2,690	122,000	275,000
558.800	736.600	88.108	88.108	63.500	1,460	3,350	148,000	345,000
	736.600	104.775	104.775	80.962	1,850	4,400	189,000	450,000
571.500	812.800	155.575	155.575	120.650	4,050	9,150	415,000	935,000
584.200	685.800	49.212	49.212	34.925	705	1,930	72,000	197,000

Remarks: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions r_m and r_m are larger than the maximum value.

2. Bearing numbers marked "

"

"designate bearing with hollow rollers and pin type cages.

$\frac{F_{ m a}}{F_{ m r}}$	≤ e	$\frac{F_{ m a}}{F_{ m r}}$	>e
X	Y	X	Y
1	0	0.4	Y_2

static

Bearing numbers		Abutme	nt and fillet	dimensio	ns		Load [®] center	Constant		cial actors	Mass
			mm				mm				kg
	J	j.	D	D	$r_{\rm as}$	r_{1as}			7.7	7.7	,
	$d_{ m a}$	$d_{ m b}$	$D_{\rm a}$	$D_{ m b}$	max	max	a	e	Y_2	Y_{o}	(approx.)
EE244180/244235	494	478	567	570	9.7	3.3	-27.1	0.40	1.48	0.82	53.9
LM770949/LM770910	489	479	570	579	6.4	3.3	-29.7	0.46	1.32	0.72	63.8
☆LM272235/LM272210G2	493	483	585	597	6.4	6.4	-11.3	0.33	1.80	0.99	63.8
EE671801/672873	507	491	675	681	9.7	6.4	-6.6	0.39	1.53	0.84	188
LL771948/LL771911	495	491	543	549	3.3	3.3	-58.4	0.47	1.28	0.70	16.7
	100	101	0.10	0.10	0.0	0.0	00.1	0.17	1.20	0.70	10.7
☆T-M272749/M272710G2	516	507	633	648	6.4	6.4	8.9	0.33	1.80	0.99	130
☆LM272249/LM272210G2	513	501	585	597	6.4	6.4	-11.3	0.33	1.80	0.99	54.9
EE243190/243250	516	510	603	609	6.4	3.3	-18.5	0.34	1.76	0.97	60.2
LM772748/LM772710A	522	510	600	613	6.4	3.3	-40.4	0.47	1.27	0.70	60.3
☆T-EE640192/640260G2	522	513	624	630	6.4	6.4	-4.9	0.31	1.95	1.07	85.2
EE243192/243250	522	516	603	609	6.4	3.3	-18.5	0.34	1.76	0.97	58.0
EE243196/243250	528	522	603	609	6.4	3.3	-18.5	0.34	1.76	0.97	54.7
☆M274149/M274110G2	540	534	663	678	6.4	6.4	11.8	0.33	1.80	0.99	152
EE426200/426330	564	552	759	768	9.7	9.7	-26.1	0.48	1.25	0.69	296
LL575343/LL575310	558	549	612	621	6.4	6.4	-50.3	0.41	1.48	0.81	26.4
☆M276449/M276410G2	576	570	711	726	6.4	6.4	10.5	0.33	1.80	0.99	187
LL575349/LL575310	564	555	612	621	6.4	6.4	-50.3	0.41	1.48	0.81	24.9
L476549/L476510	579	570	657	666	6.4	6.4	-32.2	0.38	1.59	0.88	68.2
EE542220/542290	594	585	696	705	6.4	6.4	-66.6	0.51	1.17	0.65	76.7
EE843220/843290	591	585	699	708	6.4	6.4	-21.8	0.34	1.76	0.97	88.7
LM377449/LM377410	594	585	696	708	6.4	6.4	-15.6	0.35	1.73	0.95	106
☆M278749/M278710AG2	615	609	756	774	6.4	6.4	12.7	0.33	1.80	0.99	227
T-LL778149/LL778110	603	600	663	669	3.5	3.3	-64.5	0.44	1.37	0.75	27.8

Single Row Tapered Roller Bearings

Inch system sizes

d 596.900∼1,270.000mm

d D T B C C, C= C, C= C, C= C, C= C, C=			Boundary di	mensions		Basic load ratings					
d D T B C C, C, C, C, 596.900 685.800 31.750 31.750 25.400 335 895 34,000 91,000 609.396 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 787.400 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 69.850 2,190 5,050 223,000 515,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000			mn	n		dynamic k	static :N	dynamic I	static kgf		
596.900 685.800 31.750 31.750 25.400 335 895 34,000 91,000 609.396 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 787.400 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 60.325 1,670 3,900 170,000 400,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450											
609.396 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 812.800 93.662 93.662 69.850 2,190 5,050 223,000 515,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450	d	D	T	В	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
609.600 762.000 95.250 92.075 71.438 1,770 4,850 180,000 495,000 787.400 93.662 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 60.325 1,670 3,900 170,000 400,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 <th>596.900</th> <th>685.800</th> <th>31.750</th> <th>31.750</th> <th>25.400</th> <th>335</th> <th>895</th> <th>34,000</th> <th>91,000</th>	596.900	685.800	31.750	31.750	25.400	335	895	34,000	91,000		
609.600 787.400 93.662 93.662 69.850 2,190 5,050 223,000 515,000 812.800 82.550 82.550 60.325 1,670 3,900 170,000 400,000 635.000 736.600 57.150 53.975 41.275 695 1,980 71,000 202,000 660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450<	609.396	762.000	95.250	92.075	71.438	1,770	4,850	180,000	495,000		
660.400 812.800 95.250 95.250 73.025 1,950 5,150 199,000 530,000 673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 <	609.600	787.400	93.662	93.662	69.850	2,190	5,050	223,000	515,000		
673.100 793.750 66.675 61.912 49.212 985 2,700 101,000 275,000 685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862	635.000	736.600	57.150	53.975	41.275	695	1,980	71,000	202,000		
685.800 876.300 93.662 92.075 69.850 2,060 5,450 210,000 555,000 711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862	660.400	812.800	95.250	95.250	73.025	1,950	5,150	199,000	530,000		
711.200 914.400 85.725 82.550 60.325 1,810 4,450 185,000 455,000 723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,320.800 95.250 88.900 69.850<	673.100	793.750	66.675	61.912	49.212	985	2,700	101,000	275,000		
723.900 914.400 84.138 80.962 60.325 1,810 4,450 185,000 455,000 749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	685.800	876.300	93.662	92.075	69.850	2,060	5,450	210,000	555,000		
749.300 990.600 159.500 160.337 123.000 4,300 11,300 440,000 1,160,000 774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	711.200	914.400	85.725	82.550	60.325	1,810	4,450	185,000	455,000		
774.700 965.200 93.662 80.962 66.675 1,530 3,450 156,000 350,000 838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	723.900	914.400	84.138	80.962	60.325	1,810	4,450	185,000	455,000		
838.200 1,041.400 93.662 88.900 66.675 2,120 5,200 216,000 530,000 977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	749.300	990.600	159.500	160.337	123.000	4,300	11,300	440,000	1,160,000		
977.900 1,130.300 66.675 63.500 47.625 1,190 3,600 122,000 365,000 1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	774.700	965.200	93.662	80.962	66.675	1,530	3,450	156,000	350,000		
1,063.625 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,066.800 1,219.200 65.088 65.088 42.862 1,410 4,300 144,000 435,000 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	838.200	1,041.400	93.662	88.900	66.675	2,120	5,200	216,000	530,000		
1,066.800 1,219.200	977.900	1,130.300	66.675	63.500	47.625	1,190	3,600	122,000	365,000		
1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	1,063.625	1,219.200	65.088	65.088	42.862	1,410	4,300	144,000	435,000		
	1,066.800	,				,	,		· · · · · · · · · · · · · · · · · · ·		
1,092.200 1,320.800 95.250 88.900 69.850 2,330 6,200 237,000 635,000	1,092.200	1,320.800	95.250	88.900	69.850	2,330	6,200	237,000	635,000		
1,270.000 1,435.100 69.850 65.088 47.625 1,590 5,050 162,000 515,000	1,270.000	1,435.100	69.850	65.088	47.625	1,590	5,050	162,000	515,000		

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$					
X	Y	X	Y				
1	0	0.4	Y_2				

static

Bearing numbers		Abutme	ent and fille mm	et dimensio	ns		Load [®] center	Constant		cial actors	Mass kg
	,			5	$r_{\rm as}$	r_{1as}			7.7	7.7	
	$d_{ m a}$	$d_{ m b}$	$D_{\rm a}$	$D_{ m b}$	max	max	a	e	Y_2	$Y_{\rm o}$	(approx.)
680235/680270	615	615	663	669	3.5	3.3	-94.8	0.53	1.14	0.63	15.8
L879946/L879910	642	633	720	741	6.4	6.4	-58.2	0.49	1.23	0.68	95.7
L879947/L879910 ☆EE649240/649310G2	642 642	633 633	720 747	741 764	6.4 6.4	6.4 6.4	-58.2 -23.8	0.49 0.33	1.23 1.80	0.68 0.99	95.6 112
EE743240/743320	645	636	768	768	6.4	6.4	-31.8	0.33	1.83	1.01	104
80780/80720	654	651	714	717	3.3	3.3	-69.2	0.44	1.37	0.75	38.3
L281148/L281110A	693	681	777	789	6.4	6.4	-27.7	0.33	1.80	0.99	93.5
LL481448/LL481411	702	690	765	771	6.4	6.4	-53.8	0.36	1.67	0.92	51.3
☆EE655270/655345G2	723	714	831	843	6.4	6.4	-56.6	0.42	1.43	0.79	134
☆EE755280/755360G2	750	741	873	876	6.4	6.4	-52.4	0.38	1.58	0.87	136
☆EE755285/755360G2	756	750	873	876	5.5	6.4	- 54	0.38	1.58	0.87	126
☆LM283649/LM283610G2	792	786	936	952	6.4	6.4	-4.4	0.33	1.80	0.99	309
EE752305/752380	810	798	921	924	6.4	3.3	-66.6	0.40	1.49	0.82	126
☆EE763330/763410G2	876	870	996	1,000	6.4	6.4	-85.3	0.44	1.36	0.75	172
LL687949/LL687910	1,010	1,005	1,095	1,100	6.4	6.4	-118.2	0.44	1.37	0.75	103
LL788345/LL788310	1,090	1,085	1,185	1,190	3.3	3.3	-142.8	0.48	1.26	0.69	422
LL788349/LL788310 EE776420/776520	1,090 1,115	1,090 1,115	1,185 1,260	1,190 1,289	3.3 6.4	3.3 6.4	-142.8 -175.6	0.48 0.57	1.26 1.05	0.69 0.58	422 796
EE776430/776520	1,135	1,130	1,260	1,289	6.4	6.4	-175.6	0.57	1.05	0.58	794
LL889049/LL889010	1,305	1,300	1,395	1,405	6.4	6.4	-220.2	0.58	1.04	0.57	666

Double Row Tapered Roller Bearings (Outside Direction)

NTN

Metric system sizes

d 100∼120mm

		Bounda	ary dimens	ions		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			kN		kg		
d	D	B_1	C	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	165	52	46	2.5	0.8	204	305	20,800	31,500	CRI-2052
	180	82	66	3	1	440	675	45,000	68,500	CRI-2059
	180	83	67	3	1	440	675	45,000	68,500	430220XU
	180	107	87	3	1	565	925	58,000	94,500	432220XU
100	180	140	115	2.5	1	585	1,090	59,500	111,000	CRI-2010
	190	124.5	102	3	1	760	1,220	77,500	124,000	CRI-2072
	215	112	87	4	1	700	995	71,500	102,000	430320XU
	215	112	87	3	1	590	800	60,000	81,500	430320X
	215	162	127	4	1	980	1,540	100,000	157,000	432320U
	190	88	70	3	1	490	760	50,000	77,500	430221XU
	190	115	95	3	1	650	1,080	66,000	111,000	432221XU
105	190	117	96	3	1	650	1,080	66,000	111,000	CRI-2152
105	225	116	91	4	1	750	1,060	76,000	109,000	430321XU
	225	116	91	3	1	625	845	63,500	86,000	430321X
	225	170	133	3	1	955	1,470	97,500	150,000	432321
	160	57.5	47.5	1.5	0.5	218	450	22,200	46,000	CRI-2258
	180	56	50	2.5	0.6	228	340	23,300	35,000	413122
	180	70	56	2.5	0.6	298	485	30,500	49,500	423122
	180	125	100	2.5	0.6	515	980	52,500	99,500	CRI-2219
110	200	92	74	3	1	555	865	56,500	88,500	430222XU
110	200	121	101	3	1	720	1,210	73,500	124,000	432222XU
	240	118	93	4	1	825	1,180	84,000	120,000	430322U
	240	118	93	3	1	685	925	69,500	94,500	430322
	240	181	142	4	1	1,210	1,940	123,000	197,000	432322U
	240	181	142	3	1	1,070	1,660	109,000	169,000	432322
	180	46	41	2.5	0.6	193	298	19,700	30,500	413024
	180	58	46	2.5	0.6	230	375	23,500	38,000	423024
	200	62	55	2.5	0.6	263	435	26,800	44,500	413124
	200	78	62	2.5	0.6	370	610	38,000	62,500	423124
	200	78	62	2.5	0.6	370	610	38,000	62,500	CRI-2460
120	200	100	84	2.5	1	530	1,100	54,000	113,000	CRI-2416
	215	97	78	3	1	595	940	60,500	96,000	430224XU
	215	132	109	3	1	790	1,360	80,500	139,000	432224XU
	260	128	101	4	1	960	1,390	97,500	142,000	430324XU
	260	128	101	3	1	800	1,100	81,500	112,000	430324X
	260 Minimum allo	188	145	4	1	1,400	2,270	143,000	231,000	432324U

lacktriangled Minimum allowable dimension for chamfer dimension r or r_1 .

$\frac{F_{ m a}}{F_{ m r}}$	≤ e	$\frac{F_i}{F_i}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

For values of e, Y_2 and Y_0 see the table below.

A	butment ar	nd fillet din	nensions		Load center mm	Constant	Axia	al load fac	tors	Mass kg
d	D		0.0	24	111111					ĸy
$d_{ m a}$	$D_{ m b}$	S _b	$r_{ m as}$	$r_{ m las}$	a	0	Y_1	Y_2	Y_{o}	()
min	min	min	max	max	a	e	<i>I</i> 1	I 2	I_0	(approx.)
110	150	0	0	0.0	F0 F	0.00	0.00	0.00	1.00	0.04
112	153	3	2	0.8	53.5	0.33	2.03	3.02	1.98	3.94
114	169	8	2.5	1	80.5	0.42	1.61	2.39	1.57	8.08
114	168	8	2.5	1	81.5	0.42	1.61	2.39	1.57	8.11
114	171	10	2.5	1	92 07 F	0.42	1.61	2.39	1.57	10.7
112	168.5	12.5	2	1	97.5	0.33	2.06	3.06	2.01	13.8
114	179.5	11.5	2.5	1	95.5	0.33	2.02	3.00	1.97	14.3
118	200	12.5	3	1	92	0.35	1.96	2.91	1.91	18.4
118	200	12.5	3	1	93.5	0.35	1.95	2.90	1.91	16.5
118	200	17.5	3	1	113	0.35	1.96	2.91	1.91	26.5
119	178	9	2.5	1	86	0.42	1.61	2.39	1.57	9.73
119	180	10	2.5	1	97.5	0.42	1.61	2.39	1.57	13.1
119	179.5	10.5	2.5	1	99.5	0.42	1.61	2.39	1.57	12.9
123	209	12.5	3	1	96.5	0.35	1.96	2.91	1.91	21
123	209	12.5	3	1	96.5	0.35	1.95	2.90	1.91	19.6
119	208	18.5	2.5	1	117.5	0.35	1.96	2.90	1.91	30.2
118.5	146	5	1.5	0.5	60.5	0.36	1.90	2.83	1.86	3.41
122	169	3	2	0.6	66.5	0.40	1.68	2.50	1.64	5.2
122	166	7	2	0.6	66.5	0.33	2.03	3.02	1.98	6.38
122	168	12.5	2	0.6	87	0.26	2.55	3.80	2.50	11.2
124	188	9	2.5	1	90	0.42	1.61	2.39	1.57	11.4
124	190	10	2.5	1	102	0.42	1.61	2.39	1.57	15.5
128	222	12.5	3	1	100	0.35	1.96	2.91	1.91	24.5
128	222	12.5	3	1	97.5	0.35	1.95	2.90	1.91	22.1
128	222	19.5	3	1	127	0.35	1.96	2.91	1.91	38.2
128	222	19.5	3	1	124	0.35	1.95	2.90	1.91	35.6
132	171	2.5	2	0.6	59	0.37	1.80	2.69	1.76	3.85
132	170	6	2	0.6	66	0.37	1.80	2.69	1.76	4.41
132	184	3.5	2	0.6	76.5	0.43	1.57	2.34	1.53	7.24
132	188	8	2	0.6	76.5	0.37	1.80	2.69	1.76	8.96
132	187	8	2	0.6	81.5	0.37	1.80	2.69	1.76	8.78
132	190.5	8	2	1	87.5	0.34	1.96	2.92	1.92	12.6
134	203	9.5	2.5	1	98	0.44	1.55	2.31	1.52	13.6
134	204	11.5	2.5	1	112	0.44	1.55	2.31	1.52	18.9
138	239	13.5	3	1	107	0.35	1.96	2.91	1.91	30.5
138	239	13.5	3	1	106	0.35	1.95	2.90	1.91	29.4
138	239	21.5	3	1	130	0.35	1.96	2.91	1.91	47

Double Row Tapered Roller Bearings (Outside Direction)

NTN

Metric system sizes

d 125∼150mm

		Boun	dary dimens	ions		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			kN		kg		
d	D	B_1	C	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
125	210	110	88	3	1	570	1,080	58,000	110,000	CRI-2555
	200	52	46	2.5	0.6	224	365	22,900	37,500	413026
	200	65	52	2.5	0.6	294	490	29,900	50,000	423026
	210	64	57	2.5	0.6	315	485	32,000	49,500	413126
	210	80	64	2.5	0.6	410	675	42,000	69,000	423126 CDL 0610
	210	109	90	2.5	0.6	530	1,100	54,000	113,000	CRI-2619
	214	115 95	98 75	2.5	0.6 1	540 560	1,040	55,000	106,000	CRI-2651
130	230 230	95 98	75 78.5	3	1	560	840 1,010	57,000	86,000	CRI-2614
	230	100	76.5 80.5	4 3	1	640 560	840	65,500 57,000	103,000 86,000	430226XU CRI-2655
	230	145	115	3	1	895	1,460	91,000	149,000	CRI-2616
	230	145	117.5	4	1	905	1,630	92,500	166,000	432226XU
	230	149	120	3	1	905	1,630	92,500	166,000	CRI-2654
	280	137	107.5	5	1.5	1,110	1,660	113,000	169,000	430326XU
	280	205	163.5	4	1.5	1,530	2,470	156,000	252,000	432326
	200	200	100.0		1.0	1,000	2,170	100,000	202,000	102020
	210	53	47	2.5	0.6	262	415	26,700	42,500	413028
	210	66	53	2.5	0.6	300	535	30,500	54,500	423028
	210	106	94	2.5	0.6	580	1,220	59,000	124,000	CRI-2818
	225	68	61	3	1	370	580	37,500	59,500	413128
	225	84	68	3	1	390	650	40,000	66,000	423128
	225	85	68	3	1	390	650	40,000	66,000	CRI-2872
	230	120	94	2.5	0.8	680	1,280	69,500	131,000	CRI-2855
	230	140	110	3	1	750	1,470	76,500	150,000	CRI-2825
140	240	132	106	3	1.5	755	1,480	77,000	150,000	CRI-2869
	250	102	82.5	3	1	640	970	65,500	99,000	430228X
	250	102	82.5	4	1	720	1,140	73,500	117,000	430228XU
	250	153	125.5	4	1	1,050	1,840	107,000	188,000	432228XU
	270	120	95	4	3	835	1,240	85,000	127,000	CRI-2874
	300	102	77	2.5	1	645	1,010	66,000	103,000	CRI-2834
	300	145	115.5	4	1.5	1,100	1,560	112,000	160,000	430328X
	300	145	115.5	5	1.5	1,260	1,900	129,000	194,000	430328XU
	300	223	177.5	4	1.5	1,690	2,740	173,000	279,000	432328
	225	56	50	3	1	274	430	27,900	44,000	413030
150	225	70	56	3	1	355	630	36,000	64,500	423030
150	250	80	71	3	1	485	805	49,500	82,000	413130
	250	100	80	3	1	600	1,040	61,500	106,000	423130
•			nsion for cham		-		,	- ,	/	

$\frac{F_{ m a}}{F_{ m r}}$	≤ e	$\frac{F_i}{F_i}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

For values of e, Y_2 and Y_0 see the table below.

A	butment ar	nd fillet din	nensions		Load center	Constant	Axia	al load fac	tors	Mass
		mm			mm					kg
$d_{ m a}$	$D_{ m b}$	$S_{ m b}$	$r_{ m as}$	$r_{ m las}$			7.7	7.7	7.7	
min	min	min	max	max	a	e	Y_1	Y_2	$Y_{ m o}$	(approx.)
139	197.5	11	2.5	1	101	0.42	1.62	2.42	1.59	14.5
142	186	3	2	0.6	66	0.37	1.80	2.69	1.76	5.55
142	189	6.5	2	0.6	71.5	0.37	1.80	2.69	1.76	6.62
142	196	3.5	2	0.6	69	0.33	2.03	3.02	1.98	7.83
142	198	8	2	0.6	79.5	0.37	1.80	2.69	1.76	9.77
142	191.5	9.5	2	0.6	89	0.34	1.96	2.90	1.90	14.2
142	198	8.5	2	0.6	111	0.46	1.47	2.20	1.40	15.5
144	215.5	10	2.5	1	96	0.43	1.57	2.30	1.50	15
148	218	9.5	3	1	102	0.44	1.55	2.31	1.52	15.9
144	215.5	9.5	2.5	1	101	0.43	1.57	2.30	1.50	15.8
144	220	15	2.5	1	117.5	0.40	1.68	2.50	1.60	23
148	219	13.5	3	1	124	0.44	1.55	2.31	1.52	24.1
144	220	14.5	2.5	1	128	0.44	1.55	2.30	1.50	24.6
152	255	14.5	4	1.5	116	0.35	1.96	2.91	1.91	37.9
148	264	20.5	3	1.5	143	0.35	1.95	2.90	1.90	56.6
152	199	3	2	0.6	68.5	0.37	1.80	2.69	1.76	5.88
152	197	6.5	2	0.6	75	0.37	1.84	2.74	1.80	7.11
152	201.5	6	2	0.6	93	0.35	1.95	2.90	1.91	12.5
154	210	3.5	2.5	1	73.5	0.33	2.03	3.02	1.98	9.18
154	209	8	2.5	1	88	0.37	1.80	2.69	1.76	11.8
154	211	8.5	2.5	1	88	0.37	1.80	2.69	1.76	11.8
152	214	13	2	8.0	108	0.40	1.68	2.50	1.64	15.5
154	216	15	2.5	1	106	0.32	2.12	3.15	2.07	20.5
154	226.5	13	2.5	1.5	124.5	0.44	1.53	2.27	1.49	22.1
158	237	9.5	3	1	106	0.43	1.57	2.34	1.53	18
158	237	9.5	3	1	107	0.44	1.55	2.31	1.52	19.9
158	238	13.5	3	1	131	0.44	1.55	2.31	1.52	30.1
158	249	12.5	3	2.5	104	0.33	2.05	3.05	2.00	27.6
152	264	12.5	2	1	129	0.55	1.24	1.84	1.21	32.5
162	272	14.5	4	1.5	123	0.35	1.95	2.90	1.91	44.4
162	273	14.5	4	1.5	123	0.35	1.96	2.91	1.91	46.6
158	282	22.5	3	1.5	156	0.35	1.95	2.90	1.91	69
164	213	3	2.5	1	73.5	0.37	1.80	2.69	1.76	6.66
164	212	7	2.5	1	79.5	0.37	1.80	2.69	1.76	8.76
164	231	4.5	2.5	1	82.5	0.33	2.03	3.02	1.98	14.3
164	234	10	2.5	1	96.5	0.37	1.80	2.69	1.76	18

Double Row Tapered Roller Bearings (Outside Direction)

NTN

Metric system sizes

d 150∼180mm

		Bour	ndary dimer	nsions		dynamic	Basic los	ad ratings dynamic	static	Bearing numbers
			mm			kN	o.uo	kį		
d	D	B_1	C	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
15	250 250 260 270 270 320 320	115 137 150 109 164 154	95 112 115 87 130 120 120	2.5 2.5 4 4 4 5	1 1 1 1 1 1.5	660 865 945 770 1,200 1,410 1,170	1,230 1,590 1,820 1,210 2,140 2,140 1,750	67,500 88,500 96,000 78,500 122,000 144,000 119,000	126,000 162,000 185,000 123,000 218,000 218,000 178,000	CRI-3015 CRI-3061 CRI-3063 430230U 432230XU 430330U 430330
16	240 240 240 270 270 270 270 270 280 290 290 340 340	60 75 110 86 108 110 140 150 150 115 178 160	53 60 90 76 86 86 120 125 91 144 126	3 3 2.5 3 3 2.5 2.5 2.5 4 4 4 5 4	1 1 0.6 1 1 1 1 1 1 1 1 1.5	330 430 660 595 675 785 960 960 1,090 900 1,530 1,570 1,290	535 765 1,230 965 1,180 1,360 1,910 1,860 1,940 1,440 2,840 2,390 1,950	34,000 44,000 67,500 60,500 69,000 80,000 98,000 112,000 92,000 156,000 160,000	54,500 78,000 126,000 98,000 120,000 138,000 195,000 190,000 147,000 290,000 244,000 199,000	413032 423032 CRI-3256 413132E1 423132E1 CRI-3210 CRI-3225 CRI-3219 CRI-3258 430232U 43232U 430332XU 430332XU
16	290 350	150 146	125 108	5 7.5	1 1.5	1,030 1,220	1,820 1,980	105,000 124,000	186,000 202,000	CRI-3309 CRI-3305
170	250 260 260 280 280 280 280 280 310 310	85 67 84 88 110 134 150 125	65 60 67 78 88 106 130 97	2.5 3 3 3 3 2.5 5	1 1 1 1 1 1 1 1.5	425 365 490 550 725 855 980 1,050 1,710	815 620 865 900 1,270 1,790 1,880 1,690 3,200	43,500 37,000 50,000 56,000 74,000 87,500 100,000 107,000 174,000	83,000 63,500 88,000 92,000 130,000 182,000 192,000 173,000 325,000	CRI-3420 413034 423034 413134E1 423134E1 CRI-3452 CRI-3410 430234U 432234XU
18	280 280 280 280 300	74 93 134.5 96	66 74 108 85	3 3 2.5 4	1 1 1 1.5	425 580 885 705	735 1,050 1,800 1,190	43,000 59,500 90,000 72,000	75,000 107,000 183,000 121,000	413036E1 423036E1 CRI-3623 413136E1

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

For values of e, Y_2 and Y_0 see the table below.

А	butment ar		nensions	.	Load center	center				
7	D	mm			mm					kg
$d_{ m a}$ min	$D_{ m b}$ min	$S_{ m b}$ min	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
162	234	10	2	1	107.5	0.37	1.80	2.69	1.76	21.2
162	238	12.5	2	1	119	0.41	1.66	2.47	1.62	27.7
168	239.5	17.5	3	1	125	0.41	1.66	2.47	1.62	31.4
168	255	11	3	1	114	0.44	1.55	2.31	1.52	24.4
168	254	17	3	1	139	0.44	1.55	2.31	1.52	37.3
172	292	17	4	1.5	132	0.35	1.96	2.91	1.91	55.4
172	292	17	4	1.5	135	0.37	1.80	2.69	1.76	52.8
174	227	3.5	2.5	1	79	0.37	1.80	2.69	1.76	8.29
174	227	7.5	2.5	1	85.5	0.37	1.80	2.69	1.76	10.7
172	231.5	10	2	0.6	107	0.37	1.80	2.69	1.76	15.6
174	254	5	2.5	1	98.5	0.40	1.68	2.50	1.64	18.2
174	250	11	2.5	1	106	0.37	1.80	2.69	1.76	22.8
172	250.5	12	2	1	95	0.31	2.21	3.29	2.16	22.9
172	251.5	10	2	1	113.5	0.32	2.12	3.15	2.07	31.8
172	252	15	2	1	119.5	0.32	2.12	3.15	2.07	32.8
178	264.5	12.5	3	1	119.5	0.32	2.12	3.15	2.07	34.8
178	272	12	3	1	122	0.44	1.55	2.31	1.52	31.9
178	275	17	3	1	150	0.44	1.55	2.31	1.52	46.9
182	310	17	4	1.5	138	0.35	1.96	2.91	1.91	65.5
182	311	17	4	1.5	141	0.37	1.80	2.69	1.76	62.4
187	274	12.5	4	1	127.5	0.32	2.12	3.15	2.07	37.5
201	308.5	19	6	1.5	124.5	0.34	2.00	2.98	1.96	61.2
182	237.5	10	2	1	103	0.44	1.54	2.29	1.50	12.6
184	242	3.5	2.5	1	86.5	0.37	1.80	2.69	1.76	11.6
184	244	8.5	2.5	1	93.5	0.37	1.80	2.69	1.76	14.3
184	260	5	2.5	1	104	0.40	1.68	2.50	1.64	19.5
184	260	11	2.5	1	109	0.37	1.80	2.69	1.76	24.7
184	250.5	14	2.5	1	132.5	0.44	1.52	2.26	1.49	32.8
182	265	10	2	1	125.5	0.33	2.03	3.02	1.98	34.3
192	290.5	14	4	1.5	132	0.44	1.55	2.31	1.52	38
192	293	20	4	1.5	160	0.44	1.55	2.31	1.52	58.2
194	260	4	2.5	1	94	0.37	1.80	2.69	1.76	15.9
194	262	9.5	2.5	1	102	0.37	1.80	2.69	1.76	19
192	266	13.5	2	1	122	0.37	1.80	2.69	1.76	27
198	280	5.5	3	1.5	111	0.40	1.68	2.50	1.64	24.6

Double Row Tapered Roller Bearings (Outside Direction)

NTN

Metric system sizes

d 180∼220mm

		Bound	dary dimens	sions		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			kľ	N	kg	ıf	
d	D	B_1	C	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	300	120	96	4	1.5	885	1,530	90,500	156,000	423136E1
	300	164	134	3	1	1,150	2,270	118,000	231,000	CRI-3625
180	320	127	99	5	1.5	1,080	1,780	110,000	182,000	430236U
	320	192	152	5	1.5	1,760	3,350	180,000	345,000	432236U
	340	180	140	4	1.5	1,390	2,590	142,000	264,000	CRI-3618
	290	75	67	3	1	430	740	44,000	75,500	413038E1
	290	94	75	3	1	615	1,110	63,000	113,000	423038E1
	320	104	92	4	1.5	780	1,280	79,500	131,000	413138
190	320	130	104	4	1.5	985	1,710	100,000	174,000	423138
	340	133	105	5	1.5	1,230	2,010	125,000	205,000	430238U
	340	204	160	5	1.5	1,970	3,700	201,000	380,000	432238U
	340	204	160	4	1.5	1,710	3,350	175,000	340,000	432238
	310	82	73	3	1	530	940	54,000	96,000	413040E1
	310	103	82	3	1	720	1,320	73,000	135,000	423040E1
	310	151	123	2.5	1	1,020	2,080	105,000	212,000	CRI-4020
	310	170	140	4	1	1,270	2,690	130,000	274,000	CRI-4027
	320	146	110	4	1.5	910	1,950	92,500	199,000	CRI-4036
200	330	180	140	4	1.5	1,330	2,610	136,000	266,000	CRI-4030
200	340	112	100	4	1.5	965	1,660	98,500	169,000	413140
	340	140	112	4	1.5	1,090	1,910	111,000	195,000	423140
	340	184	150	3	1.5	1,530	3,000	156,000	305,000	CRI-4019
	360	142	110	5	1.5	1,350	2,210	137,000	226,000	430240U
	360	218	174	5	1.5	2,260	4,250	230,000	435,000	432240U
	360	218	174	4	1.5	1,980	3,950	201,000	400,000	432240
206	283	102	83	3	0.6	540	1,320	55,000	134,000	CRI-4107
210	355	116	103	3	1.5	880	1,500	89,500	153,000	CRI-4202
	300	110	88	2.5	1	660	1,550	67,500	158,000	CRI-4410
	340	90	80	4	1.5	595	1,060	61,000	108,000	413044E1
	340	113	90	4	1.5	880	1,650	89,500	168,000	423044E1
220	340	158	130	4	1	1,340	2,750	137,000	281,000	CRI-4409
	340	164	130	3	1	1,360	2,810	139,000	287,000	CRI-4411
	370	120	107	5	1.5	1,110	1,920	113,000	196,000	413144
	370	150	120	5	1.5	1,220	2,260	125,000	230,000	423144
	370	150	120	5	1.5	1,440	2,550	147,000	260,000	CRI-4416

$\frac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

For values of e, Y_2 and Y_0 see the table below.

А	sbutment ar	nd fillet din	nensions		Load center					Mass
		mm			mm					kg
$d_{ m a}$	$D_{ m b}$	$S_{ m b}$	$r_{ m as}$	$r_{ m las}$						
min	min	min	max	max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
			_							
198	279	12	3	1.5	119	0.37	1.80	2.69	1.76	31.4
194	281	15	2.5	1	125.5	0.26	2.55	3.80	2.50	43.7
202	297	14	4	1.5	139	0.45	1.50	2.23	1.47	39.4
202	305	20	4	1.5	165	0.45	1.50	2.23	1.47	60.6
198	302	20	3	1.5	142.5	0.32	2.12	3.15	2.07	68.5
204	271	4	2.5	1	96	0.37	1.80	2.69	1.76	16.2
204	272	9.5	2.5	1	104	0.37	1.80	2.69	1.76	19.6
208	300	6	3	1.5	119	0.40	1.68	2.50	1.64	30.8
208	299	13	3	1.5	126	0.37	1.80	2.69	1.76	38.6
212	316	14	4	1.5	141	0.44	1.55	2.31	1.52	45.4
212	323	22	4	1.5	174	0.44	1.55	2.31	1.52	73.3
212	323	22	4	1.5	185	0.49	1.38	2.06	1.35	75.8
214	288	4.5	2.5	1	101	0.37	1.80	2.69	1.76	20.6
214	291	10.5	2.5	1	112	0.37	1.80	2.69	1.76	25.7
212	296	14	2	1	141	0.37	1.80	2.69	1.76	38.2
218	296	15	3	1	138	0.33	2.03	3.02	1.98	42.4
218	299	18	3	1.5	160.5	0.52	1.31	1.95	1.28	40.1
218	314	20	3	1.5	161.5	0.42	1.60	2.39	1.57	55.5
218	320	6	3	1.5	125	0.40	1.68	2.50	1.64	38.6
218	316	14	3	1.5	134	0.37	1.80	2.69	1.76	47.5
214	324	17	2.5	1.5	149	0.32	2.12	3.15	2.07	67
222	336	16	4	1.5	154	0.44	1.55	2.31	1.52	62.8
222	340	22	4	1.5	180	0.41	1.66	2.47	1.62	95.2
222	340	22	4	1.5	193	0.49	1.38	2.06	1.35	90.7
220	275	9.5	2.5	0.6	134	0.52	1.31	1.95	1.28	16.9
224	331	6.5	2.5	1.5	130.5	0.40	1.68	2.50	1.64	44
232	289	11	2	1	121.5	0.39	1.74	2.59	1.70	21.1
238	318	5	3	1.5	112	0.37	1.80	2.69	1.76	26.7
238	319	11.5	3	1.5	125	0.37	1.80	2.69	1.76	33.3
238	324	14	3	1	138.5	0.33	2.03	3.02	1.98	46.7
234	323	17	2.5	1	145	0.35	1.95	2.90	1.91	48.5
242	346	6.5	4	1.5	135	0.40	1.68	2.50	1.64	47.8
242	341	15	4	1.5	154	0.40	1.68	2.50	1.64	59.6
242	346.5	15	4	1.5	142	0.35	1.95	2.90	1.91	59.0

Metric system sizes

d 220∼300mm

		Bound	dary dimens	sions		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			kN	l	kg	ıf	
d	D	B_1	C	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	400	158	122	4	1.5	1,400	2,440	143,000	249,000	430244
220	420	130	100	5	2.5	1,160	1,820	119,000	185,000	CRI-4407
	380	175	115	4	2	1,540	2,890	157,000	295,000	CRI-4612
230	380 400	200 188	160 136	4 8	2 1.5	1,740 1,620	3,700 3,250	178,000 165,000	380,000 330,000	CRI-4606 CRI-4605
235	330	115	85	5	1.5	745	1,700	76,000	173,000	CRI-4701
200							<u> </u>	<u> </u>	<u> </u>	
	320 360	110 92	90 82	2.5 4	1 1.5	795 655	1,890 1,160	81,000 66,500	193,000 118,000	CRI-4813 413048E1
	360	115	92	4	1.5	910	1,770	92,500	181,000	423048E1
	360	164	130	3	1	1,420	3,050	145,000	310,000	CRI-4806
240	360	170	142	3	1	1,360	2,810	139,000	287,000	CRI-4805
240	400	128	114	5	1.5	1,230	2,130	126,000	217,000	413148
	400	160	128	5	1.5	1,400	2,600	142,000	265,000	423148
	400	209	168	4	1.5	2,140	4,350	218,000	445,000	CRI-4807
	440	165	127	4	1.5	1,680	2,960	171,000	300,000	430248
	440	266	212	4	1.5	2,920	5,500	298,000	560,000	432248
250	380	98	87	3	1.5	750	1,360	76,500	139,000	CRI-5004
	400	104	92	5	1.5	840	1,540	85,500	157,000	413052
	400	130	104	5	1.5	1,150	2,190	117,000	223,000	423052
260	400	185	146	4	1.5	1,720	3,650	175,000	370,000	CRI-5218
200	440	144	128	5	1.5	1,500	2,630	152,000	268,000	413152
	440	172	145	4	2	1,960	3,750	200,000	380,000	CRI-5224
	440	180	144	5	1.5	1,960	3,750	200,000	380,000	423152
	400	150	120	5	1.5	1,380	3,150	141,000	325,000	CRI-5615
	420	106	94	5	1.5	890	1,630	91,000	166,000	413056
280	420	133	106	5	1.5	1,200	2,340	123,000	238,000	423056
	460	146	130	6	2	1,640	2,900	167,000	296,000	413156
	460	183	146	6	2	1,940	3,650	198,000	375,000	423156
290	400	120	90	4	1.5	1,200	2,600	122,000	265,000	CRI-5808
290	430	150	135	4	1.5	1,350	3,200	138,000	325,000	CRI-5810
300	460	118	105	5	1.5	1,070	1,990	109,000	203,000	413060

1 Minimum allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F_{i}}{F_{i}}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

A	\butment ar	nd fillet din	nensions	.	Load center mm	Constant	Axia	al load fac	tors	Mass kg
$d_{ m a}$	$D_{ m b}$	$S_{\rm b}$	r	v.	111111					кg
min	<i>D</i> _b min	Min	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
111111	111111	111111	max	mux	CO	U	11	12	10	(арргох.)
238	368	18	3	1.5	178.5	0.49	1.38	2.06	1.40	77.5
242	378	15	4	2	148	0.49	1.68	2.50	1.64	77.3
242	370	13	7		140	0.40	1.00	2.50	1.04	7 0.1
248	359	30	3	2	154.5	0.40	1.68	2.50	1.64	67
248	355	20	3	2	164	0.33	2.03	3.02	1.98	84.4
266	367	26	6	1.5	181	0.44	1.54	2.29	1.50	88.5

257	312.5	15	4	1.5	129.5	0.41	1.66	2.47	1.62	27.3
252	314	10	2	1	139.5	0.46	1.47	2.19	1.44	21.6
258	339	5	3	1.5	117	0.37	1.80	2.69	1.76	30.2
258	339	11.5	3	1.5	131	0.37	1.80	2.69	1.76	36.5
254	356	17	2.5	1	145	0.32	2.12	3.15	2.07	53
254	347	14	2.5	1	161	0.37	1.80	2.69	1.76	53.8
262	375	7	4	1.5	144	0.40	1.68	2.50	1.64	58.9
262	373	16	4	1.5	164	0.40	1.68	2.50	1.64	71.7
258	376	20.5	3	1.5	167.5	0.32	2.12	3.15	2.07	96
258	406	19	3	1.5	189	0.49	1.38	2.06	1.35	100.4
258	421.5	27	3	1.5	226	0.43	1.57	2.34	1.53	164.8
264	357	5.5	2.5	1.5	123.5	0.37	1.80	2.69	1.80	35.3
282	372	6	4	1.5	131	0.37	1.80	2.69	1.76	41.5
282	374	13	4	1.5	143	0.37	1.80	2.69	1.76	53
278	376	19.5	3	1.5	154.5	0.29	2.32	3.45	2.26	79
282	412	8	4	1.5	161	0.40	1.68	2.50	1.64	82.2
278	416.5	13.5	3	1.5	175	0.40	1.68	2.50	1.64	99.0
282	413	18	4	1.5	176	0.40	1.68	2.50	1.64	101
302	383	15	4	1.5	161	0.39	1.70	2.59	1.70	53.8
302	394	6	4	1.5	136	0.37	1.80	2.69	1.76	47.2
302	397	13.5	4	1.5	148	0.37	1.80	2.69	1.76	57.3
308	435	8	5	2	168	0.40	1.68	2.50	1.64	87.4
308	433	18.5	5	2	177	0.40	1.68	2.50	1.64	109
308	386	15	3	1.5	154	0.42	1.62	2.42	1.59	40
308	407	7.5	3	1.5	162	0.39	1.74	2.59	1.70	72.7
322	428	6.5	4	1.5	151	0.37	1.80	2.69	1.76	65.6

Metric system sizes

d 300∼400mm

		Bound	ary dimens	ions		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			kN		kg		
d	D	B_1	C	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	460	148	118	5	1.5	1,610	3,150	165,000	320,000	423060
	500	160	142	6	2	2,010	3,600	205,000	370,000	413160
300	500	200	160	6	2	2,100	4,050	214,000	415,000	423160
	540	208	158	5	2.5	2,440	4,450	249,000	450,000	CRI-6010
	480	121	108	5	1.5	1,190	2,250	121,000	229,000	413064
	480	151	121	5	1.5	1,580	3,100	162,000	315,000	423064
320	540	176	157	6	2	2,240	4,100	228,000	415,000	413164
	540	220	176	6	2	2,500	4,900	255,000	500,000	423164
	550	240	180	5	2.5	3,300	6,500	340,000	665,000	☆CRI-6410
330	500	190	150	6	1.5	2,480	5,550	252,000	565,000	CRI-6603
	460	160	128	3	1	1,630	4,250	167,000	430,000	CRI-6808
	500	249	203	5	1.5	2,690	6,200	274,000	630,000	CRI-6812
340	520	133	118	6	2	1,480	2,870	150,000	293,000	413068
340	520	165	133	6	2	1,890	3,750	193,000	380,000	423068
	580	190	169	6	2	2,690	4,900	274,000	500,000	413168
	580	238	190	6	2	3,350	6,500	345,000	660,000	423168
	540	134	120	6	2	1,470	2,810	150,000	287,000	413072
360	540	169	134	6	2	2,050	4,200	209,000	430,000	423072
300	600	192	171	6	2	2,720	5,050	277,000	515,000	413172
	600	240	192	6	2	3,200	6,500	325,000	660,000	423172
	508	139.7	88.9	6.4	1.5	920	2,270	94,000	232,000	CRI-7619
	560	135	122	6	2	1,690	3,350	172,000	340,000	413076
380	560	171	135	6	2	2,080	4,350	213,000	445,000	423076
300	620	194	173	6	2	2,840	5,250	289,000	535,000	413176
	620	241	170	5	2	3,700	7,400	380,000	755,000	CRI-7614
	620	243	194	6	2	3,350	6,700	340,000	685,000	423176
390	600	185	130	4	2	2,680	5,550	273,000	565,000	☆CRI-7803
	540	140	100	6.4	1.5	1,620	3,800	165,000	390,000	CRI-8005
	600	148	132	6	2	1,860	3,700	190,000	375,000	413080
400	600	185	148	6	2	2,530	5,450	258,000	555,000	423080
	650	200	178	6	3	3,000	5,800	305,000	590,000	413180
	650	250	200	6	3	3,750	7,850	385,000	800,000	423180

● Minimum allowable dimension for chamfer dimension r or r_i .

Remarks: 1. Bearing numbers marked "☆" designate bearing with hollow rollers and pin type cages.

B-134

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F_s}{F_s}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

А	butment an	d fillet din	nensions	•	Load center	Constant	Axia	al load fac	tors	Mass
		mm			mm					kg
$d_{ m a}$	$D_{ m b}$	$S_{ m b}$	$r_{ m as}$	$r_{ m las}$						
min	min	min	max	max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
322	434	15	4	1.5	163	0.37	1.80	2.69	1.76	80.2
328	471	9	5	2	182	0.40	1.68	2.50	1.64	115
328	467	20	5	2	202	0.40	1.68	2.50	1.64	144
322	498	25	4	2	238	0.49	1.38	2.06	1.35	184
342	449	6.5	4	1.5	157	0.37	1.80	2.69	1.76	70.9
342	455	15	4	1.5	170	0.37	1.80	2.69	1.76	85.4
348	505	9.5	5	2	197	0.40	1.68	2.50	1.64	150
348	504.5	22	5	2	217	0.40	1.68	2.50	1.64	186
342	514	30	4	2	233	0.40	1.68	2.50	1.64	223
358	477	20	5	1.5	195	0.39	1.74	2.59	1.70	117
354	441	16	2.5	1	161.5	0.32	2.12	3.15	2.07	70
362	481	23	4	1.5	218.5	0.33	2.03	3.02	1.98	154
368	488	7.5	5	2	170	0.37	1.80	2.69	1.76	89.2
368	489	16	5	2	184	0.37	1.80	2.69	1.76	113
368	548	10.5	5	2	213	0.40	1.68	2.50	1.64	188
368	542	24	5	2	237	0.40	1.68	2.50	1.64	235
200	F07	7	-	0	176	0.07	1.00	0.60	1.76	00.0
388	507		5	2 2	176	0.37	1.80	2.69	1.76	98.2
388	509	17.5	5	2	192	0.37	1.80	2.69	1.76	120
388	561 562	10.5 24	5 5	2	219 240	0.40 0.40	1.68	2.50	1.64	199
388	563	24	<u> </u>		240	0.40	1.68	2.50	1.64	248
408	483	25.5	5	1.5	221	0.53	1.27	1.89	1.24	69.5
408	528	6.5	5	2	183	0.37	1.80	2.69	1.76	95.9
408	529	18	5	2	196	0.37	1.80	2.69	1.76	126
408	583	10.5	5	2	225	0.40	1.68	2.50	1.64	210
402	582	35.5	4	2	263	0.46	1.47	2.19	1.44	252
408	578	24.5	5	2	249	0.40	1.68	2.50	1.64	262
400	504	07.5	0	0	010.5	0.40	4.70	0.50	1.00	475
408	564	27.5	3	2	216.5	0.40	1.70	2.50	1.66	175
428	519.5	20	5	1.5	216	0.48	1.41	2.09	1.37	80.6
428	564	8	5	2	194	0.37	1.80	2.69	1.76	105
428	564	18.5	5	2	210	0.37	1.80	2.69	1.76	163
428	610	11	5	2.5	232	0.40	1.68	2.50	1.64	236
428	610	25	5	2.5	256	0.40	1.68	2.50	1.64	294

NTN

Metric system sizes

d 420∼560mm

		Bound	lary dimens	sions		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			kl	N		gf	
d	D	B_1	C	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
420	620 620 700 700 700	150 188 224 274 280	134 150 200 200 224	6 6 6 6	2 2 3 2.5 3	2,110 2,650 3,700 4,850 4,800	4,250 5,900 7,200 9,850 9,700	215,000 270,000 375,000 495,000 490,000	435,000 600,000 735,000 1,000,000 990,000	413084 423084 413184 ☆CRI-8403 423184
440	650 650 720 720	157 196 226 283	140 157 201 226	6 6 6	3 3 3 3	2,470 2,600 4,000 5,000	5,150 5,450 7,800 10,300	252,000 266,000 410,000 510,000	525,000 560,000 795,000 1,050,000	413088 423088 413188 423188
460	680 680 760 760	163 204 240 300	145 163 214 240	6 6 7.5 7.5	3 3 4 4	2,600 3,100 4,550 4,900	5,350 6,750 9,150 10,300	265,000 315,000 465,000 500,000	550,000 685,000 930,000 1,050,000	413092 423092 413192 423192
480	700 700 790 790	165 206 248 310	147 165 221 248	6 6 7.5 7.5	3 3 4 4	2,490 3,050 4,800 5,300	5,000 6,700 9,600 11,100	254,000 310,000 490,000 540,000	510,000 685,000 975,000 1,130,000	413096 423096 413196 423196
500	670 720 720 830 830	180 167 209 264 330	130 149 167 235 264	5 6 6 7.5 7.5	2 3 3 4 4	2,400 2,610 3,050 5,200 6,400	6,100 5,400 6,900 10,500 14,000	245,000 266,000 315,000 530,000 650,000	625,000 550,000 700,000 1,070,000 1,420,000	CRI-10004 4130/500 4230/500 4131/500 ☆4231/500G2
530	780 780 870 870	185 231 272 340	163 185 239 272	6 6 7.5 7.5	3 3 4 4	2,910 4,050 6,000 7,750	5,900 9,050 12,200 16,700	297,000 415,000 615,000 790,000	600,000 920,000 1,240,000 1,710,000	4130/530 4230/530 ☆4131/530G2 ☆4231/530AG2
560	735 740 820 820 920 920	225 190 195 244 280 350	180 140 173 195 246 280	6.4 6.4 6 6 7.5 7.5	1.5 1.5 3 3 4	3,150 2,360 3,600 4,750 5,900 7,600	8,800 6,250 7,850 11,000 12,100 17,400	325,000 241,000 370,000 485,000 600,000 775,000	895,000 640,000 800,000 1,120,000 1,230,000 1,780,000	CRI-11206 CRI-11211 ☆CRI-11214 ☆CRI-11213 4131/560 ☆4231/560G2

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_s}{F_s}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

A	Abutment ar	nd fillet din	nensions	5	Load center	Constant	Axia	al load fac	tors	Mass
		mm			mm					kg
$d_{ m a}$	$D_{ m b}$.	$S_{ m b}$.	$r_{\rm as}$	$r_{ m las}$			V	V	W	, ,
min	min	min	max	max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
448	586	8	5	2	200	0.37	1.80	2.69	1.76	135
448	583	19	5	2	220	0.37	1.80	2.69	1.76	172
448	655	12	5	2.5	258	0.40	1.68	2.50	1.64	317
448	649	37	5	2	245	0.32	2.12	3.15	2.07	387
448	659	28	5	2.5	287	0.40	1.68	2.50	1.64	394
468	618	8.5	5	2.5	208	0.37	1.80	2.69	1.76	160
468	614	19.5	5	2.5	229	0.37	1.80	2.69	1.76	198
468	675	12.5	5	2.5	263	0.40	1.68	2.50	1.64	330
468	678	28.5	5	2.5	288	0.40	1.68	2.50	1.64	412
488	646	9	5	2.5	217	0.37	1.80	2.69	1.76	179
488	644	20.5	5	2.5	239	0.37	1.80	2.69	1.76	225
496	714	13	6	3	276	0.40	1.68	2.50	1.64	395
496	712	30	6	3	305	0.40	1.68	2.50	1.64	493
508	665	9	5	2.5	223	0.37	1.80	2.69	1.76	189
508	664	20.5	5	2.5	246	0.37	1.80	2.69	1.76	236
516	743	13.5	6	3	281	0.40	1.68	2.50	1.64	442
516	738	31	6	3	329	0.40	1.68	2.50	1.64	548
522	637	25	4	2	242	0.40	1.68	2.50	1.64	175
528	686	9	5	2.5	230	0.37	1.80	2.69	1.76	202
528	683	21	5	2.5	250	0.37	1.80	2.69	1.76	247
536	780	14.5	6	3	296	0.40	1.68	2.50	1.64	528
536	773	33	6	3	331	0.40	1.68	2.50	1.64	678
EEO	740	11	E	0.5	250	0.07	1.00	0.60	1.76	065
558 550	740 720 5	11	5	2.5	250	0.37	1.80	2.69	1.76	265
558 566	738.5	23 16 5	5	2.5 3	276 303	0.37	1.80	2.69	1.76	331
566	820 822.5	16.5 34	6 6	3	303	0.38	1.77 1.74	2.64 2.59	1.73 1.70	620 774
566	022.3	34	0	3	340	0.39	1.74	2.59	1.70	774
588	709	22.5	5	1.5	257	0.35	1.95	2.90	1.91	232
588	705.5	25	5	1.5	231	0.34	1.98	2.94	1.93	198
588	777	11	5	2.5	277	0.39	1.74	2.59	1.70	340
588	774	24.5	5	2.5	272	0.33	2.03	3.02	1.98	415
596	865	17	6	3	326	0.40	1.68	2.50	1.64	1,310
596	865	35	6	3	362	0.40	1.68	2.50	1.64	894

NTN

Metric system sizes

d 570∼1,115mm

d 570	~1,115mı	m								
		Bound	mm	sions		dynamic k	Basic Io static N	pad ratings dynamic k	static gf	Bearing numbers
d	D	B_1	C	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
570	815	345	265	6	3	6,300	16,600	640,000	1,690,000	CRI-11401
590	780	255	178	5	2.5	3,900	10,500	400,000	1,070,000	CRI-11801
600	870 980 980	200 300 388	176 264 300	6 7.5 7.5	3 4 4	3,900 7,400 8,600	8,550 15,400 18,400	400,000 755,000 875,000	870,000 1,570,000 1,870,000	4130/600 ☆4131/600G2 ☆4231/600G2
670	830 880 1,090 1,090	180 185 336 392	145 130 295 336	4 4 7.5 7.5	1.5 2 4 4	3,050 3,500 9,250 10,500	9,150 9,100 19,700 24,800	310,000 360,000 945,000 1,070,000	935,000 930,000 2,010,000 2,530,000	☆CRI-13402 ☆CRI-13401 ☆4131/670G2 ☆4231/670G2
710	1,030 1,030 1,030	236 236 295	208 208 236	7.5 7.5 7.5	4 4 4	5,900 5,750 6,900	13,900 14,000 16,100	600,000 590,000 700,000	1,420,000 1,430,000 1,640,000	☆4130/710G2 ☆CRI-14207 ☆CRI-14209
800	1,150	350	256	7.5	4	9,350	24,200	955,000	2,470,000	☆CRI-16001
1,040	1,290	350	270	6	2.5	8,850	30,000	900,000	3,050,000	☆CRI-20802
1,115	1,460	300	220	5	2.5	8,200	24,000	835,000	2,450,000	☆CRI-22303

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F_s}{F_s}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

	Abutment an	d fillet din	nensions	;	Load center	Constant	Axia	al load fac	tors	Mass
		mm			mm					kg
$d_{ m a}$	$D_{ m b}$	$S_{ m b}$	$r_{ m as}$	$r_{ m las}$						
min	min	min	max	max	a	e	Y_1	Y_2	Y_{o}	(approx.)
598	781	40	5	2.5	318	0.35	1.95	2.90	1.91	512
612	754	38.5	4	2	288	0.39	1.74	2.59	1.70	291
628	828	12	5	2.5	277	0.37	1.80	2.69	1.76	348
636	925	18	6	3	350	0.40	1.68	2.50	1.64	858
636	923	44	6	3	380	0.38	1.77	2.64	1.73	1,050
688 688	809 845.5	17.5 27.5	3 3	1.5 2	283 317	0.40 0.45	1.68 1.51	2.50 2.25	1.64 1.48	201 277
706	1,033	20.5	6	3	397	0.40	1.68	2.50	1.64	1,180
706	1,021	28	6	3	397	0.37	1.80	2.69	1.76	1,410
746 746	974 974	14 14	6 6	3 3	327 324	0.37 0.36	1.80 1.87	2.69 2.79	1.76 1.83	640 654
746	982	29.5	6	3	362	0.39	1.73	2.58	1.69	810
836	1,092.5	47	6	3	400	0.37	1.80	2.69	1.76	1,119
1,068	1,260	40	5	2	472.3	0.40	1.68	2.50	1.64	975
1,137	1,396.5	40	4	2	554	0.47	1.43	2.12	1.40	1,255

NTN

Inch system sizes

d 139.700 ∼204.788mm

	Boun	dary dimens	sions	dynamic	Basic load static	ratings dynamic	static	Bearing numbers
		mm		•	:N	dynamic k <u>(</u>		
d	D	B_1	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
139.700	307.975	200.025	155.575	1,740	2,780	177,000	283,000	T-HH234031/HH234011D+A
152.400	307.975	200.025	146.050	1,510	2,620	154,000	267,000	T-EE450601/451215D+A
	307.975	200.025	155.575	1,740	2,780	177,000	283,000	T-HH234048/HM234011D+A
160.325	288.925	142.875	111.125	1,160	2,140	119,000	218,000	T-HM237532/HM237510D+A
165.100	288.925	142.875	111.125	940	1,900	96,000	194,000	T-94649/94114D+A
	288.925	142.875	111.125	1,160	2,140	119,000	218,000	T-HM237535/HM237510D+A
174.625	288.925	142.875	111.125	940	1,900	96,000	194,000	T-94687/94114D+A
	288.925	142.875	111.125	1,160	2,140	119,000	218,000	T-HM237542/HM237510D+A
177.800	288.925	142.875	111.125	940	1,900	96,000	194,000	T-94700/94114D+A
	288.925	142.875	111.125	1,160	2,140	119,000	218,000	T-HM237545/HM237510D+A
	320.675	185.738	138.112	1,300	2,480	132,000	253,000	EE222070/222127D+A
	320.675	185.738	138.112	1,590	2,790	162,000	285,000	T-H239640/H239612D+A
187.325	282.575	107.950	79.375	625	1,230	63,500	126,000	T-87737/87112D+A
	320.675	185.738	138.112	1,590	2,790	162,000	285,000	T-H239649/H239612D+A
190.500	282.575	107.950	79.375	625	1,230	63,500	126,000	T-87750/87112D+A
	317.500	146.050	111.125	1,060	2,310	108,000	236,000	T-93750/93127D+A
	368.300	193.675	136.525	1,670	3,200	170,000	330,000	T-EE420751/421451D+A
193.675	282.575	107.950	79.375	625	1,230	63,500	126,000	T-87762/87112D+A
200.025	292.100	125.415	101.600	915	2,070	93,000	211,000	T-M241543/M241510D+A
	317.500	146.050	111.125	1,060	2,310	108,000	236,000	T-93787/93727D+A
	384.175	238.125	193.675	2,500	5,450	255,000	555,000	T-H247535/H247510D+A
203.200	276.225	90.485	73.025	585	1,380	60,000	141,000	LM241149/LM241110D+A
	282.575	101.600	82.550	620	1,570	63,000	160,000	T-67983/67920D+A
	292.100	125.415	101.600	915	2,070	93,000	211,000	T-M241547/M241510D+A
	317.500	146.050	111.125	1,060	2,310	108,000	236,000	T-93800/93127D+A
	368.300	193.675	136.525	1,670	3,200	170,000	330,000	T-EE420801/421451D+A
	406.400	196.850	127.000	1,650	2,950	168,000	300,000	EE114080/114161D+A
204.788	292.100	125.415	101.600	915	2,070	93,000	211,000	T-M241549/M241510D+A

Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max.

Equivalent bearing load dynamic $P_r = XF_r + YF_s$

static
Por=Fr+YoFa

Abutm	ent and fille	et dimens	ions	Load center	Constant	Axia	al load fac	tors	Mass
	mm			mm					kg
$d_{ m a}$	D_{b}	$r_{ m as}$	$r_{ m las}$						
min	max	max	max	a	e	Y_1	Y_2	$Y_{ m o}$	(approx.)
180	285	9.7	2.3	149.5	0.33	2.07	3.08	2.02	65.9
189	275	9.7	2.3	143.5	0.33	2.07	3.08	2.02	62.6
191	285	9.7	2.3	149.5	0.33	2.07	3.08	2.02	62.6
192	271	7	1.5	119.5	0.32	2.12	3.15	2.07	36.1
197	272	7	1.5	141	0.47	1.44	2.15	1.41	35.1
195	271	7	1.5	119.5	0.32	2.12	3.15	2.07	35.1
204	272	7	1.5	141	0.47	1.44	2.15	1.41	33.1
202	271	7	1.5	119.5	0.32	2.12	3.15	2.07	33.1
207	272	7	1.5	141	0.47	1.44	2.15	1.41	32.4
205	271	7	1.5	119.5	0.32	2.12	3.15	2.07	32.4
204	298	3.5	1.5	152.5	0.40	1.68	2.50	1.64	57.8
202	301	3.5	1.5	141	0.32	2.12	3.15	2.07	57.8
207	267	3.5	1.5	115.5	0.42	1.62	2.42	1.59	21.1
214	301	5.5	1.5	141	0.32	2.12	3.15	2.07	55
209	267	3.5	1.5	115.5	0.42	1.62	2.42	1.59	20.6
218	300	4.3	1.5	162	0.52	1.29	1.92	1.26	41.2
227	334.4	6.4	1.5	163	0.40	1.68	2.50	1.64	84.1
211	267	3.5	1.5	115.5	0.42	1.62	2.42	1.59	20
219	279	3.5	1.5	116	0.33	2.03	3.02	1.98	24.8
225	300	4.3	1.5	162	0.52	1.29	1.92	1.26	38.8
241	362	6.4	1.5	182	0.33	2.03	3.02	1.98	112
220	267	3.5	0.8	95	0.32	2.12	3.15	2.07	13.8
222	275	3.5	0.8	133.5	0.51	1.33	1.97	1.30	17.1
221	279	3.5	1.5	116	0.33	2.03	3.02	1.98	24.1
227	300	4.3	1.5	162	0.52	1.29	1.92	1.26	37.1
230	334.4	3.3	1.5	163	0.40	1.68	2.50	1.64	79.9
246	374	6.4	3.3	252.5	0.80	0.85	1.26	0.83	107
223	279	3.5	1.5	116	0.33	2.03	3.02	1.98	23.8

Inch system sizes

d 206.375~241.300mm

	Boun	dary dimens	ions	dynamic	Basic load static	ratings dynamic	static	Bearing numbers
		mm		,	kN	kç		
d	D	B_1	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
206.375	282.575 336.550	101.600 211.138	82.550 169.862	620 1,900	1,570 4,050	63,000 194,000	160,000 415,000	T-67985/67920D+A T-H242649/H242610D+A
209.550	282.575 317.500	101.600 146.050	82.550 111.125	620 1,060	1,570 2,310	63,000 108,000	160,000 236,000	T-67989/67920D+A T-93825/93127D+A
212.725	285.750	98.425	76.200	650	1,640	66,500	167,000	T-LM742745/LM742710D+A
215.900	285.750 287.338	98.425 69.850	76.200 50.800	650 355	1,640 810	66,500 36,000	167,000 82,500	T-LM742749/LM742710D+A 543085/543115D+A
220.662	314.325	131.762	106.362	1,070	2,450	109,000	250,000	T-M244249/M244210D+A
228.460	431.800	196.850	111.125	1,470	2,480	150,000	253,000	EE113091/113171D+A
228.600	327.025 355.600 355.600 355.600 358.775 400.050 488.950	114.300 152.400 152.400 152.400 152.400 187.325 254.000	82.550 111.125 111.125 114.300 117.475 136.525 152.400	815 1,100 1,230 1,230 1,390 1,620 2,700	1,900 2,540 2,510 2,490 3,300 3,250 4,550	83,000 112,000 125,000 126,000 142,000 165,000 275,000	194,000 259,000 256,000 254,000 335,000 330,000 460,000	T-8573/8520D+A T-96900/96140D+A T-EE130902/131401D+A HM746646/HM746610D+A T-M249732/M249710D+A EE430900/431576D+A ☆T-HH949549/HH949510DG2+A
231.775	358.775	152.400	117.475	1,390	3,300	142,000	335,000	T-M249734/M249710D+A
234.950	311.150 327.025 355.600 384.175	98.425 114.300 152.400 238.125	73.025 82.550 111.125 193.675	695 815 1,100 2,500	1,640 1,900 2,540 5,450	71,000 83,000 112,000 255,000	167,000 194,000 259,000 555,000	LM446349/LM446310D+A T-8575/8520D+A T-96925/96140D+A T-H247549/H247510D+A
237.330	358.775	152.400	117.475	1,390	3,300	142,000	335,000	T-M249736/M249710D+A
241.300	327.025 349.148 368.300 393.700 406.400 444.500	114.300 127.000 120.650 157.162 215.900 209.550	82.550 101.600 85.725 109.538 184.150 158.750	815 940 790 1,340 2,460 2,380	1,900 2,010 1,630 2,800 4,750 4,250	83,000 96,000 80,500 137,000 251,000 243,000	194,000 205,000 166,000 286,000 485,000 430,000	T-8578/8520D+A EE127095/127136D+A EE170950/171450D+A T-EE275095/275156D+A T-H249148/H249111D+A ☆T-EE923095/923176DG2+A

Equivalent bearing load dynamic $P_r = XF_r + YF_s$

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

Abutm	nent and fill		ions	Load center	Constant	Axia	al load fac	tors	Mass
d	mm		0.0	mm					kg
$d_{ m a}$ min	$D_{ m b}$ max	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	Y_{0}	(approx.)
	max	max	mux	a		11	- 2	1 0	(αρριολ.)
224	275	3.5	0.8	133.5	0.51	1.33	1.97	1.30	16.5
231	318	3.3	1.5	160	0.33	2.03	3.02	1.98	65.2
227	275	3.5	0.8	133.5	0.51	1.33	1.97	1.30	16
233	300	4.3	1.5	161	0.52	1.29	1.92	1.26	36.3
	070	0.5	0.0	100 5	0.40	4.40	0.00	4.07	45.7
230	279	3.5	0.8	126.5	0.48	1.40	2.09	1.37	15.7
233	279	3.5	0.8	126.5	0.48	1.40	2.09	1.37	15.1
232	276	3.5	0.8	94.5	0.38	1.77	2.64	1.73	11
245	300	6.4	1.5	122.5	0.33	2.03	3.02	1.98	28.9
		0.4		070	0.00	٥ ==			440
274	397	6.4	3.3	276	0.88	0.77	1.14	0.75	116
255	313	6.4	1.5	129.5	0.41	1.66	2.47	1.62	27.3
260	334	7	1.5	185	0.59	1.14	1.70	1.12	49.4
257	330	6.8	1.5	132.5	0.33	2.04	3.04	2.00	49.4
258	339	6.4	1.5	164	0.47	1.43	2.12	1.40	49.4
256	343	3.5	1.5	138.5	0.33	2.03	3.02	1.98	50.9
271	367	10.5	1.5	181.5	0.44	1.54	2.29	1.50	88.3
297	456	6.4	1.5	333.5	0.94	0.72	1.07	0.70	207
263	343	6.4	1.5	138.5	0.33	2.03	3.02	1.98	50
252	301	3.5	0.8	111.5	0.36	1.86	2.77	1.82	17.9
252	313	6.4	1.5	129.5	0.30	1.66	2.77	1.62	25.9
265	334	7	1.5	185	0.59	1.14	1.70	1.12	47.5
269	362	, 6.4	1.5	181.5	0.33	2.03	3.02	1.12	
	302	0.4	1.5	101.5	0.33	2.03	3.02	1.90	96.2
267	343	6.4	1.5	138.5	0.33	2.03	3.02	1.98	48.2
264	313	6.4	1.5	129.5	0.41	1.66	2.47	1.62	24.3
267	329	6.4	1.5	133	0.35	1.91	2.85	1.87	35.4
269	337	6.4	1.5	132.5	0.36	1.85	2.76	1.81	40.8
278	378.1	6.4	1.5	162	0.40	1.68	2.50	1.64	66.5
273	385	6.4	1.5	177.5	0.33	2.03	3.02	1.98	101
277	407	6.4	1.5	170.5	0.34	2.00	2.98	1.96	128

NTN

Inch system sizes

d 244.475~280.192mm

	Boun	dary dimens	ions	dynamic	Basic load static	ratings dynamic	static	Bearing numbers
		mm		,	kN	•	gf	
d	D	B_1	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
244.475	381.000	171.450	127.000	1,300	2,880	132,000	294,000	EE126097/126151D+A
247.650	368.300 406.400	120.650 247.650	85.725 203.200	790 2,830	1,630 6,000	80,500 289,000	166,000 615,000	EE170975/171451D+A HH249949/HH249910D+A
249.250	381.000	171.450	127.000	1,300	2,880	132,000	294,000	EE126098/126151D+A
254.000	323.850 358.775 365.125 393.700 422.275 533.400	63.500 152.400 130.175 157.162 178.592 276.225	50.800 117.475 98.425 109.538 139.700 165.100	216 1,390 1,050 1,340 2,000 2,880	635 3,300 2,380 2,800 3,600 5,200	22,000 142,000 107,000 137,000 204,000 293,000	64,500 335,000 243,000 286,000 365,000 530,000	29875/29820D+A T-M249749/M249710D+A T-EE134100/134144D+A T-EE275100/275156D+A T-HM252343/HM252310D+A HH953749/HH953710D+A
260.350	365.125 400.050 419.100 422.275 488.950	130.175 155.575 184.150 178.592 254.000	98.425 107.950 136.525 139.700 196.850	1,050 1,220 1,580 2,000 3,000	2,380 2,460 3,250 3,600 5,950	107,000 124,000 161,000 204,000 310,000	243,000 251,000 330,000 365,000 605,000	T-EE134102/134144D+A EE221026/221576D+A EE435102/435165D+A T-HM252348/HM252310D+A EE295102/295192D+A
263.525	355.600	127.000	101.600	1,070	2,670	110,000	272,000	T-LM451345/LM451310D+A
266.700	323.850 355.600 393.700	63.500 127.000 157.162	50.800 101.600 109.538	216 1,070 1,340	635 2,670 2,800	22,000 110,000 137,000	64,500 272,000 286,000	29880/29820D+A T-LM451349/LM451310D+A T-EE275105/275156D+A
269.875	381.000	158.750	123.825	1,520	3,600	155,000	365,000	T-M252349/M252310D+A
273.050	393.700	157.162	109.538	1,340	2,800	137,000	286,000	T-EE275108/275156D+A
279.400	374.650 469.900 488.950	104.775 200.025 254.000	79.375 149.225 196.850	810 2,030 3,000	2,020 4,350 5,950	82,500 207,000 310,000	206,000 445,000 605,000	L555233/L555210D+A EE722110/722186D+A EE295110/295192D+A
279.982	380.898	139.700	107.950	1,140	3,100	116,000	315,000	T-LM654642/LM654610D+A
280.192	406.400	149.225	117.475	1,310	3,100	133,000	315,000	EE128111/128160D+A

Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max.

Equivalent bearing load dynamic $P_r = XF_r + YF_s$

static
Por=Fr+YoFa

Abutm	ent and fill	et dimensi	ions	Load center	Constant	Axia	tors	Mass	
	mm			mm					kg
$d_{ m a}$	$D_{ m b}$	$r_{ m as}$	$r_{ m las}$			T7	T7	77	
min	max	max	max	a	e	Y_1	Y_2	$Y_{ m o}$	(approx.)
275	358	6.4	1.5	186.5	0.52	1.31	1.95	1.28	64
274	337	6.4	1.5	132.5	0.36	1.85	2.76	1.81	39.2
284	383	6.4	1.5	189.5	0.33	2.03	3.02	1.98	112
279	358	6.4	1.5	186.5	0.52	1.31	1.95	1.28	62.2
267	312	1.5	8.0	105	0.35	1.95	2.90	1.91	11.2
274	343	3.5	1.5	138.5	0.33	2.03	3.02	1.98	42.8
281	347	6.4	1.5	140	0.37	1.80	2.69	1.76	39.2
287	378	6.4	1.5	162.5	0.40	1.68	2.50	1.64	62.2
287	400	6.8	1.5	160	0.33	2.03	3.02	1.98	88.9
328	496	6.4	1.5	365.5	0.94	0.71	1.06	0.70	266
286	347	6.4	1.5	140	0.37	1.80	2.69	1.76	37.3
296	372	9.7	1.5	159	0.39	1.71	2.54	1.67	62.7
295	395	6.4	1.5	225.5	0.61	1.11	1.66	1.09	86.8
292	400	6.8	1.5	160	0.33	2.03	3.02	1.98	86.3
299	451	6.4	1.5	196.5	0.31	2.16	3.22	2.12	190
283	343	3.5	1.5	136.5	0.36	1.87	2.79	1.83	31.7
277	312	1.5	8.0	105	0.35	1.95	2.90	1.91	9.37
285	343	3.5	1.5	136.5	0.36	1.87	2.79	1.83	30.7
296	378	6.4	1.5	162.5	0.40	1.68	2.50	1.64	57.6
296	364	6.4	1.5	146.5	0.33	2.03	3.02	1.98	52.3
301	378	6.4	1.5	162.5	0.40	1.68	2.50	1.64	55.3
300	362	3.5	1.5	138.5	0.40	1.68	2.50	1.64	28.5
321	433	9.7	1.5	187.5	0.38	1.78	2.65	1.74	125
303	451	1.3	1.5	196.5	0.31	2.16	3.22	2.12	179
302	368	3.5	1.5	163	0.43	1.56	2.33	1.53	40.7
309	384	6.8	1.5	158	0.39	1.75	2.61	1.71	56.5

NTN

Inch system sizes

d 285.750~355.600mm

	Boun	dary dimens	ions	dynamic	Basic load	ratings dynamic	static	Bearing numbers
		mm			κN		gf	
d	D	B_1	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	358.775	76.200	53.975	450	1,080	46,000	110,000	545112/545142DA+A
285.750	380.898 501.650	139.700 203.200	107.950 120.650	1,140 1,960	3,100 3,700	116,000 200,000	315,000 375,000	T-LM654649/LM654610D+A EE147112/147198D+A
288.925	406,400	165.100	130.175	1,740	4,150	177,000	425,000	M255449/M255410DA+A
200.020				,	<u> </u>	<u> </u>	<u> </u>	
292.100	374.650 469.900	104.775 200.025	79.375 149.225	810 2,030	2,020 4,350	82,500 207,000	206,000 445,000	L555249/L555210D+A EE722115/722186D+A
298.450	444.500	146.050	98.425	1,080	2,300	110,000	234,000	EE291175/291751D+A
299.974	495.300	301.625	247.650	4,200	9,800	425,000	1,000,000	☆HH258248/HH258210DG2+A
300.038	422.275	174.625	136.525	1,950	4,800	198,000	490,000	☆T-HM256849/HM256810DG2+A
	393.700	107.950	82.550	835	2,070	85,500	211,000	L357049/L357010D+A
304.800	438.048 444.500	165.100 146.050	120.650 98.425	1,380 1,080	3,200 2,300	141,000 110,000	325,000 234,000	T-EE129120X/129120D+A EE291201/291751D+A
	495.300	196.850	146.050	2,120	4,700	216,000	480,000	EE724120/724196D+A
	444.500	146.050	98.425	1,080	2,300	110,000	234,000	EE291250/291751D+A
317.500	447.675 622.300	180.975 304.800	146.050 174.625	1,990 3,250	4,800 6,250	203,000 330,000	485,000 640,000	T-HM259049/HM259010D+A ☆H961649/H961610DG2+A
330.200	482.600	133.350	88.900	1,200	2,870	122,000	293,000	T-EE161300/161901D+A
330.200	482.600	177.800	127.000	1,640	3,950	167,000	400,000	EE526130/526191D+A
333.375	469.900	190.500	152.400	2,320	5,500	237,000	565,000	HM261049/HM261010DA+A
342.900	457.098	142.875	104.775	1,210	3,300	124,000	335,000	LM961548/LM961511D+A
042.500	533.400	165.100	114.300	1,830	3,450	187,000	355,000	EE971354/972102D+A
346.075	482.600	133.350	88.900	1,200	2,870	122,000	293,000	T-EE161363/161901D+A
3 10101 0	488.950	200.025	158.750	2,540	6,400	259,000	650,000	☆T-HM262749/HM262710DG2+A
349.250	514.350	193.675	152.400	2,040	4,550	209,000	465,000	EE333137/333203D+A
355.600	444.500 482.600	136.525 133.350	111.125 88.900	1,120 1,200	3,500 2,870	114,000 122,000	355,000 293,000	T-L163149/L163110D+A T-EE161400/161901D+A

Remarks: 1. The above chamfer of inner and outer ring are bigger than r_{as} max or r_{las} max.

2. Bearing numbers marked "☆" designate bearing with hollow rollers and pin type cages.

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$					
X	Y	X	Y				
1	Y_1	0.67	Y_2				

static
Por=Fr+YoFa

Abu	tment and fill	et dimens	ions	Load center	Constant	Axia	Il load fact	tors	Mass
	mm	1		mm					kg
$d_{ m a}$	$D_{ m b}$	$r_{ m as}$	$r_{ m las}$						
min	max	max	max	a	e	Y_1	Y_2	$Y_{ m o}$	(approx.)
200	045	0.5	1.5	111	0.40	1.00	0.05	1.04	157
302 306	345 368	3.5	1.5 1.5	144	0.49 0.43	1.38	2.05	1.34	15.7
		3.5		163		1.56	2.33	1.53	38.7
329	468	6.4	3.3	307	0.84	0.81	1.20	0.79	151
316	388	6.4	1.5	157	0.34	2.00	2.98	1.96	59
309	362	3.5	1.5	138.5	0.40	1.68	2.50	1.64	25.2
330	433	9.7	1.5	187.5	0.38	1.78	2.65	1.74	118
332	414	8	1.5	164	0.38	1.78	2.65	1.74	69.3
342	467	6.4	1.5	231	0.33	2.03	3.02	1.98	205
328	403	6.4	1.5	163.5	0.34	2.00	2.99	1.96	67.4
329	380	6.4	1.5	133	0.36	1.87	2.79	1.83	29.3
334	411	6.4	1.5	179.5	0.42	1.62	2.42	1.59	71.4
337	414	8	1.5	164	0.38	1.78	2.65	1.74	66.8
359	459	16	1.5	195	0.40	1.68	2.50	1.64	131
346	414	8	1.5	164	0.38	1.78	2.65	1.74	61.8
341	428	3.5	1.5	162	0.33	2.02	3.00	1.97	78.8
410	582	14.3	3.3	430	0.95	0.71	1.06	0.70	382
007	455	-	4.5	200 5	0.50	1.05	0.04	4.00	70.0
367	455	7	1.5	200.5	0.50	1.35	2.01	1.32	72.2
360	454	6.4	1.5	183.5	0.39	1.72	2.56	1.68	96.3
363	449	6.4	1.5	179.5	0.33	2.02	3.00	1.97	91.3
367	443.1	3.3	1.5	253.5	0.71	0.95	1.41	0.93	57.1
373	496	4.8	1.5	170	0.33	2.03	3.02	1.98	120
379	455	7	1.5	200.5	0.50	1.35	2.01	1.32	66
377	467	6.4	1.5	187.5	0.33	2.02	3.00	1.97	104
382	478	6.4	1.5	197.5	0.36	1.85	2.76	1.81	121
374	430	3.5	1.5	151	0.31	2.20	3.27	2.15	42.5
386	455	7	1.5	200.5	0.50	1.35	2.01	1.32	62.1
000	100	•	1.0	200.0	0.00	1.00	2.01	1.02	02.1

Inch system sizes

d 355.600~482.600mm

	Boun	dary dimens	ions	dynamic	Basic load static	ratings dynamic	static	Bearing numbers
		mm			N	•	rgf	
d	D	B_1	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
355.600	501.650 514.350	155.575 193.675	107.950 152.400	1,550 2,040	3,650 4,550	158,000 209,000	375,000 465,000	T-EE231400/231976D+A EE333140/333203D+A
368.249	523.875	214.312	169.862	2,610	6,550	266,000	665,000	☆HM265049/HM265010DG2+A
371.475	501.650	155.575	107.950	1,550	3,650	158,000	375,000	T-EE231462/231976D+A
381.000	508.000 546.100 590.550	139.700 222.250 244.475	88.900 177.800 193.675	920 2,950 3,650	2,270 7,350 9,450	94,000 300,000 375,000	232,000 750,000 965,000	EE192150/192201D+A T-HM266446/HM266410D+A ☆T-M268730/M268710DG2+A
384.175	441.325 546.100 546.100	68.262 222.250 222.250	52.388 177.800 177.800	360 2,950 3,150	1,060 7,350 8,050	36,500 300,000 320,000	108,000 750,000 820,000	LL365340/LL365310D+A T-HM266448/HM266410D+A ☆T-HM266449/HM266410DG2+A
385.762	514.350	177.800	139.700	2,120	5,550	216,000	565,000	LM665949/LM665910D+A
396.875	539.750 546.100	142.875 158.750	101.600 117.475	1,330 1,330	3,300 3,300	136,000 136,000	335,000 335,000	EE234156/234213D+A EE234156/234216D+A
406.400	539.750 609.600	142.875 187.325	101.600 123.825	1,330 2,110	3,300 4,650	136,000 215,000	335,000 475,000	EE234160/234213D+A EE911600/912401D+A
415.925	590.550	244.475	193.675	3,650	9,450	375,000	965,000	☆T-M268749/M268710DG2+A
431.800	571.500 603.250 673.100	155.575 159.639 192.639	111.125 104.775 127.000	1,880 1,670 2,560	4,950 4,100 5,350	191,000 171,000 261,000	505,000 420,000 545,000	T-LM869448/LM869410D+A EE241701/242377D+A EE571703/572651D+A
447.675	635.000	257.175	206.375	4,150	11,100	425,000	1,130,000	☆M270749/M270710DAG2+A
457.200	596.900 730.148	165.100 254.000	120.650 177.800	1,670 4,350	4,700 8,750	170,000 445,000	480,000 895,000	EE244180/244236D+A EE671801/672875D+A
479.425	679.450	276.225	222.250	4,900	13,000	500,000	1,320,000	☆T-M272749/M272710DG2+A
482.600	615.950 634.873	184.150 177.800	146.050 142.875	2,320 2,000	6,700 6,150	237,000 204,000	685,000 630,000	☆LM272249/LM272210DG2+A EE243190/243251D+A

Remarks: 1. The above chamfer of inner and outer ring are bigger than r_{as} max or r_{las} max.

2. Bearing numbers marked "☆" designate bearing with hollow rollers and pin type cages.

Equivalent bearing load

dynamic $P_r = XF_r + YF_s$

static
Por=Fr+YoFa

Abu	Abutment and fillet dimensions			Load center	Constant	Axia	tors	Mass	
	mm			mm					kg
$d_{ m a}$ min	$D_{ m b}$	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	$Y_{ m o}$	(approv.)
min	max	max	max	-a	-e	11	12	10	(approx.)
388	481	6.4	1.5	195	0.44	1.53	2.28	1.50	85.2
387	478	6.4	1.5	197.5	0.36	1.85	2.76	1.81	117
400	499	6.4	1.5	198.5	0.33	2.03	3.02	1.98	142
400	481	6.4	1.5	195	0.44	1.53	2.28	1.50	77.3
410	400	C 4	4.5	001	0.50	1.07	1.00	1.04	00
410	482	6.4	1.5	221	0.53	1.27	1.89	1.24	69
415 425	519 561	6.4 6.4	1.5 1.5	208 226	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	149 247
425	301	0.4	1.5	220	0.33	2.03	3.02	1.90	247
399	433	3.5	0.8	128.5	0.34	1.99	2.96	1.94	14.1
417	519	6.4	1.5	208	0.33	2.03	3.02	1.98	146
417	520	6.4	1.5	208	0.33	2.03	3.02	1.98	146
415	495	6.4	1.5	210.5	0.42	1.61	2.40	1.58	90
428	516	6.4	1.5	214.5	0.47	1.43	2.12	1.40	83.6
428	516	6.4	1.5	230.5	0.47	1.43	2.12	1.40	97.7
435	518	6.4	1.5	214.5	0.47	1.43	2.12	1.40	78.8
443	570	6.8	1.5	209	0.38	1.76	2.62	1.72	169
451	561	6.4	1.5	226	0.33	2.03	3.02	1.98	188
457	549	3.3	1.5	255.5	0.55	1.24	1.84	1.21	95.3
446	561	6.4	1.5	252.5	0.53	1.28	1.91	1.25	124
472	630	6.4	1.5	235.5	0.40	1.68	2.50	1.64	225
484	606	6.4	1.5	240	0.33	2.03	3.02	1.98	228
494	570	9.7	1.5	219	0.40	1.67	2.49	1.63	106
507	681	9.7	1.5	266	0.39	1.72	2.56	1.68	360
516	648	6.4	1.5	258.5	0.33	2.03	3.02	1.98	310
513	597	6.4	1.5	206.5	0.33	2.03	3.02	1.98	118
516	609	6.4	1.5	215	0.34	1.98	2.94	1.93	148

NTN

Inch system sizes

d 488.950~1,270.000mm

	Boundary dimensions			dynamic	Basic load static	ratings dynamic	static	Bearing numbers
		mm			κN		gf	
d	D	B_1	C	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
488.950	634.873 660.400	180.975 206.375	136.525 158.750	2,500 3,150	6,950 8,050	255,000 320,000	710,000 820,000	LM772748/LM772710DA+A ☆T-EE640192/640261DG2+A
489.026	634.873	177.800	142.875	2,000	6,150	204,000	630,000	EE243192/243251D+A
498.475	634.873	177.800	142.875	2,000	6,150	204,000	630,000	EE243196/243251D+A
508.000	838.200	304.800	222.250	5,450	12,800	555,000	1,310,000	EE426200/426331D+A
533.400	812.800	269.875	187.325	4,450	10,400	455,000	1,060,000	EE626210/626321D+A
536.575	761.873	311.150	247.650	5,900	15,200	600,000	1,550,000	☆M276449/M276410DG2+A
549.275	692.150	174.625	136.525	2,320	6,950	236,000	710,000	L476549/L476510D+A
558.800	736.600 736.600 736.600	165.100 187.328 225.425	114.300 138.112 177.800	2,050 2,500 3,150	5,400 6,750 8,800	209,000 255,000 325,000	550,000 690,000 895,000	EE542220/542291D+A EE843220/843291D+A LM377449/LM377410D+A
571.500	812.800	333.375	263.525	6,950	18,300	710,000	1,870,000	☆M278749/M278710DAG2+A
609.600	787.400 812.800	206.375 190.500	158.750 146.050	3,750 2,860	10,100 7,850	380,000 292,000	1,030,000 800,000	☆EE649240/649311DG2+A EE743240/743321D+A
660.400	812.800	203.200	158.750	3,250	10,300	330,000	1,060,000	L281148/L281110DA+A
711.200	914.400	190.500	139.700	3,100	8,950	315,000	910,000	☆EE755280/755361DG2+A
723.900	914.400	187.325	139.700	3,100	8,950	315,000	910,000	☆EE755285/755361DG2+A
977.900	1,130.300	139.700	101.600	2,050	7,200	209,000	735,000	LL687949/LL687910D+A
1,270.000	1,435.100	146.050	101.600	2,730	10,100	278,000	1,030,000	LL889049/LL889010D+A

Equivalent bearing load dynamic $P_r = XF_r + YF_s$

static
Por=Fr+YoFa

Abuti	ment and fill	et dimensi	ons	Load center	Constant	Axia	al load fact	tors	Mass
	mm			mm					kg
$d_{ m a}$	$D_{ m b}$	$r_{ m as}$	$r_{ m las}$						
min	max	max	max	a	e	Y_1	Y_2	$Y_{ m o}$	(approx.)
500	040	0.4	4.5	000	0.47	4 40	0.40	4 40	400
522 522	613 627	6.4 6.4	1.5 1.5	262 216	0.47	1.43 2.20	2.12 3.27	1.40 2.15	130
	027	0.4	1.5	210	0.31	2.20	3.21	2.10	178
522	609	6.4	1.5	215	0.34	1.98	2.94	1.93	140
528	609	6.4	1.5	215	0.34	1.98	2.94	1.93	129
564	768	9.7	3.3	357	0.48	1.41	2.09	1.37	592
585	762	9.7	3.3	322.5	0.44	1.52	2.26	1.49	444
576	726	6.4	1.5	290	0.33	2.03	3.02	1.98	398
579	666	6.4	1.5	239	0.38	1.79	2.67	1.75	135
594	705	6.4	3.3	298	0.51	1.32	1.96	1.29	166
591	708	6.4	1.5	231	0.34	1.98	2.94	1.93	189
594	708	6.4	1.5	256.5	0.35	1.95	2.90	1.91	227
615	774	6.4	1.5	308	0.33	2.03	3.02	1.98	487
642	764	6.4	1.5	254	0.33	2.03	3.02	1.98	235
645	765	6.4	3.3	254	0.33	2.06	3.06	2.01	241
693	789	6.4	1.5	667.5	0.37	1.80	2.69	1.76	199
750	876	6.4	3.3	295.5	0.38	1.77	2.64	1.73	275
756	876	5.5	3.3	295.5	0.38	1.77	2.64	1.73	256
1,010	1,100	6.4	3.3	376	0.44	1.54	2.30	1.51	196
1,305	1,400	6.4	3.3	586.5	0.58	1.17	1.75	1.15	285

Metric system sizes

d 100∼180mm

		Boundary	dimension	s		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
		ı	mm			kN		kg		
d	D	В	C_1	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
100	250	116	116	4	4	790	1,050	80,500	107,000	CRD-2051
105	170	90	90	2.5	2.5	420	860	42,500	87,500	CRD-2151
110	180	56	56	2	2.5	298	485	30,500	49,500	323122
	190	102	98	3	1.5	515	950	52,500	96,500	CRD-2252
	200	82	82	2.5	1	555	865	56,500	88,500	CRD-2254
120	170	120	120	2	2	415	890	42,500	91,000	CRD-2421
	180	46	46	2	2.5	230	375	23,500	38,000	323024
	200	62	62	2	2.5	370	610	38,000	62,500	323124
	215	113	113	2.5	2.5	735	1,300	75,000	133,000	CRD-2420
	280	150	140	3	3	1,130	1,840	115,000	187,000	CRD-2422
130	190	120	120	1.5	1.5	415	840	42,000	85,500	CRD-2652
	195	120	120	2.5	1.5	475	1,040	48,500	106,000	CRD-2654
	200	52	52	2	2.5	294	490	29,900	50,000	323026
	210	64	64	2	2.5	410	675	42,000	69,000	323126
140	210	53	53	2	2.5	300	535	30,500	54,500	323028
	225	68	68	2.5	3	390	650	40,000	66,000	323128
150	225	56	56	2.5	3	355	630	36,000	64,500	323030
	250	80	80	2.5	3	600	1,040	61,500	106,000	323130
	250	110	110	2.5	2.5	855	1,590	87,500	162,000	CRD-3052
160	240	60	60	2.5	3	430	765	44,000	78,000	323032
	240	110	110	2.5	2.5	750	1,560	76,500	159,000	CRD-3254
	260	130	130	3	1.5	880	1,740	89,500	178,000	CRD-3253
	270	86	86	2.5	3	675	1,180	69,000	120,000	323132E1
	270	116	116	2.5	2.5	835	1,640	85,500	167,000	CRD-3208
170	260	67	67	2.5	3	490	865	50,000	88,000	323034
	280	76	76	2.5	2.5	550	900	56,000	92,000	CRD-3413
	280	88	88	2.5	3	725	1,270	74,000	130,000	323134E1
177.000	248.000	90.488	90.488	3.3	1.57	515	1,180	52,500	120,000	* CRD-3502
180	280	74	74	2.5	3	580	1,050	59,500	107,000	323036E1

1 Minimum allowable dimension for chamfer dimension r or r. **2** "-" means the load center is out side the inner ring. Remarks: 1. The marked "*" bearings are inch system sizes.

Equivalent bearing load

dynamic $P_r = XF_r + YF_a$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤ e	$\frac{F_i}{F_i}$;>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static
Por=Fr+YoFa

	Abutmen	t and fillet	dimensi	ons		Load [®] center	Constant	Axia	l load fac	tors	Mass
$d_{ m a}$	D	mm	$S_{ m a}$	$r_{ m as}$	$r_{ m las}$	mm					kg
max	max	a min	min	max	max	a	e	Y_1	Y_2	Y_{o}	(approx.)
135	232	200	4.5	3	3	- 14.5	0.40	1.68	2.50	1.64	30
124.5	158	148.5	2.5	2	2	- 22.5	0.29	2.35	3.50	2.30	7.92
124	170	160	8	2	2	1	0.33	2.03	3.02	1.98	5.6
128.5	176	160	5	2.5	1.5	– 16	0.42	1.62	2.42	1.59	12.1
128.5	188	170.5	4	2	1	-2	0.42	1.61	2.39	1.57	11.3
130.5	160	149	0.4	2	2	- 49	0.25	2.69	4.00	2.63	8.57
134	170	164	8	2	2	12	0.37	1.80	2.69	1.76	4.08
134	190	175	8	2	2	6.5	0.37	1.80	2.69	1.76	7.82
141	203	180.5	4.3	2	2	- 22	0.35	1.95	2.90	1.91	17.7
172	266	237	7.3	2.5	2.5	– 28.5	0.33	2.03	3.02	1.98	47.3
144	181.5	171	2	1.5	1.5	- 43.5	0.33	2.03	3.02	1.98	11.4
142.5	183	166	2.7	2	1.5	– 26.5	0.47	1.43	2.12	1.40	12.5
144	190	184	8	2	2	13.5	0.37	1.80	2.69	1.76	5.92
144	200	185	8	2	2	7.5	0.37	1.80	2.69	1.76	8.58
155	200	190	8	2	2	10	0.37	1.84	2.74	1.80	6.4
156	213	200	10	2	2.5	8	0.37	1.80	2.69	1.76	10.7
165	213	205	10	2	2.5	15.5	0.37	1.80	2.69	1.76	7.76
168	238	220	10	2	2.5	6.5	0.37	1.80	2.69	1.76	15.7
169	238	213	4.4	2	2	1	0.46	1.47	2.19	1.44	21.7
175	228	215	10	2	2.5	17.5	0.37	1.80	2.69	1.76	9.46
175.5	228	211	2.1	2	2	- 14.5	0.33	2.03	3.02	1.98	17.3
175	246	213	3.5	2.5	1.5	15	0.62	1.09	1.62	1.06	26.9
178	258	240	10	2	2.5	8	0.37	1.80	2.69	1.76	20
184.5	258	227	4.2	2	2	- 4.5	0.40	1.68	2.50	1.64	27.1
185	248	235	10	2	2.5	18	0.37	1.80	2.69	1.76	12.8
195	264	245	4.5	2	2	18	0.40	1.68	2.50	1.64	18.5
188	268	250	10	2	2.5	8.5	0.37	1.80	2.69	1.76	21.5
189	234	218	3.4	3.3	1.5	15.5	0.44	1.52	2.26	1.49	13.45
198	268	250	10	2	2.5	17	0.37	1.80	2.69	1.76	16.5

NTN

Metric system sizes

d 180∼280mm

		Boundary	dimension	s		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
			mm			kN	Static	kgf	Statio	
d	D	В	C_1	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
180	300 330	96 190	96 190	3 5	4 1.5	885 1,710	1,530 3,250	90,500 175,000	156,000 330,000	323136E1 CRD-3615
190	290 320	75 104	75 104	2.5 3	3 4	615 985	1,110 1,710	63,000 100,000	113,000 174,000	323038E1 323138
195	305	120	120	2.5	3	1,130	2,200	115,000	225,000	CRD-3906
200	310 340 340 340 420	82 112 140 150 235	82 112 140 150 235	2.5 3 3 3 5	3 4 3 1.5 2	720 1,090 1,490 1,290 3,000	1,320 1,910 2,780 2,490 5,350	73,000 111,000 152,000 131,000 305,000	135,000 195,000 283,000 254,000 545,000	323040E1 323140 CRD-4019 CRD-4015 ☆CRD-4020
220	320 340 370	76.2 90 120	76.2 90 120	2.5 3 4	2.5 4 5	630 880 1,220	1,220 1,650 2,260	64,500 89,500 125,000	125,000 168,000 230,000	CRD-4405 323044E1 323144
240	360 395 400 400 400	92 124 128 160 160	92 124 128 160 160	3 4 4 4 4	4 4 5 4 4	910 1,400 1,400 1,770 1,770	1,770 2,630 2,600 3,550 3,550	92,500 143,000 142,000 181,000	181,000 268,000 265,000 360,000 36,000	323048E1 CRD-4804 323148 CRD-4805 CRD-4811
241.300	355.524	109.538	109.538	3.3	1.57	940	2,010	96,000	205,000	* CRD-4803
259.5	481	250	250	5	2	3,250	6,650	330,000	680,000	CRD-5215
260	400 400 440	104 150 144	104 150 144	4 4 4	5 4 5	1,150 1,470 1,960	2,190 3,200 3,750	117,000 150,000 200,000	223,000 325,000 380,000	323052 CRD-5212 323152
260.350	419.100	180.000	158.750	3.3	1.57	1,580	3,250	161,000	330,000	* CRD-5217
270	395	94	94	3	4	1,090	2,290	111,000	233,000	CRD-5403
280	420 460	106 146	106 146	4 5	5 6	1,200 1,940	2,340 3,650	123,000 198,000	238,000 375,000	323056 323156

Equivalent bearing load

dynamic Pr=XFr+YFa

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_s}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static
Por=Fr+YoFa

	Abutme	nt and fille	dimensi	ons		Load [©] center mm	Constant	Axia	l load fac	tors	Mass kg
$d_{ m a}$	I) _a	S_{a}	$r_{ m as}$	$r_{ m las}$						
max	max	min	min	max	max	a	e	Y_1	Y_2	Y_{o}	(approx.)
200 197.5	286 238	265 264	12 3.5	2.5 4	3 1.5	8 - 5.5	0.37 0.58	1.80 1.17	2.69 1.75	1.76 1.15	27.2 71.6
208 212	278 306	260 285	12 12	2 2.5	2.5 3	17.5 8.5	0.37 0.37	1.80 1.80	2.69 2.69	1.76 1.76	17.9 34
215	293	267	5.4	2	2.5	– 1	0.37	1.80	2.69	1.76	32.5
218 222 226.5 224 248.5	298 326 326 326 398	280 300 290 277.5 341	12 12 7.8 3.1 6.3	2 2.5 2.5 2.5 4	2.5 3 2.5 1.5 2	19 8.5 - 1.5 - 2.5 - 48.5	0.37 0.37 0.40 0.42 0.37	1.80 1.80 1.68 1.60 1.80	2.69 2.69 2.50 2.39 2.69	1.76 1.76 1.64 1.57 1.76	21.7 41.7 52.1 55.9 158
244 242 248	308 326 352	288 310 325	5.5 12 14	2 2.5 3	2 3 4	28.5 21.5 14	0.39 0.37 0.40	1.74 1.80 1.68	2.59 2.69 2.50	1.70 1.76 1.64	20.3 29.8 52.2
262 276 268 275 275	346 377 382 382 382	330 345 355 343 342	14 6.6 14 7.5 7.5	2.5 3 3 3 3	3 3 4 3 3	23.5 20.5 17 - 1 - 1	0.37 0.40 0.40 0.40 0.40	1.80 1.68 1.68 1.68 1.68	2.69 2.50 2.50 2.50 2.50	1.76 1.64 1.64 1.64 1.64	32.6 60.2 64.6 80.7 80.7
265	341	311.5	3.5	3.3	1.5	11	0.35	1.91	2.85	1.87	36.8
297	459	385	3.5	4	2	- 7	0.49	1.38	2.06	1.35	202
285 289 290	382 382 422	365 345 385	14 3.4 16	3 3 3	4 3 4	25 15 16.5	0.37 0.43 0.40	1.80 1.57 1.68	2.69 2.34 2.50	1.76 1.53 1.64	47.3 68.3 90
287	405	355	7.5	3.3	1.5	49.5	0.61	1.11	1.66	1.09	95.7
300	381	353	7.1	2.5	3	27	0.35	1.95	2.90	1.91	38.5
305 315	402 438	385 400	16 16	3 4	4 5	29.5 16	0.37 0.40	1.80 1.68	2.69 2.50	1.76 1.64	51.2 95.8

NTN

Metric system sizes

d 300∼420mm

		Boundary	dimension	s		dynamic	Basic los	ad ratings dynamic	static	Bearing numbers
		ı	mm			kN		kg		
d	D	В	C_1	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
300	460	118	118	4	5	1,610	3,150	165,000	320,000	323060
	500	160	160	5	6	2,100	4,050	214,000	415,000	323160
304.648	438.048	128.575	138.112	4.83	3.3	1,480	3,450	151,000	350,000	* CRD-6132
320	480	121	121	4	5	1,580	3,100	162,000	315,000	323064
	510.8	220	220	4	4	3,100	6,850	320,000	700,000	CRD-6409
	540	176	176	5	6	2,500	4,900	255,000	500,000	323164
	580	240	240	5	3	3,700	7,800	380,000	795,000	☆CRD-6415
	620	280	280	5	5	5,250	10,300	535,000	1,050,000	☆CRD-6420
340	470	110	110	3	3	1,320	3,050	134,000	310,000	CRD-6804
	520	133	133	5	6	1,890	3,750	193,000	380,000	323068
	580	190	190	5	6	3,350	6,500	345,000	660,000	323168
350	480	110	110	4	4	1,400	3,150	143,000	320,000	CRD-7015
	590	192	192	5	5	3,200	6,100	330,000	620,000	CRD-7011
360	540	134	134	5	6	2,050	4,200	209,000	430,000	323072
	600	192	192	5	6	3,200	6,500	325,000	660,000	323172
	680	320	330	6	6	6,500	13,900	665,000	1,410,000	☆CRD-7207
379	681.5	307	307	6	6	6,450	14,300	660,000	1,460,000	☆CRD-7615
	681.5	307	307	6	6	6,450	14,300	660,000	1,460,000	☆CRD-7621
380	560	135	135	5	6	2,080	4,350	213,000	445,000	323076
	620	194	194	5	6	3,350	6,700	340,000	685,000	323176
385	530	180	180	4	2	2,370	5,750	241,000	590,000	CRD-7701
400	590	142	142	5	5	2,400	5,050	245,000	515,000	☆CRD-8008
	590	142	142	5	5	2,080	4,150	212,000	425,000	☆CRD-8012
	600	148	148	5	6	2,530	5,450	258,000	555,000	323080
	650	200	200	6	6	3,750	7,850	385,000	800,000	323180
	650	250	250	6	6	4,900	10,500	500,000	1,070,000	☆CRD-8017
	730	340	340	7.5	7.5	7,400	15,900	755,000	1,620,000	☆CRD-8029
	780	380	380	7.5	7.5	8,800	17,700	900,000	1,800,000	☆CRD-8040
420	520	90	90	4	1.5	1,020	2,700	105,000	275,000	CRD-8402

Equivalent bearing load

dynamic Pr=XFr+YFa

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_s}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static
Por=Fr+YoFa

	Abutmen	t and fillet	dimensi	ons		Load [®] center	Constant	Axia	l load fac	tors	Mass kg
$d_{ m a}$	D		S_{a}	$r_{ m as}$	$r_{ m las}$	11111					Ng
max	max	a min	min	max	max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
											, , ,
330	442	425	16	3	4	31	0.37	1.80	2.69	1.76	70.7
335	478	440	16	4	5	18	0.40	1.68	2.50	1.64	126
327	416	379.5	5.2	4.8	3.3	73	0.60	1.12	1.67	1.10	62.8
350	462	440	16	3	4	34	0.37	1.80	2.69	1.76	76.3
358	493	442.5	2.5	3	3	- 23	0.35	1.95	2.90	1.91	173
355	518	480	18	4	5	18.5	0.40	1.68	2.50	1.64	164
379	558	480	5.5	2.5	4	3	0.43	1.57	2.34	1.53	288
360	598	544	19.5	4	4	- 16.5	0.43	1.57	2.34	1.53	390
369	456	424	6.5	2.5	2.5	49.5	0.40	1.68	2.50	1.64	57.8
370	498	480	18	4	5	36	0.37	1.80	2.69	1.76	101
380	558	515	18	4	5	35.5	0.40	1.68	2.50	1.64	207
376.5	462	436	5.4	3	3	57.5	0.42	1.62	2.42	1.59	58.7
407	568	515	3.5	4	4	6	0.33	2.03	3.02	1.98	218
395	518	495	18	4	5	41	0.37	1.80	2.69	1.76	107
400	578	535	18	4	5	25.5	0.40	1.68	2.50	1.64	218
431	652	552	16.5	5	5	- 12	0.47	1.43	2.12	1.40	570
							•				
456	653.5	575	19.5	5	5	- 18.5	0.40	1.68	2.50	1.64	525
456	653.5	575	15.5	5	5	- 18.5	0.40	1.68	2.50	1.64	525
418	538	504	18	4	5	44.5	0.37	1.80	2.69	1.76	110
428	598	537.5	20	4	5	29	0.40	1.68	2.50	1.64	231
407.5	512	476	7.5	2	3	26	0.43	1.57	2.34	1.53	116
440.5	568	533	8.5	4	4	28.5	0.33	2.03	3.02	1.98	134
440.5	568	533	8.5	4	4	36.5	0.33	2.03	3.02	1.98	134
440	578	550	18	4	5	45	0.37	1.80	2.69	1.76	146
445	622	580	20	5	5	32.5	0.40	1.68	2.50	1.64	259
457.5	622	565	11.5	5	5	– 1	0.39	1.74	2.59	1.70	325
470	694	604	20.5	6	6	- 32	0.40	1.68	2.50	1.64	672
477.5	744	639	16.6	6	6	– 47	0.40	1.68	2.50	1.64	895
.,,,,	, r=		10.0		5	11	0.40	1.00	2.00	1.0-	
441	502	486	6.5	1.5	3	99.5	0.47	1.43	2.12	1.40	41.9
			0.0		9	50.0	0.17	0		0	

NTN

Metric system sizes

d 420~630mm

		Boundary	dimension	s		dynamic	Basic Io	oad ratings dynamic	static	Bearing numbers
			mm			k			gf	
d	D	В	C_1	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
420	620 700 735	150 224 406	150 224 406	5 6 7.5	6 6 7.5	2,650 4,800 8,600	5,900 9,700 20,400	270,000 490,000 880,000	600,000 990,000 2,080,000	323084 323184 ☆CRD-8405
440	650 720 730	157 226 290	157 226 290	6 6 6	6 6 6	2,600 5,000 6,400	5,450 10,300 13,900	266,000 510,000 650,000	560,000 1,050,000 1,420,000	323088 323188 ☆CRD-8822
450	720	300	300	7.5	4	5,550	12,600	565,000	1,290,000	☆CRD-9011
458	830.5	377	377	7.5	7.5	9,250	20,100	940,000	2,050,000	☆CRD-9203
460	680 760 860	163 240 420	163 240 420	6 7.5 6	6 7.5 6	3,050 4,900 10,500	6,600 10,300 22,700	310,000 500,000 1,070,000	670,000 1,050,000 2,320,000	323092 323192 ☆CRD-9204
480	700 790	165 248	165 248	6 7.5	6 7.5	3,050 5,300	6,700 11,100	310,000 540,000	685,000 1,130,000	323096 323196
481.228	615.950	158.750	158.750	6.4	3.3	2,240	6,450	228,000	660,000	☆ * CRD-9605
482.600	615.950 615.950	158.750 163.750	158.750 158.750	6.4 6.4	3.3 3.3	2,240 2,430	6,450 7,100	228,000 248,000	660,000 725,000	☆ * CRD-9709 ☆ * CRD-9708
500	670 720 820 830	150 167 256 264	150 167 256 264	5 6 9.5 7.5	2.5 6 9.5 7.5	2,400 3,100 5,250 6,400	6,100 6,900 11,900 14,000	245,000 315,000 535,000 650,000	625,000 700,000 1,210,000 1,420,000	CRD-10005 3230/500 CRD-10008 ☆3231/500G2
560	820	195	195	6	6	4,550	10,300	465,000	1,050,000	☆CRD-11207
585.788	771.525	230.188	230.188	6.4	3.3	4,300	12,900	440,000	1,310,000	☆ * CRD-11701
600	760 870	115 380	115 400	4 7.5	4 4	1,740 8,500	4,400 24,100	178,000 865,000	450,000 2,460,000	CRD-12005 ☆CRD-12006
630	920	212	212	7.5	7.5	5,350	12,800	545,000	1,310,000	☆3230/630G2

Equivalent bearing load

dynamic $P_r = XF_r + YF_a$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$					
X	Y	X	Y				
1	Y_1	0.67	Y_2				

static
Por=Fr+YoFa

	Abutmen	t and fillet	dimensi	ons		Load [®] Constant Axial load factors center					Mass
d	\mathcal{D}	mm	C	0.0	0.0	mm					kg
$d_{ m a}$ max	D max	a min	$S_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	Y_{0}	(approx.)
IIIax	IIIax	111111	111111	IIIax	IIIax	α	e	11	12	10	(αρρίολ.)
460	598	570	20	4	5	48.5	0.37	1.80	2.69	1.76	154
465	672	625	25	5	5	60	0.40	1.68	2.50	1.64	346
489.5	699	609	6.2	6	6	- 67	0.37	1.80	2.69	1.76	780
480	622	600	20	5	5	53.5	0.37	1.80	2.69	1.76	177
485	692	645	25	5	5	44	0.40	1.68	2.50	1.64	361
503.5	702	632	10	5	5	- 24.5	0.33	2.03	3.02	1.98	513
500.5	684	619.5	15.5	3	6	- 8	0.43	1.57	2.34	1.53	483
507	704.5	COO F	10.5			00	0.40	1.00	0.50	1.04	000
537	794.5	690.5	19.5	6	6	- 29	0.40	1.68	2.50	1.64	890
500	652	620	25	5	5	56.5	0.37	1.80	2.69	1.76	201
525	724	660	25	6	6	34.5	0.40	1.68	2.50	1.64	431
547	832	709.5	19.5	5	5	– 43	0.40	1.68	2.50	1.64	1,120
											, -
520	672	640	25	5	5	63	0.37	1.80	2.69	1.76	211
547.5	754	688.5	30	6	6	36	0.40	1.68	2.50	1.64	478
500	577	557	6.5	3.3	6.4	133.5	0.61	1.11	1.66	1.09	108
===					- · ·	400 =	2.24		4.00	4.00	400
500	577	557	6.5	3.3	6.4	133.5	0.61	1.11	1.66	1.09	108
504	585	567.5	6.5	3.3	6.4	35.5	0.33	2.03	3.02	1.98	121
536	648	609	7.5	2	4	75.5	0.40	1.68	2.50	1.64	148
540	692	655	25	5	5	61.5	0.37	1.80	2.69	1.76	221
583.5	776	709	7.5	8	8	44	0.40	1.68	2.50	1.64	535
550	794	740	30	6	6	37.5	0.40	1.68	2.50	1.64	570
	701	7 10				07.0	0.10	1.00	2.00	1.01	070
620	792	738	11	5	5	54.5	0.35	1.92	2.86	1.88	347
622.5	743.5	698	10.5	3.3	6.4	31.5	0.35	1.95	2.90	1.91	285
022.0	7-0.0	030	10.5	0.0	0.7	01.0	0.00	1.55	2.50	1.01	200
639	742	708	5	3	3	110.5	0.37	1.80	2.69	1.76	120
641	834	747	7.5	3	6	5.5	0.47	1.43	2.12	1.40	758
399	884	825.5	8.5	6	6	93.5	0.40	1.68	2.50	1.64	479

NTN

Bearing numbers

Metric system sizes

d 660.4~1,400mm

Boundary dimensions

		r	nm			dynamic kl	static N	dynamic kç	static gf	3
d	D	В	C_1	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
660.400	762.000	98.425	101.600	3	2.5	1,250	4,250	128,000	435,000	* CRD-13209
700	890	150	160	5	5	2,850	8,600	291,000	880,000	CRD-14003
710	1,150	345	345	12	12	10,900	25,300	1,120,000	2,580,000	☆3231/710BG2
850	1,250	370	370	7.5	7.5	11,800	31,500	1,210,000	3,250,000	☆CRD-17003
1,400	1,600	180	180	5	2.5	4,400	16,300	445,000	1,670,000	CRD-28003

Basic load ratings

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

static
Por=Fr+YoFa

		Abutme	ent and fille	t dimens	ions		Load [©] center	Constant	Axia	l load fac	tors	Mass
			mm				mm					kg
	$d_{ m a}$		$D_{\rm a}$	S_{a}	$r_{ m as}$	$r_{ m las}$						
	max	max	min	min	max	max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
	684	748	724	4.5	2	2.5	198.5	0.53	1.27	1.89	1.24	71.1
	746	868	817	6.5	4	4	- 5.5	0.45	1.50	2.24	1.47	224
	828	1,098	1,012	1.5	10	10	23	0.32	2.12	3.15	2.07	1,464
	942	1,214	1,104	13.5	6	6	81.5	0.40	1.68	2.50	1.64	1,562
Ī	1,437.5	1,578	1,524	11.5	2	4	445.5	0.55	1.24	1.84	1.21	534

Inch system sizes

d 152.400~276.225mm

	Во	undary dimension	ons	dynamic	Basic lo static	ad ratings dynamic		
		mm		dynamic k		•	gf	
d	D	В	C_1	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
152.400	307.975	171.450	161.924	1,510	2,620	154,000	267,000	
177.800	288.925 288.925	123.825 123.825	123.825 123.825	940 1,160	1,900 2,140	96,000 119,000	194,000 218,000	
187.325	319.964	161.925	168.276	1,590	2,790	162,000	285,000	
190.500	365.049	152.400	158.750	1,670	3,200	171,000	330,000	
203.200	317.500 365.049	123.825 152.400	123.825 158.750	1,060 1,670	2,310 3,200	108,000 171,000	236,000 330,000	
206.375	336.550	184.150	180.976	1,900	4,050	194,000	415,000	
215.900	285.750	85.725	85.725	650	1,640	66,500	167,000	
219.075	358.775	200.025	196.850	2,130	4,550	217,000	465,000	
220.662	314.325	115.888	115.886	1,070	2,450	109,000	250,000	
228.600	400.050	139.700	139.700	1,500	2,870	153,000	293,000	
241.478	349.148	107.950	107.950	940	2,010	96,000	205,000	
244.475	327.025 381.000	92.075 146.050	92.075 146.050	835 1,300	2,050 2,880	85,000 132,000	209,000 294,000	
247.650	406.400	219.075	215.900	2,830	6,000	289,000	615,000	
254.000	358.775 368.300	130.175 92.862	130.175 92.710	1,390 790	3,300 1,630	142,000 80,500	335,000 166,000	
260.350	400.050	114.300	119.060	1,220	2,460	124,000	251,000	
266.700	355.600	109.538	107.950	1,070	2,670	110,000	272,000	
269.875	381.000	136.525	136.525	1,520	3,600	155,000	365,000	
276.225	393.700	130.175	130.175	1,340	2,800	137,000	286,000	

Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max.

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$						
X	Y	X	Y					
1	Y_1	0.67	Y_2					

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

Bearing numbers			tment an dimensio		Load [©] center	Constant	Axia	I load fac	tors	Mass
	$d_{ m a}$	D_{a}	mm	an.	mm					kg
	$lpha_{ m a}$ min	D_{a} min	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
T-450900D/451212+A	187.5	269	9.7	6.8	-40.5	0.33	2.07	3.08	2.02	60.5
T-94706D/94113+A T-HM237546D/HM237510+A	195 194	259 266	1.5 1.5	3.3 3.3	1.5 –20	0.47 0.32	1.44 2.12	2.15 3.15	1.41 2.07	31.6 31.6
T-H239649D/H239610+A	209	293	3.3	4.8	-35	0.32	2.12	3.15	2.07	53.7
T-EE420750D/421437+A	221	329	3.3	3.3	- 5.5	0.40	1.68	2.50	1.64	72.8
T-93800D/93125+A T-EE420800D/421437+A	222 230	286 329	1.5 3.3	3.3 3.3	19 -5.5	0.52 0.40	1.29 1.68	1.92 2.50	1.26 1.64	36.3 69.0
T-H242649D/H242610+A	227	306	1.5	3.3	-35	0.33	2.03	3.02	1.98	64.1
T-LM742749D/LM742710+A	229	266	2.3	3.3	35	0.48	1.40	2.09	1.37	14.8
H244849D/H244810A+A	242	323	1.5	6.4	-42	0.33	2.03	3.02	1.98	79.5
T-M244249D/M244210+A	235	293	1.5	3.3	-97	0.33	2.03	3.02	1.98	28.6
EE529091D/529157+A	256	367	3.3	3.3	-8	0.31	2.18	3.24	2.13	74.2
EE127097D/127135+A	258	325	1.5	3.3	12.5	0.35	1.91	2.85	1.87	33.8
LM247748D/LM247710A+A EE126096D/126150+A	257 269	310 343	1.5 3.3	3.3 4.8	12.5 28.5	0.32 0.52	2.09 1.31	3.11 1.95	2.04 1.28	21.4 61.4
HH249949D/HH249910+A	278	366	3.3	6.4	-42	0.33	2.03	3.02	1.98	112
T-M249748D/M249710+A EE170975D/171450+A	273 269	335 340	3.3 1.5	3.3 3.3	-1 20	0.33 0.36	2.03 1.85	3.02 2.76	1.98 1.81	41.2 32.5
EE221025D/221575+A	290	366	6.4	6.4	24.5	0.39	1.71	2.54	1.67	52.0
T-LM451349D/LM451310+A	281	335	1.5	3.3	16	0.36	1.87	2.79	1.83	29.9
T-M252349D/M252310+A	290	356	3.3	3.3	0.5	0.33	2.03	3.02	1.98	48.6
T-EE275109D/275155+A	294	366	1.5	6.4	22.5	0.40	1.68	2.50	1.64	50.5

NTN

Inch system sizes

d 279.400~384.175mm

	Во	undary dimension	ons	dynamic	Basic Io	ad ratings dynamic	static
		mm		•	:N	dynamic	kgf
d	D	В	C_1	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
279.400	393.700 457.200	127.000 244.475	127.000 244.475	1,130 3,550	2,670 7,900	115,000 365,000	272,000 805,000
285.750	380.898	117.475	117.475	1,140	3,100	116,000	315,000
288.925	406.400	144.462	144.463	1,740	4,150	177,000	425,000
300.038	422.275	150.812	150.813	1,950	4,800	198,000	490,000
304.648	438.048	131.762	131.762	1,440	3,250	147,000	330,000
304.800	419.100 444.500	130.175 107.950	130.175 111.126	1,400 1,080	3,400 2,300	142,000 110,000	350,000 234,000
304.902	412.648	128.588	128.588	1,500	3,700	153,000	380,000
305.000	438.048	134.145	138.112	1,530	3,450	156,000	350,000
317.500	422.275 447.675	128.588 158.750	128.587 158.750	1,320 1,990	3,500 4,800	135,000 203,000	360,000 485,000
333.375	469.900	166.688	166.688	2,320	5,500	237,000	565,000
343.052	457.098	122.238	122.238	1,380	3,450	141,000	350,000
346.075	488.950	174.625	174.625	2,490	6,150	254,000	630,000
347.662	469.900	138.112	138.112	1,860	4,550	190,000	465,000
355.600	444.500 457.200 482.600 488.950 501.650	114.300 120.650 128.588 153.988 111.125	112.712 120.650 133.350 153.988 127.000	1,120 1,440 1,630 2,030 1,550	3,500 3,900 3,850 5,000 3,650	114,000 147,000 166,000 207,000 158,000	355,000 400,000 390,000 510,000 375,000
368.300	523.875	185.738	185.738	2,610	6,550	266,000	665,000
384.175	546.100	193.675	193.675	3,150	8,050	320,000	820,000

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{ m a}}{F_{ m r}}$	≦ e	$\frac{F_{i}}{F_{i}}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

Bearing numbers			tment an dimensio		Load [®] center	Constant	Axia	I load fac	tors	Mass
		D	mm		mm					kg
	$d_{ m a}$ min	$D_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	Y_{0}	(approx.)
							•			Value - 7
EE135111D/135155+A	297	368	1.5	6.4	24	0.40	1.68	2.50	1.64	48.1
HH255149D/HH255110+A	309	412	1.5	6.4	-4 9	0.33	2.03	3.02	1.98	158
T-LM654648D/LM654610+A	302	356	1.5	3.3	36	0.43	1.56	2.33	1.53	36.7
M255449D/M255410A+A	310	379	3.3	3.3	3	0.34	2.00	2.98	1.96	58.1
☆T-HM256849D/HM256810G2+A	322	394	3.3	3.3	66	0.34	2.00	2.99	1.96	65.6
EE329119D/329172+A	327	410	3.3	3.3	11.5	0.33	2.04	3.04	2.00	64.3
M257149D/M257110+A	322	392	1.5	6.4	12.5	0.33	2.03	3.02	1.98	53.1
EE291200D/291750+A	337	416	7.9	1.5	34	0.38	1.78	2.65	1.74	55.7
M257248D/M257210+A	325	388	3.3	3.3	9.5	0.32	2.12	3.15	2.07	49
M757449D/M757410+A	328	407	3.3	4.8	44	0.47	1.43	2.12	1.40	65.3
LM258648D/LM258610+A	334	398	1.5	3.3	9	0.32	2.10	3.13	2.06	49.1
T-HM259049D/HM259010+A	340	418	3.3	3.3	3	0.33	2.02	3.00	1.97	77.9
HM261049D/HM261010A+A	357	439	3.3	3.3	3.5	0.33	2.02	3.00	1.97	90.1
LM761649D/LM761610+A	361	432	1.5	3.3	63	0.47	1.43	2.12	1.40	55
☆T-HM262749D/HM262710G2+A	371	456	3.3	3.3	2	0.33	2.02	3.00	1.97	103
M262449D/M262410+A	369	443	3.3	3.3	14.5	0.33	2.03	3.02	1.98	68
T-L163149D/L163110+A	370	422	1.5	3.3	22.5	0.31	2.20	3.27	2.15	40.1
LM263149D/LM263110+A	372	434	1.5	3.3	23	0.32	2.12	3.15	2.07	49.1
LM763449D/LM763410+A	375	453	1.5	3.3	62.5	0.47	1.43	2.14	1.40	67.4
M263349D/M263310+A T-EE231401D/231975+A	374 382	459 472	1.5 3.3	3.3 3.3	11.5 62	0.33 0.44	2.03 1.53	3.02 2.28	1.98 1.50	85.4 68.5
1-EE231401D/2319/3+A	30∠	412	ა.ა	٥.٥	02	0.44	1.00	2.20	1.30	00.0
☆HM265049D/HM265010G2+A	394	487	3.3	6.4	1.5	0.33	2.03	3.02	1.98	130
☆T-HM266449D/HM266410G2+A	411	507	3.3	6.4	1.5	0.33	2.03	3.02	1.98	153

NTN

Inch system sizes

d 393.700~584.200mm

	Во	undary dimensio	ons	dynamic	Basic loa	ad ratings dynamic	static
		mm			«N	aya	kgf
d	D	В	C_1	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
393.700	546.100	138.112	138.112	1,870	5,100	191,000	520,000
406.400	546.100 590.550	138.112 193.675	138.112 193.674	1,870 2,820	5,100 6,800	191,000 287,000	520,000 690,000
409.575	546.100	161.925	161.925	2,390	6,350	243,000	645,000
415.925	590.550	209.550	209.550	3,650	9,450	375,000	965,000
431.800	571.500 571.500	133.350 161.925	136.526 161.925	1,880 2,160	4,950 5,900	191,000 221,000	505,000 600,000
447.675	635.000	223.838	223.838	4,150	11,100	425,000	1,130,000
457.200	596.900 596.900	133.350 133.350	136.525 136.525	2,070 2,070	5,200 5,200	211,000 211,000	530,000 530,000
479.425	679.450	238.125	238.125	4,900	13,000	500,000	1,320,000
482.600	615.950 647.700	158.750 201.612	158.750 201.612	2,320 3,700	6,700 10,100	237,000 380,000	685,000 1,030,000
489.026	634.873	153.988	153.988	2,500	6,950	255,000	710,000
501.650	711.200	250.825	250.825	5,050	13,700	515,000	1,390,000
514.350	673.100	203.200	203.200	3,450	10,200	355,000	1,040,000
519.112	736.600	258.762	258.762	5,300	14,400	540,000	1,470,000
536.575	761.873 761.873	269.875 269.875	269.875 269.875	5,900 5,900	15,200 15,200	600,000 600,000	1,550,000 1,550,000
558.800	736.600 736.600	155.575 196.850	155.575 196.850	2,500 3,550	6,750 10,300	255,000 365,000	690,000 1,050,000
571.500	812.800	285.750	285.750	6,950	18,300	710,000	1,870,000
584.200	762.000	188.912	193.675	3,850	11,200	390,000	1,140,000

Remarks: 1. The above chamfer of inner and outer ring are bigger than $r_{\rm as}$ max or $r_{\rm las}$ max. 2. Bearing numbers marked ""\(\frac{1}{2} \)" designate bearing with hollow rollers and pin type cages.

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$					
X	Y	X	Y				
1	Y_1	0.67	Y_2				

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

Bearing numbers			Abutment and fillet dimensions			Constant	Axial load factors			Mass
	,	.	mm		mm					kg
	$d_{ m a}$ min	$D_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	Y_{0}	(approx.)
										, , ,
LM767745D/LM767710+A	418	510	1.5	6.4	78	0.48	1.42	2.11	1.38	97.4
LM767749D/LM767710+A	427	510	1.5	6.4	78	0.48	1.42	2.11	1.38	90.5
EE833160XD/833232+A	435	549	3.3	6.4	5.5	0.33	2.07	3.09	2.03	175
☆M667947D/M667910G2+A	431	510	1.5	6.4	47	0.42	1.61	2.40	1.58	104
☆T-M268749D/M268710G2+A	444	549	3.3	6.4	0.5	0.33	2.03	3.02	1.98	181
T-LM869449D/LM869410+A	453	537	1.5	3.3	113	0.55	1.24	1.84	1.21	92.1
LM769349D/LM769310+A	453	534	1.5	6.4	62.5	0.44	1.52	2.26	1.49	112
☆M270749D/M270710AG2+A	478	591	3.3	6.4	0.5	0.33	2.03	3.02	1.98	224
☆L770847D/L770810AG2+A	478	567	1.5	3.3	97	0.47	1.43	2.12	1.40	96.7
L770849D/L770810+A	478	567	1.5	3.3	97	0.47	1.43	2.12	1.40	96.7
☆T-M272749D/M272710G2+A	510	633	3.3	6.4	1.5	0.33	2.03	3.02	1.98	293
☆LM272249D/LM272210G2+A	504	585	3.3	6.4	35.5	0.33	2.03	3.02	1.98	115
☆M272647D/M272610G2+A	510	609	3.3	6.4	18	0.33	2.03	3.02	1.98	185
LM772749D/LM772710A+A	516	600	3.3	3.3	95	0.47	1.43	2.12	1.40	124
☆M274149D/M274110G2+A	534	663	3.3	6.4	-1.5	0.33	2.03	3.02	1.98	314
LM274449D/LM274410+A	540	636	3.3	6.4	23	0.33	2.03	3.02	1.98	189
☆M275349D/M275310G2+A	552	684	3.3	6.4	-1.5	0.33	2.03	3.02	1.98	348
☆M276448D/M276410G2+A	564	711	3.3	6.4	1	0.33	2.03	3.02	1.98	389
☆M276449D/M276410G2+A	564	711	3.3	6.4	1	0.33	2.03	3.02	1.98	389
EE843220D/843290+A	585	699	3.3	6.4	64.5	0.34	1.98	2.94	1.93	177
☆LM377449D/LM377410G2+A	588	696	3.3	6.4	43	0.35	1.95	2.9.0	1.91	223
☆M278749D/M278710AG2+A	609	756	3.3	6.4	0	0.33	2.03	3.02	1.98	470
☆LM778549D/LM778510G2+A	615	717	3.3	6.4	108	0.47	1.43	2.14	1.40	223

Double Row Tapered Roller Bearings (Inside Direction)

Inch system sizes

d 595.312~939.800mm

	Во	undary dimension	ons			ad ratings	
		mm		dynamic kl	static	dynamic	static
		111111		KI	V		kgf
d	D	B	C_1	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
595.312	844.550	296.862	296.862	7,350	20,200	750,000	2,060,000
609.600	787.400 863.600	171.450 317.500	171.450 317.500	3,500 7,900	9,950 21,100	360,000 805,000	1,020,000 2,150,000
635.000	901.700	317.500	317.500	8,300	22,100	845,000	2,250,000
657.225	933.450	328.612	328.612	8,950	24,000	910,000	2,450,000
660.400	812.800	176.212	176.212	3,600	11,600	370,000	1,180,000
679.450	901.700	265.112	265.112	6,500	19,000	665,000	1,940,000
685.800	876.300	168.275	171.450	3,550	10,900	360,000	1,110,000
708.025	930.275	273.050	273.050	6,750	20,400	690,000	2,080,000
711.200	914.400	149.225	149.225	3,100	8,950	315,000	910,000
749.300	990.600	293.000	293.000	7,400	22,700	750,000	2,310,000
762.000	1,066.800 1,079.500	352.425 381.000	365.125 381.000	10,300 11,100	29,300 32,000	1,050,000 1,130,000	2,990,000 3,250,000
863.600	1,130.300 1,219.200	323.850 425.450	323.850 438.150	9,200 14,000	29,600 41,500	935,000 1,430,000	3,000,000 4,200,000
938.212	1,270.000	400.050	400.050	13,100	40,000	1,340,000	4,100,000
939.800	1,333.500	349.250	463.550	16,900	48,500	1,720,000	4,950,000

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_s}{F_1}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

Bearing numbers			tment an		Load [®] center	Constant	Axia	ıl load fac	tors	Mass
			mm		mm					kg
	$d_{ m a}$ min	$D_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	a	e	Y_1	Y_2	Y_{0}	(approx.)
	111111	111111	IIIAX	IIIdx	u	U	11	12	10	(αρριοκ.)
☆M280049D/M280010G2+A	633	786	3.3	6.4	1	0.33	2.03	3.02	1.98	525
☆T-EE649241D/649310G2+A	636	747	3.3	6.4	79	0.37	1.82	2.71	1.78	210
☆M280349D/M280310G2+A	648	807	3.3	6.4	-4.5	0.33	2.03	3.02	1.98	585
☆M281049D/M281010G2+A	675	843	3.3	6.4	6	0.33	2.03	3.02	1.98	641
☆M281649D/M281610G2+A	699	870	3.3	6.4	6	0.33	2.03	3.02	1.98	711
☆L281149D/L281110G2+A	684	777	3.3	6.4	89	0.37	1.80	2.69	1.76	195
☆LM281849D/LM281810G2+A	714	852	3.3	6.4	31.5	0.33	2.03	3.02	1.98	459
☆EE655271D/655345G2+A	717	831	3.3	6.4	129	0.42	1.61	2.4.0	1.58	247
☆LM282549D/LM282510G2+A	741	879	3.3	6.4	33	0.33	2.03	3.02	1.98	490
☆EE755281D/755360G2+A	744	873	3.3	6.4	127	0.38	1.77	2.64	1.73	243
☆LM283649D/LM283610G2+A	786	936	3.3	6.4	34.5	0.33	2.03	3.02	1.98	606
☆M284148D/M284111G2+A ☆M284249D/M284210G2+A	819 810	996 1,005	special chamfer 4.8	12.7 12.7	14 0	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	968 1,097
☆LM286249D/LM286210G2+A ☆EE547341D/547480G2+A	906 918	1,065 1,135	4.8 4.8	12.7 12.7	49.5 1.5	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	848 1,552
☆LM287649D/LM287610G2+A	990	1,190	4.8	12.7	30.5	0.33	2.03	3.02	1.98	1,444
☆LM287849D/LM287810G2+A	999	1,240	4.8	12.7	3.5	0.33	2.03	3.02	1.98	1,540

Double Row Steep Slope Tapered Roller Bearings (Outside Direction)

d 100∼533.400mm

	Bour	dary dimens	ions			dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers
		mm				k	N	k	gf	
d	D	B_1	C	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
100	215	115	74	3	1	510	680	52,000	69,500	CRI-2054
105	240	110	75	3	1	585	790	60,000	80,500	CRI-2105
110	240 240	118 119	81 74	3 3	1 1	585 585	790 790	60,000 60,000	80,500 80,500	CRI-2262 CRI-2252
115	230	116	84	3	1.5	680	1,100	69,000	112,000	CRI-2301
125	230	116	84	3	2	735	1,240	75,000	127,000	CRI-2554
128	229	116	74	3	1	525	830	53,500	84,500	CRI-2663
130	280 299	137 137	93.5 87.5	4 4	1.5 1.5	835 895	1,170 1,420	85,500 91,500	120,000 145,000	CRI-2618 CRI-2624
140	260	120	84	3	1.5	735	1,210	75,000	123,000	CRI-2826
155	330	180	120	5	1.5	1,350	2,210	137,000	226,000	CRI-3101
230	380	175	115	4	1.5	1,410	2,970	144,000	305,000	CRI-4613
260	530	275	163.9	6	2.5	2,880	5,200	293,000	530,000	CRI-5215
305	560	223	130	5	2.5	2,530	4,700	258,000	480,000	☆CRI-6108
317.500	558.800	254.000	162.000	5	2	3,000	5,900	310,000	600,000	☆ * CRI-6412
370	680	280	188	7.5	4	4,300	8,400	440,000	855,000	☆CRI-7402
533.400	736.600	225.425	177.800	6.4	1.5	3,300	9,250	340,000	940,000	☆ * CRI-10702

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

 $\begin{array}{c|c}
F_a \\
F_r \\
\hline
X & Y & X & Y \\
\hline
1 & Y_1 & 0.67 & Y_2
\end{array}$

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

Ak	outment an	d fillet din	nensions		Load center	Constant	Axi	al load fact	tors	Mass
	_	mm			mm					kg
$d_{ m a}$ min	$D_{ m b}$ min	$S_{ m b}$ min	$r_{ m as}$ max	$r_{ m las}$ max	α	e	Y_1	Y_2	Y_{0}	(approx.)
IIIIII	111111	111111	IIIdX	IIIdX	и	6	11	12	10	(арргох.)
114	202	20.5	2.5	1	54	0.81	0.83	1.23	0.81	18.2
119	227.5	17.5	2.5	1	146	0.81	0.83	1.23	0.81	23.6
124	228	18.5	2.5	1	153	0.81	0.83	1.23	0.81	22
124	223.5	22.5	2.5	1	152	0.81	0.83	1.23	0.81	25
129	221	16	2.5	1.5	143.5	0.74	0.92	1.36	0.90	21.2
139	221	16	2.5	2	143.5	0.74	0.92	1.36	0.90	19.9
142	220.5	21	2.5	1	192.5	1.10	0.61	0.91	0.60	17.8
148	268.5	21.5	3	1.5	176.5	0.81	0.83	1.23	0.81	34.5
148	270	24.5	3	1.5	184.5	0.83	0.81	1.21	0.79	45.8
154	245	18	2.5	1.5	155.5	0.74	0.92	1.36	0.90	26.6
177	313	30	4	1.5	219	0.81	0.83	1.24	0.82	66
248	363.5	30	3	1.5	241	0.80	0.85	1.26	0.83	73.9
288	494	55.5	5	2	364.5	0.94	0.71	1.06	0.70	248
327	530	46.5	4	2	414	1.09	0.62	0.92	0.61	227
339.5	531.5	46	4	2	351	0.81	0.84	1.25	0.82	248
406	633	46	6	3	370.5	0.70	0.97	1.44	0.94	420
561.5	718.5	24	5	1.5	399.5	0.70	0.97	1.44	0.94	268

d 100∼260mm

		Boundary of	dimensions	\$		dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers	Drawing No.
		m	ım			k		k(
d	D	В	$C_{ m r}$	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
100	215 250	105 120	110 120	3 3	1 2.5	585 750	825 1,080	60,000 76,500	84,500 110,000	CRD-2005 CRD-2011	A A
110	240	118	118	3	1	750	1,080	76,500	110,000	CRD-2214	А
120	260	130	130	3	1	830	1,200	85,000	122,000	CRD-2410	А
125	305	180	180	3	3	1,410	2,250	143,000	230,000	CRD-2503	В
140	305	160	160	5	1.5	1,160	1,850	118,000	189,000	CRD-2819	А
150	320 380	144 235	144 235	4 5	4 2.5	1,050 2,320	1,490 4,000	107,000 236,000	152,000 410,000	CRD-3013 CRD-3011	A A
160	260	130	130	3	1.5	880	1,740	89,500	178,000	CRD-3253	А
170	300 360 360	100 144 144	100 160 160	3 4 4	2.5 2.5 1.5	845 1,270 1,440	1,450 2,000 2,300	86,000 129,000 147,000	148,000 204,000 234,000	CRD-3423 CRD-3414 CRD-3416	A A A
180	330 380 400	190 158 232	190 158 232	5 3 4	1.5 4 4	1,710 1,380 2,090	3,250 1,980 3,600	175,000 141,000 213,000	330,000 202,000 370,000	CRD-3615 CRD-3623 CRD-3622	A A A
190	320 320 350	104 104 135	104 104 135	3 3 3	3 4 3	810 850 1,130	1,460 1,540 1,950	83,000 86,500 116,000	149,000 157,000 199,000	CRD-3801 CRD-3813 CRD-3811	A A A
210	480	230	230	6	6	2,690	4,300	274,000	440,000	CRD-4209	А
228.600	431.800	177.800	177.800	5	5	1,630	3,100	166,000	315,000	*CRD-4604	А
240	460	140	140	5	5	1,380	2,510	140,000	256,000	☆CRD-4808	В
254	585	260	285	4	4	3,700	6,450	375,000	660,000	☆CRD-5102	А
260	458 459 459	155 155 155	155 155 155	5 5 4	5 5 4	1,740 1,740 1,740	3,150 3,150 3,150	177,000 177,000 177,000	320,000 320,000 320,000	☆CRD-5214 ☆CRD-5216 ☆CRD-5224	B A B

|--|

	Groove	dimens	sions		Abutm	ent and f	illet dime	nsions		Constant	Axia	l load fac	tors	Mass	
mm	n		numbers	mm		m	m							kg	
width	depth	angle		key groove	$d_{ m a}$	$D_{\rm a}$	$S_{\rm a}$	$r_{ m as}$	$r_{ m las}$						
$K_{ m w}$	$K_{ m d}$	θ °	side face	$K_{ m r}$	max	min	min	max	max	e	Y_1	Y_2	Y_{o}	(approx.)	
_	_	_	_	_	117.5	201	3.7	2.5	3	0.81	0.83	1.23	0.81	19.7	
_	_	_	_	_	130.5	236	6.6	2.5	3	0.81	0.83	1.23	0.81	31.2	
_	_	_	_	_	129	226	5.8	2.5	3	0.81	0.83	1.23	0.81	26.6	
					147 5	0.40	0.1	0.5	0	0.01	0.00	1.00	0.01	04.0	
_	_	_	_	_	147.5	246	3.1	2.5	3	0.81	0.83	1.23	0.81	34.2	
30.2	11	90	1-2	_	160.5	291	1.5	2.5	3	0.73	0.93	1.38	0.91	68.9	
00.Z	'''	30	1-2		100.5	231	1.5	2.5	- 0	0.75	0.30	1.00	0.51	00.9	
_	_	_	_	_	168.5	283	7.5	4	5	0.73	0.92	1.37	0.90	58.1	
								•		00	0.02		0.00		
_	_	_	_	_	180	302	8	3	4	0.81	0.83	1.23	0.81	56.9	
_	_	_	_	_	186.5	358	6.5	4	5	0.81	0.83	1.23	0.81	142	
_	_	_	_	_	177	246	3.5	2.5	3	0.62	1.09	1.62	1.06	27	
_	_	_	_	_	195	286	5.4	2.5	3	0.70	0.97	1.44	0.94	30.2	
_	_	_	_	_	204.5	342	1.5	3	4	1.10	0.62	0.92	0.60	79.7	
_	_	_	_	_	197	342	1.5	3	4	1.10	0.61	0.91	0.60	79.7	
							0.5	4	_	0.50				74.0	
_	_	_	_	_	200.5	308	3.5	4	5	0.58	1.17	1.75	1.15	71.9	
_	_	_	_	_	208.5	366	3.4	2.5	3	0.81	0.83	1.23	0.81	87.6	
_	_	_	_	_	211.5	382	6.8	3	4	0.81	0.83	1.23	0.81	146.5	
_	_	_	_	_	216.5	306	5.5	2.5	3	0.73	0.92	1.37	0.90	34.1	
_	_	_	_	_	214	306	4.6	2.5	3	0.73	0.85	1.26	0.83	34.1	
		_			216	336	5.5	2.5	3	0.80	0.83	1.23	0.81	57.7	
					210	330	5.5	2.5	3	0.61	0.65	1.23	0.61	57.7	
_	_	_	_	_	253	367	5.9	5	5	0.81	0.83	1.23	0.81	212	
					200	007	0.0	<u> </u>	<u> </u>	0.01	0.00	1.20	0.01	212	
_	_	_	_	_	278	410	1.5	4	5	1.01	0.67	0.99	0.65	118	
50	15	90	2-2	_	296	438	1.5	4	5	0.87	0.78	1.16	0.76	107	
_	_	_	_	_	301	567	4.5	3	4	1.17	0.58	0.86	0.56	392	
32	15	90	2-2	_	304	436	1.5	4	5	0.87	0.78	1.16	0.76	109	
_	_	_	_	_	304	437	1.5	4	5	0.87	0.78	1.16	0.76	110	
32	15	90	2-2	_	304	441	1.5	3	4	0.87	0.78	1.16	0.76	110	

d 279.400~305.105mm

279,400			Boundary o	dimension	s		dynamic	Basic los	ad ratings dynamic	static		awing No.
279,400			m	ım							numbers	NO.
280	d	D	В	$C_{ m r}$	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
285 380 92 92 2.5 1 730 1,720 74,500 176,000 CRD-5704 C 440 105 105 4 4 4 1,000 2,150 102,000 219,000 CRD-6025 C 440 105 105 3 3 1,000 2,150 102,000 219,000 CRD-6026 B 500 180 180 18 5 5 1,720 3,300 176,000 340,000 CRD-6006 B 500 200 200 5 5 2,460 5,300 251,000 540,000 ☆CRD-6028 C 500 200 200 5 6 2,480 5,400 253,000 540,000 ☆CRD-6028 C 500 200 180 210 4 4 2,200 4,650 225,000 475,000 CRD-6028 A 304.800 499.948 158.750 203.200 6.4 3.3 1,670 3,300 171,000 340,000 ★CRD-6109 A 499.948 200.000 200.000 6 6 1,670 3,300 171,000 340,000 ★CRD-6128 A 500.000 200.000 200.000 5 5 2,170 5,050 222,000 515,000 ★CRD-6128 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6128 A 305.000 500.000 200.000 200.000 5 5 2,170 5,050 222,000 515,000 ★CRD-6137 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6137 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6137 C 500.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.434 4 4 2,020 3,950 206,000 405,000 ★CRD-6137 C 559.968 169.977 176.352 4 6.4 2,340 4,700 239,000 480,000 ★CRD-6138 B 560.000 200.000 200.000 200.000 10 6.4 2,240 4,700 239,000 480,000 ★CRD-6138 B 560.000 200.000 200.000 10 6.4 2,240 4,700 232,000 460,000 ★CRD-6112 A 305.003 559.867 169.977 176.352 4 6.4 2,101 3,950 205,000 400,000 ★CRD-6112 A 559.999 200.000 200.000 9.5 6 2,270 4,500 232,000 460,000 ★CRD-6112 A 559.999 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6112 A 559.986 169.977 200.508 4 4 2,230 4,500 222,000 515,000 ★CRD-6116 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6116 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6116 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 ★CRD-6117 A 559.968 169.977 200.508 4 4 2,230 4,500 227,000 450,000 ★CRD-6116 D	279.400	533.400	241.300	266.700	6.4	2	3,150	6,100	320,000	620,000	☆ * CRD-5613	Α
300	280	410	110	110	2.5	2.5	985	1,960	101,000	200,000	CRD-5616	Α
300	285	380	92	92	2.5	1	730	1,720	74,500	176,000	CRD-5704	С
304.800	300	440 500 500 500	105 180 200 200	105 180 200 200	3 5 5 5	3 5 5 6	1,000 1,720 2,460 2,480	2,150 3,300 5,300 5,400	102,000 176,000 251,000 253,000	219,000 340,000 540,000 550,000	CRD-6027 CRD-6006 ☆CRD-6028 ☆CRD-6030	C B C A
305.000 200.000 200.000 200.000 5 5 2,460 5,300 251,000 540,000 ★ * CRD-6148 C	304.800								,			
305.069 559.999 200.000 200.000 19.7 6.4 2,270 4,500 232,000 460,000 *CRD-6112A.D° 559.999 200.000 200.000 9.5 6 2,270 4,500 232,000 460,000 *CRD-6152 C 560.000 200.000 200.000 19.7 6.4 2,530 4,700 258,000 480,000 ☆*CRD-6136 B 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6101 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6116 D 559.867 169.977 200.000 3 4 2,160 4,300 220,000 440,000 *CRD-6116 D 559.867 169.977 200.508 4 4 2,230 4,500 227,000 455,000 ☆*CRD-6117 A 559.968 200.000 200.000 19 7 2,530 4,700 258,000 480,000 ☆*CRD-6110 B	305.000	500.000 500.000 500.000 559.968 560.000 560.000	200.000 200.000 200.000 169.977 200.000 200.000	200.000 200.000 200.000 176.434 200.000 200.000	special chamfer 5 5 4 10 20	5 5 5 4 6.4 6.4	2,460 2,170 2,460 2,020 2,340 2,340	5,300 5,050 5,300 3,950 4,700 4,700	251,000 222,000 251,000 206,000 239,000 239,000	540,000 515,000 540,000 405,000 480,000	☆ * CRD-6148 * CRD-6151 ☆ * CRD-6137 * CRD-6140 ☆ * CRD-6146 ☆ * CRD-6154	C C A B
305.069 559.999 200.000 200.000 9.5 6 2,270 4,500 232,000 460,000 ★ CRD-6152 C 560.000 200.000 200.000 19.7 6.4 2,530 4,700 258,000 480,000 ★ CRD-6136 B	305.003	559.867	169.977	176.352	4	6.4	2,010	3,950	205,000	400,000	☆ * CRD-6113	Α
305.079 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6101 D 500.000 200.000 200.000 5 6 2,440 5,900 249,000 600,000 *CRD-6116 D 559.867 169.977 200.000 3 4 2,160 4,300 220,000 440,000 ★CRD-6104 A 559.867 169.977 200.508 4 4 2,230 4,500 227,000 455,000 ★*CRD-6117 A 559.968 200.000 200.000 19 7 2,530 4,700 258,000 480,000 ★*CRD-6110 B	305.069	559.999	200.000	200.000	9.5	6	2,270	4,500	232,000	460,000	* CRD-6152	С
305.105 559.867 169.977 200.508 4 4 2,230 4,500 227,000 455,000 ☆ * CRD-6117 A 559.968 200.000 200.000 19 7 2,530 4,700 258,000 480,000 ☆ * CRD-6110 B	305.079	500.000	200.000	200.000	5	6	2,440	5,900	249,000	600,000	* CRD-6101	D
	305.105	559.867	169.977	200.508	4 19	4	2,230	4,500	227,000	455,000	☆ * CRD-6117	Α

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

	Groove	dimens	ions		Abutm	ent and fil	let dime	ensions		Constant	Axia	l load fac	ctors	Mass
mr	m		numbers	mm		mr	n							kg
width	depth	angle	×	key groove	$d_{ m a}$	$D_{\rm a}$	S_{a}	$r_{ m as}$	$r_{ m las}$					
$K_{ m w}$	$K_{ m d}$	θ $^{\circ}$	side face	$K_{ m r}$	max	min	min	max	max	e	Y_1	Y_2	Y_{o}	(approx.)
_	_	_	_	_	306	505.5	1.5	5	5	1.09	0.62	0.92	0.61	272
	_	_	_	_	300	398	5	2	2.5	1.05	0.64	0.96	0.63	49
32	13	45	1-2	_	299.5	368	6.5	2	2.5	0.81	0.83	1.23	0.81	29
32.13	22.225	45	1-2	_	325	422	4.5	3	4	0.81	0.83	1.23	0.81	54
32.1	22.2	45	1-2	_	325	381.5	4.5	2.5	3	0.81	0.83	1.23	0.81	54
40	15	90	2-2	_	345	478	1.5	4	5	1.19	0.57	0.85	0.56	143
50.8	34.925	45	2-2	_	342	478	1.5	4	5	0.76	0.88	1.31	0.86	158
_	_	_	_	_	341	478	1.5	4	5	0.76	0.88	1.31	0.86	158
_	_	_	_	_	332.5	502	1.5	3	4	1.17	0.58	0.86	0.56	187
					044	470	1.5	_	_	1.10	0.57	0.04	٥.٢٢	150
_	_	_	_	_	344	472	1.5	5	5	1.19	0.57	0.84	0.55	158
_				_	343	472	2.5	5	5	1.19	0.57	0.84	0.55	155
51.5	35	45	2-2	_	347	478	1.5	4	5	0.70	0.97	1.44	0.94	135
50.9	35	45	2-2	_	342	478	1.5	4	5	0.76	0.88	1.31	0.86	155
40.5	35	45	2-2	_	347	478	1.5	4	5	0.70	0.97	1.44	0.94	155
50.8	34.925	45	1-2	_	342	478	1.5	4	5	0.76	0.88	1.31	0.86	155
_	_	_	_	_	372.5	542	1.5	3	4	0.92	0.73	1.09	0.72	193
50	19	90	2-2	_	369	514	1.5	9	5	1.09	0.62	0.92	0.61	218
50	19	90	2-2	_	369	468	1.5	19	5	1.09	0.62	0.92	0.61	218
50.7	39.7	45	1-2	_	372	514	1.5	9	5	1.09	0.62	0.92	0.61	218
_	_	-	_	_	350	542	1.5	3	5	1.09	0.62	0.92	0.61	192
50.8	19.05	90	2-2	14.5	372	470	1.5	18	5	1.09	0.62	0.92	0.61	218
50.8	39.69	45	2-2	_	372	516	1.5	8	5	1.09	0.62	0.92	0.61	218
50.8	19.05	90	2-2	_	354	470	4.7	18	5	1.09	0.62	0.92	0.61	218
50.8	34.9	45	1-2	_	347	478	1.5	4	5	0.70	0.97	1.44	0.94	155
_	_	_	_	7.938	334	478	3.5	5	4	0.70	0.97	1.44	0.94	155
_	_	_	_	7.938	334	478	3.5	5	4	0.70	0.97	1.44	0.94	155
_	_	_	_	_	355	546	1.5	3	2.5	1.09	0.62	0.92	0.61	217
_	_	_	_	_	350	532	8	3	3	1.09	0.62	0.92	0.61	217
50.7	19	90	2-2	_	353.5	476	4.7	5	17	1.09	0.62	0.92	0.61	217
_	_	_	_ _	_	350	582	5.5	2	3	1.09	0.62	0.92	0.61	169
					-		_		-		-	-	-	

d 330∼460mm

A			Boundar	y dimensio	ns		dynamic	Basic loa	ad ratings dynamic	static	Bearing I	Orawing No.
330				mm							Humbers	NO.
330	J	D	n	a	0	0	a	a	, a	-		
330 650 248 248 7.5 6 3,450 6,500 350,000 665,000 CRD-6608 A 350 590 192 192 3 3 3 2,990 6,400 305,000 655,000 ☆CRD-7001 A 360 540 200 200 5 5 2,480 6,150 253,000 630,000 ★CRD-7001 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ★CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ★CRD-7612 B 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650	a	D	В	$C_{ m r}$	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
330 650 248 248 7.5 6 3,450 6,500 350,000 665,000 CRD-6608 A 350 590 192 192 3 3 3 2,990 6,400 305,000 655,000 ☆CRD-7001 A 360 540 200 200 5 5 2,480 6,150 253,000 630,000 ★CRD-7001 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ★CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ★CRD-7612 B 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 4 3,600 8,450 365,000 760,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-8039 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 \$CRD-804 C 650		458	120	120	3	3	990	2,220	101,000	226,000	CRD-6604	В
350 618 200 200 6 6 6 3,000 5,700 310,000 580,000 ☆CRD-7004 A® 360 540 200 200 5 5 2,480 6,150 253,000 630,000 ★CRD-7201 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ☆CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7623 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 4 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 6650 240 240 6 6 3,600 8,450	330	650	248	248	7.5		3,450		350,000	665,000	CRD-6608	
360 540 200 200 5 5 2,480 6,150 253,000 630,000 ☆CRD-7201 B 370 630 240 240 5 6 3,550 7,450 365,000 760,000 ☆CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7614 A 650 240 240 6 3 3,360 7,950 370,000 810,000 ☆CRD-7612 B 650 200 200 17.4 6 3,050 6,100 310,000 625,000 ☆CRD-7612 B 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8010 C 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8010 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ★CRD-8027 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8022 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ★CRD-8040 C 650 240 240 6 6 3,600 8,450 365,000	0.50	590	192	192	3	3	2,990	6,400	305,000	655,000	☆CRD-7017	B [®]
370 630 240 240 5 6 3,550 7,450 365,000 760,000 ☆CRD-7401 B 380 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7614 A 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7612 B 650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7612 B 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8013 C 650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8013 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8026 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8033 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8033 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8033 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,00	350	618	200	200	6	6	3,000		310,000	580,000	☆CRD-7004	A [®]
380	360	540	200	200	5	5	2,480	6,150	253,000	630,000	CRD-7201	В
\$80	370	630	240	240	5	6	3,550	7,450	365,000	760,000	☆CRD-7401	В
\$80		559.5	160	160	5	5	1.890	4.250	192,000	435.000	CRD-7614	Α
650 240 240 6 3 3,600 7,950 370,000 810,000 ☆CRD-7612 B	380									,		
650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8026 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 6 3 3,600 8,450 365,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8034 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 4 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 40 6 6 6 3,600 8,450 365,000 ★CRD-		650	240	240	6	3	3,600	7,950	370,000	810,000	☆CRD-7612	В
650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8026 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8027 C 650 240 240 6 6 3 3,600 8,450 365,000 ★CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8034 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8035 C 650 240 240 6 6 4 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 6 6 6 3,600 8,450 365,000 ★CRD-804 C 650 240 240 40 6 6 6 3,600 8,450 365,000 ★CRD-		650	200	200	17.4	6	3,050	6,100	310,000	625,000	☆CRD-8010	С
650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8032 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8034 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8035 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8018 B 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B					6				340,000		☆CRD-8013	С
650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8032 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8034 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8035 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,3350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,3350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,400 7,4					6	4	3,600		365,000		☆CRD-8026	С
650 240 240 6 6 3,600 8,450 365,000 365,000 3 CRD-8034 C 650 240 240 6 4 3,600 8,450 365,000 865,000 3 CRD-8035 C 650 240 240 6 4 3,600 8,450 365,000 865,000 3 CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8042 C 650 240 240 6 5 3,350 7,450 340,000 760,000 3 CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 3 CRD-8049 C.D		650	240	240	6	3	3,350	7,450	340,000	760,000	☆CRD-8027	С
400							3,600		365,000	865,000	☆CRD-8032	С
400 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8038 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 5 3,350 7,450 340,000 760,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8044 C 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D [©] 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		650	240	240	6	6	3,600	8,450	365,000	865,000	☆CRD-8034	
400 650 240 240 6 4 3,600 8,450 365,000 \$\alpha\$CRD-8039 C 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8042 C 650 240 240 6 5 3,350 7,450 340,000 760,000 \$\alpha\$CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8046 D 650 240 240 6 4 3,600 8,450 365,000 \$\alpha\$CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 \$\alpha\$CRD-8048 C 650 240 240 6 3 3,350 7,450 340,000 760,000 \$\alpha\$CRD-8049 C.D.® 410 580 160 160 4 5 1,890 4,550 1				240	6	6			,		☆CRD-8035	
650 240 240 6 6 5 3,600 8,450 365,000 865,000 ☆CRD-8042 C 650 240 240 6 6 5 3,350 7,450 340,000 760,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 4 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A						4			365,000	865,000		
650 240 240 6 5 3,350 7,450 340,000 760,000 ☆CRD-8044 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8046 D 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 865,000 ☆CRD-8048 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8049 C.D 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8021 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 ★CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A	400				6	4					☆CRD-8039	С
650 240 240 6 6 6 3,600 8,450 365,000 ★CRD-8046 D 650 240 240 6 4 3,600 8,450 365,000 ★CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 ★CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A			240	240	6				365,000		☆CRD-8042	
650 240 240 6 4 3,600 8,450 365,000 ★CRD-8047 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A									340,000			
650 240 240 6 6 3,600 8,450 365,000 ★CRD-8048 C 650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A											☆CRD-8046	
650 240 240 6 6 3,600 8,450 365,000 ★CRD-8049 C.D ⁶ 650 240 240 6 3 3,350 7,450 340,000 760,000 ★CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ★CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ★CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A									365,000			
650 240 240 6 3 3,350 7,450 340,000 760,000 ☆CRD-8014 C 650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A											☆CRD-8048	
650 240 240 6 6 3,350 7,450 340,000 760,000 ☆CRD-8023 D 410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A												
410 580 160 160 4 5 1,890 4,550 192,000 460,000 CRD-8201 B 440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A												
440 650 155 155 6 6 2,330 5,300 238,000 540,000 ☆CRD-8808 A 460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A		650	240	240	6	6	3,350	7,450	340,000	760,000	☆CRD-8023	D
460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9202 B 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A	410	580	160	160	4	5	1,890	4,550	192,000	460,000	CRD-8201	В
460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A	440	650	155	155	6	6	2,330	5,300	238,000	540,000	☆CRD-8808	Α
460 618 150 150 4 4 1,720 4,400 176,000 450,000 CRD-9211 A		618	150	150	4	4	1,720	4,400	176,000	450,000	CRD-9202	В
	460				4	4					CRD-9211	
					6	2.5					☆CRD-9214	

Drawing D

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

	Groove	dimens	ions		Abutm	ent and fil	let dime	nsions		Constant	Axia	l load fac	tors	Mass
mn	n		numbers	mm		mn	n							kg
width	depth	angle	×	key groove	$d_{ m a}$	$D_{\rm a}$	S_{a}	$r_{ m as}$	$r_{ m las}$, i
$K_{ m w}$	$K_{ m d}$	θ $^{\circ}$	side face	$K_{ m r}$	max	min	min	max	max	e	Y_1	Y_2	Y_{o}	(approx.)
32	12	90	2-2	_	355.5	444	8	2.5	2.5	1.05	0.64	0.96	0.63	59.7
_	_	_	_	_	407	624	8	5	6	0.90	0.75	1.12	0.73	383
32	12	90	2-2	_	409.5	576	6.5	2.5	2.5	0.55	1.24	1.84	1.21	209
50	20	90	2-2	_	410	510	1.5	5	5	0.87	0.78	1.16	0.76	252
40	12	90	2-2	_	389.5	518	4.7	4	4	0.70	0.97	1.44	0.94	160
34	20	90	2-2	_	420	608	8	5	4	0.76	0.88	1.31	0.86	316
_	_	_	_	_	414.5	537.5	1.5	4	4	0.70	0.97	1.44	0.94	133
50.8	40	45	2-2	_	435	622	1.5	2.5	5	1.05	0.64	0.96	0.63	329
50	15	90	2-2	_	430	622	8	2.5	5	1.05	0.64	0.96	0.63	338.2
50.4	38.1	45	1-2	_	449	618	2.5	5	12	0.81	0.83	1.23	0.81	260
64.3	32	45	1-2	_	437	622	8	2.5	5	1.05	0.64	0.96	0.63	303
63.6	32	45	1-2	_	456	535	2.5	3	5	0.80	0.85	1.26	0.83	303
64.3	32	45	1-2	_	437	622	8	2.5	5	1.05	0.64	0.96	0.63	303
64.3	32	45	1-2	_	454	622	2.5	3	5	0.80	0.85	1.26	0.83	303
64.3	32	45	1-2	_	454	622	1.5	5	5	0.80	0.85	1.26	0.83	303
64.3	32	45	1-2	_	454	622	8	5	5	0.80	0.85	1.26	0.83	303
63.6	32	45	2-2	_	454	622	2.5	3	5	0.80	0.85	1.26	0.83	302
64.3	32	45	1-2	_	454	622	8	4	5	0.80	0.85	1.26	0.83	303
64.3	32	45	1-2	_	454	622	2	5	5	0.80	0.85	1.26	0.83	303
64.3	32	45	1-2	_	437	525	8	4	5	1.05	0.64	0.96	0.63	292
_	_	_	_	11.25	454	622	1.5	5	5	0.80	0.85	1.26	0.83	303
64.3	32	45	1-2	_	454	622	2.5	3	5	0.80	0.85	1.26	0.83	303
64.3	32	45	2-2	_	454	622	1.5	5	5	0.80	0.85	1.26	0.83	303
63.6	32	45	1-2	11.25	454	622	1.5	5	5	0.80	0.85	1.26	0.83	303
64.3	32	45	1-2	_	437	622	8	2.5	5	1.05	0.64	0.96	0.63	303
_	_	_	_	11.25	437	622	8	5	5	1.05	0.64	0.96	0.63	303
50.8	10	90	1-2	_	440	562	1.5	4	3	0.83	0.81	1.21	0.79	133
_	_	_	_	_	487	622	6.5	5	5	0.80	0.85	1.26	0.83	163
50	15	90	2-2	_	489	600	8	3	3	1.05	0.64	0.96	0.63	126
_	_	_	_	_	489.5	600	1.5	3	3	1.05	0.64	0.96	0.63	120
50.8	35	45	2-2	_	500	692	4.8	2	5	0.80	0.85	1.26	0.83	388

d 470~1,400mm

		Boundary of	dimensions	i		dynamic	Basic Ioa static	d ratings dynamic	static		awing No.
		m	nm			kl	N	ŀ	gf		
d	D	В	$C_{ m r}$	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
470	720	216	216	6	6	2,790	6,800	284,000	690,000	CRD-9404	В
480	689.5 690	180 180	180 180	6 6	6 6	2,670 2,670	6,400 6,400	272,000 272,000	655,000 655,000	☆CRD-9609 ☆CRD-9603	B B
482.600	615.950 733.500	158.750 200.000	158.750 200.000	6.4 17.5	3.3 5	2,240 2,740	6,450 6,550	228,000 279,000	660,000 665,000	☆ * CRD-9709 ☆ * CRD-9704	A [©] C
509.948	733.425	200.02	200.02	5	5	3,250	8,350	330,000	855,000	☆ * CRD-10208	С
510.134	800.001	284.493	284.493	6.4	6.4	5,200	12,100	530,000	1,230,000	☆ * CRD-10206	С
550	920	330	330	7.5	7.5	6,800	15,700	695,000	1,600,000	☆CRD-11001	В
600	1,000	350	350	7.5	7.5	8,250	19,500	840,000	1,990,000	☆CRD-12002	Α
660.000	814.000	176.212	176.212	6.4	3.3	2,600	8,200	266,000	835,000	☆ * CRD-13208	С
685.800	939.800	234.950	228.575	3.3	6.4	4,950	13,500	505,000	1,380,000	☆ * CRD-13702	В
685.876	939.876	234.950	227.813	3.3	6.4	4,950	13,500	505,000	1,380,000	☆ * CRD-13701	С
720	920	130	150	5	4	2,760	7,300	281,000	745,000	☆CRD-14403	Α
780	1,000	200	200	5	2	4,200	12,900	430,000	1,320,000	☆CRD-15601	С
1,400	1,600	180	180	5	2.5	4,400	16,300	445,000	1,670,000	CRD-28003	Α

[•] Minimum allowable dimension for chamfer dimension r or r.

Remarks: 1. The marked "*" bearings are inch system sizes.

B-178

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

		Groove dimensions				Abutr	Abutment and fillet dimensions					Axia	l load fac	tors	Mass
	mm width	depth	angle	numbers	mm key groove	$d_{ m a}$	$D_{ m a}$	m $S_{ m a}$	$r_{ m as}$	$r_{ m las}$					kg
	$K_{ m w}$	$K_{ m d}$	θ °	side face	$K_{ m r}$	max	min	min	max	max	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
_	63.6	30	90	1-2	_	503	692	3	5	5	1.09	0.62	0.92	0.61	315
	50	15	90	2-2	_	525	661.5	8	5	5	0.87	0.78	1.16	0.76	223
	50	15	90	2-1	_	525	662	8	5	5	0.87	0.78	1.16	0.76	224
	_ 50.8	_ 38	- 45	– 2-2	_ _	500.5 546.5	588 669.5	6.5 8	2.5 4	5 12	0.61 1.09	1.11 0.62	1.66 0.92	1.09 0.61	115 301
	50.8	38.1	45	2-2	_	560	711.5	8	4	4	0.87	0.78	1.16	0.76	256
	70.358	44.45	45	1-2	12.865	560	772	8	5	5	0.81	0.83	1.23	0.81	511
	56	22	90	1-2	_	629.5	884	4.5	6	6	0.87	0.78	1.16	0.76	914
	_	_	_	_	_	687	964	8	6	6	0.87	0.78	1.16	0.76	1,130
_	50	20	45	2-2	_	684.5	886	8	2.5	5	0.70	0.97	1.44	0.94	202
_	63.5	19.05	90	2-2	_	738	926	1.5	5	2.5	0.70	0.97	1.44	0.94	478
	63.5	38.1	45	2-2	_	738.5	926	8	5	2.5	0.70	0.97	1.44	0.94	435
	_	_	_	_	_	760.5	898	5.8	3	4	0.81	0.83	1.23	0.81	240
	90	35	45	1-2	_	824.5	978	3.6	2	4	0.80	0.85	1.26	0.83	384
	_	_	_	_	_	1,437.5	1,578	12.5	2	4	0.55	1.24	1.84	1.21	532

d 100∼165.100mm

	Bou	ndary dimensi	ons			dynamic	Basic loa	d ratings dynamic	static
		mm				kN		kgf	
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
100	170	155	155	2.5	0.6	595	1,170	61,000	119,000
105	190	210	210	2.5	1	760	1,630	77,500	166,000
110	150	150	150	1.5	1.5	505	1,280	51,500	131,000
120	170 180 200 210	124 100 132 174	124 100 132 174	2 2 2 2.5	2.5 2.5 2.5 2.5	390 395 640 855	1,020 745 1,220 1,710	40,000 40,000 65,000 87,500	104,000 76,000 125,000 174,000
120.650	174.625	141.288	139.703	1.5	0.8	510	1,220	52,000	124,000
127.000	182.562	158.750	158.750	3.3	1.5	660	1,730	67,000	177,000
130	184	134	134	2	2.5	480	1,190	49,000	122,000
135	180	160	160	2	1	500	1,360	51,000	138,000
136.525	190.500	161.925	161.925	3.3	1.5	695	1,900	71,000	193,000
139.700	200.025	157.165	160.340	3.3	8.0	700	1,950	71,500	199,000
140	198 210 210	144 114 115	144 114 115	2 2 2	2.5 2.5 2.5	575 515 515	1,460 1,070 1,070	58,500 52,500 52,500	149,000 109,000 109,000
146.050	244.475	192.088	187.325	3.3	1.5	955	1,980	97,000	202,000
150	210 212	190 155	190 155	2.5 2.5	1.5 3	860 660	2,240 1,700	87,500 67,500	229,000 173,000
152.400	222.250	174.625	174.625	1.5	1.5	930	2,350	94,500	239,000
160	226 265	165 173	165 173	2.5 2.5	3 2.5	775 1,100	2,030 2,270	79,000 112,000	207,000 231,000
165.100	225.425	165.100	168.275	3.3	0.8	745	2,220	76,000	226,000

Equivalent bearing load

dynamic Pr=XFr+YFa

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_{\rm a}}{F_{\rm r}}>e$						
X	Y	X	Y					
1	Y_1	0.67	Y_2					

static $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$

Bearing numbers	Abı	Constant	Axia	ıl load fa	ctors	Mass				
			mm							kg
	$d_{ m a}$	$D_{\rm a}$	$S_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
				max	max		-1	- 2	-0	(арргол.)
CRO-2008	120	152.5	3.7	2	0.6	0.32	2.12	3.15	2.07	14.5
CRO-2151	135	168.5	2.5	2	1	0.42	1.60	2.38	1.56	26
CRO-2252	119	140.5	1.2	1.5	1.5	0.18	3.66	5.46	3.58	7.7
625924	135	155.5	5	2	2	0.33	2.03	3.02	1.98	8.97
623024	135	166.5	3.8	2	2	0.37	1.80	2.69	1.76	8.87
623124	143	182	4.1	2	2	0.37	1.80	2.69	1.76	16.7
CRO-2418	140	190	4.5	2	2	0.40	1.67	2.50	1.64	22.2
* M224749D/M224710/M224710D	129	163	3	1.5	0.8	0.33	2.03	3.02	1.98	11.5
*T-48290D/48220/48220D	137	168	4.5	3.3	1.5	0.31	2.21	3.29	2.16	14.3
625926	144.5	169	5	2	2	0.33	2.03	3.02	1.98	11.3
CRO-2701	143	165	2	2	1	0.33	2.03	3.02	1.98	13.5
*T-48393D/48320/48320D	144	177	4	3.3	1.5	0.32	2.10	3.13	2.05	14.8
*T-48680D/48620/48620D	150	185	3	3.3	0.8	0.34	2.01	2.99	1.96	17.3
625928	156	183	5	2	2	0.33	2.03	3.02	1.98	14
623028	159	193	3.5	2	2	0.37	1.84	2.74	1.80	13.8
CRO-2817	159	193	3.4	2	2	0.37	1.84	2.74	1.80	13.9
* 81576D/81962/81963D	163	225	6.5	3.3	1.5	0.35	1.92	2.86	1.88	36.8
CRO-3052	162	192.5	2.5	2	1.5	0.40	1.68	2.50	1.64	20.3
625930	167.5	195	5.5	2	2.5	0.33	2.03	3.02	1.98	16.9
*T-M231649D/M231610/M231610D	165	207	4	1.5	1.5	0.36	1.87	2.79	1.83	24.7
625932 CRO-3209 (CRO-3210)	177.5 184	208.5 247	5.5 4.5	2 2	2.5 2	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	20.2 37.0
*T-46791D/46720/46721D	175	209	3	0.8	2.5	0.38	1.76	2.62	1.72	20.7

d 170∼220mm

	Bou	ındary dimensi	ons		Basic load ratings dynamic static dynamic static					
		mm				kN		kgf		
d	D	B_2	C_2	$r_{ m s min}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	240	175	175	2.5	3	835	2,200	85,500	224,000	
	260	144	144	2.5	3	840	1,730	85,500	176,000	
170	280	181	181	2.5	2.5	1,150	2,420	117,000	247,000	
	280	185	185	2.5	3	1,240	2,540	127,000	259,000	
	247.650	192.088	192.088	3.3	1.5	1,000	2,760	102,000	281,000	
177.800	279.400	234.950	234.947	3.3	1.5	1,420	3,400	145,000	345,000	
	304.800	238.227	233.365	3.3	3.3	1,580	3,100	161,000	320,000	
	250	185	185	2	2.5	895	2,350	91,500	239,000	
180	254	185	185	2.5	3	910	2,390	93,000	244,000	
	300	280	280	3	3	2,160	4,800	220,000	490,000	
187.325	269.875	211.138	211.138	3.3	1.5	1,240	3,400	127,000	345,000	
	268	196	196	2.5	3	1,060	2,850	108,000	291,000	
100 000	270	190	190	2.5	2.5	1,080	2,940	111,000	300,000	
190.000	270	190	190	2.5	0.6	1,220	3,050	125,000	310,000	
	292.100	225.425	225.425	3.3	1.5	1,570	4,150	160,000	425,000	
190.500	266.700	187.325	188.912	3.3	1.5	1,040	2,990	106,000	305,000	
198.438	284.162	225.425	225.425	3.3	1.5	1,530	4,000	156,000	410,000	
	282	206	206	2.5	3	1,200	3,300	122,000	335,000	
200	290	160	160	2.5	2.5	925	2,210	94,500	226,000	
	310	200	200	3	3	1,530	3,300	156,000	340,000	
203.200	317.500	215.900	209.550	3.3	3.3	1,270	2,820	129,000	288,000	
206.375	282.575	190.500	190.500	3.3	0.8	1,120	2,890	114,000	294,000	
215.900	288.925	177.800	177.800	3.3	0.8	1,110	3,250	114,000	335,000	
216.103	330.200	263.525	269.875	3.3	1.5	2,000	5,150	204,000	525,000	
	300	230	230	2.5	2.5	1,360	3,650	138,000	375,000	
220	310	226	226	3	4	1,380	3,800	141,000	385,000	
	320	200	200	3	1	1,390	3,400	141,000	345,000	

 $[\]textcircled{1} \ \ \ \text{Minimum allowable dimension for chamfer dimension } r \text{ or } r_{\text{i}}.$

Equivalent bearing load dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≦ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$						
X	Y	X	Y					
1	Y_1	0.67	Y_2					

static
Por=Fr+YoFa

Bearing numbers	Abutment and fillet dimensions						Axia	Axial load factors		
			mm							kg
	$d_{ m a}$	$D_{\rm a}$	S_{a}	$r_{ m as}$	$r_{ m las}$		¥7	7.7	7.7	
			min	max	max	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
625934	187.5	220	5.5	2	2.5	0.33	2.03	3.02	1.98	24.4
623034	192.5	239	3.8	2	2.5	0.37	1.80	2.69	1.76	27.5
CRO-3409	192	255	5	2	2	0.40	1.68	2.50	1.64	44
623134	197	253.5	6.4	2	2.5	0.37	1.80	2.69	1.76	45.2
*67791D/67720/67721D (CRO-3664)	190	229	5	3.3	1.5	0.44	1.54	2.29	1.48	29.4
* 82681D/82620/82620D `	195	251	5	1.5	3.3	0.53	1.28	1.91	1.25	55.3
* EE280700D/281200/281201D (CRO-3663)	198	279	7	3.3	3.3	0.36	1.87	2.79	1.83	69.9
CRO-3658	195	229	3.1	2	2.5	0.44	1.54	2.30	1.51	27.5
625936	200.5	233.5	5.5	2	2.5	0.33	2.03	3.02	1.98	28.9
CRO-3617	201	274	5	2.5	2.5	0.37	1.80	2.69	1.76	69.4
* M238849D/M238810/M238810D	199.9	250	4	3.3	1.5	0.33	2.03	3.02	1.98	41.8
625938	209	245.5	6	2	2.5	0.33	2.03	3.02	1.98	34.7
CRO-3812	205	250	6	2	2	0.33	2.03	3.02	1.98	34.7
CRO-3813	207	248.5	2.5	2	0.6	0.40	1.68	2.50	1.64	34.5
* M241538D/M241510/M241510D	222	271	5	3.3	1.5	0.33	2.03	3.02	1.98	59.6
* T-67885D/67820/67820D	204	246	3	1.5	2.5	0.48	1.41	2.11	1.38	33.6
* M240648D/M240611/M240611D	212	264	5.5	3.3	1.5	0.33	2.03	3.02	1.98	46
625940	219.5	258	6	2	2.5	0.33	2.03	3.02	1.98	40.5
CRO-4013	221	271	5	2	2	0.37	1.80	2.69	1.76	35.1
CRO-4014	222	284	6	2.5	2.5	0.39	1.74	2.59	1.70	54.0
* EE132082D/132125/132126D	224	294	9.5	3.3	3.3	0.31	2.15	3.20	2.10	62.5
*T-67986D/67920/67920D	219	260	5	3.3	0.8	0.51	1.33	1.97	1.30	35.4
*T-LM742749D/LM742714/LM742714D	227	267	5	0.8	2.5	0.48	1.40	2.09	1.37	34.3
* 9974D/9920/9920D	235	277	6	3.3	1.5	0.55	1.23	1.82	1.20	82.1
CRO-4412	236.5	277.5	6.5	0	2	0.43	1.59	2.36	1.55	42.1
625944	242	284.5	6	2.5	3	0.33	2.03	3.02	1.98	53.5
CRO-4411	245	294.5	6.5	2.5	2	0.35	1.95	2.90	1.91	53

CRO-4411

Remarks: 1. Bearing numbers marked "*" designate inch system bearings.

2. The bearing where parentheses adhered abolished inner ring spacer.

B-183

d 220~266.700mm

	Bou	ındary dimensi	ons		Basic load ratings dynamic static dynamic static					
		mm				kN		kgf		
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
220	340	190	190	3	4	1,510	3,300	154,000	335,000	
	340	194	194	3	3	1,510	3,300	154,000	335,000	
220.662	314.325	239.712	239.712	3.3	1.5	1,840	4,900	187,000	500,000	
228.600	364.000	296.875	296.875	3.3	3.3	2,370	5,550	242,000	565,000	
	425.450	349.250	361.950	6.4	3.5	3,450	8,250	355,000	845,000	
234.950	327.025	196.850	196.850	3.3	1.5	1,370	3,700	140,000	380,000	
240	338	248	248	3	4	1,870	4,950	191,000	505,000	
241.478	350.838	228.600	228.600	3.3	1.5	1,610	4,000	164,000	410,000	
244.475	327.025	193.675	193.675	3.3	1.5	1,430	4,100	146,000	415,000	
	381.000	304.800	304.800	4.8	3.3	2,220	5,750	227,000	590,000	
245	380	255.5	254	6.4	1.5	2,060	4,750	210,000	485,000	
250	365	270	270	3	1.5	2,150	6,150	219,000	630,000	
	365	270	270	3	2	2,150	6,150	219,000	630,000	
	370	220	220	4	4	2,050	5,750	209,000	590,000	
254.000	358.775	269.875	269.875	3.3	3.3	2,390	6,550	244,000	670,000	
	368.300	204.622	204.470	3.3	1.5	1,350	3,250	138,000	330,000	
	444.500	279.400	279.400	6.4	3.3	2,890	5,900	294,000	600,000	
260	360	272	272	2.5	1	2,080	5,750	212,000	585,000	
	368	268	268	4	5	1,990	5,700	203,000	580,000	
	400	220	220	4	5	1,970	4,400	201,000	445,000	
	400	255	255	7.5	4	2,210	5,300	225,000	540,000	
260.350	365.125	228.600	228.600	6.4	3.3	1,750	4,550	178,000	465,000	
	400.050	255.588	253.995	6.4	1.5	2,090	4,950	213,000	505,000	
	422.275	314.325	317.500	3.3	6.4	2,980	7,100	305,000	725,000	
266.700	355.600	230.188	228.600	3.3	1.5	1,840	5,350	188,000	545,000	
	355.600	230.188	228.600	3.3	1.5	1,430	4,350	146,000	445,000	
	393.700	269.878	269.878	6.4	3.3	2,110	6,000	216,000	610,000	

¹ Minimum allowable dimension for chamfer dimension r or r,

Equivalent bearing load dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$						
X	Y	X	Y					
1	Y_1	0.67	Y_2					

static
Por=Fr+YoFa

Bearing numbers	Abı	ıs	Constant	stant Axial load factors			Mass			
			mm							kg
	$d_{ m a}$	D_{a}	$S_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	e	Y_1	Y_2	$Y_{ m o}$	(approx.)
623044 CRO-4409	250.5 250.5	312.5 312.5	5.5 6	2.5 2.5	3 2.5	0.37 0.37	1.80 1.80	2.69 2.69	1.76 1.76	63.2 64.5
		293	4	1.5	2.5	0.33	2.03	3.02		
*T-M244249D/M244210/M244210D	235	293	4	1.5	2.5	0.33	2.03	3.02	1.98	60.2
CRO-4606 * EE700090D/700167/700168D	262 263	332 381	6.5 3	3.3 6.4	3.3 3.5	0.32 0.33	2.12 2.03	3.15 3.02	2.07 1.98	117.9 232
* T-8576D/8520/8520D	250	305	5	3.3	1.5	0.41	1.66	2.47	1.62	53.6
625948A (CRO-4825)	260.5	312	6	3	2.5	0.33	2.03	3.02	1.98	70
* EE127097D/127137/127137D	262	325	6.5	3.3	1.5	0.35	1.91	2.85	1.87	76.4
*LM247748D/LM247710/LM247710DA *EE126096D/126150/126151D	257 262	310 343	5 6.5	3.3 3.3	1.5 4.8	0.32 0.52	2.09 1.31	3.11 1.95	2.04 1.28	46.1 132
CRO-4901	275.5	344.5	6.5	6.4	1.5	0.37	1.80	2.69	1.76	106.7
CRO-5004 CRO-5012 CRO-5001	275 279 276	339 332.5 344	5 6 6	2.5 3 3	1.5 2 3	0.33 0.33 0.26	2.03 2.03 2.55	3.02 3.02 3.80	1.98 1.98 2.49	82.1 96.7 87
*T-M249748D/M249710/M249710D *EE171000D/171450/171451D *EE822101D/822175/822176D	272.5 269 289	335 340 406	5 6 8	2.5 3.3 6.4	2.5 1.5 3.3	0.33 0.36 0.34	2.03 1.85 1.98	3.02 2.76 2.94	1.98 1.81 1.93	85.6 71.8 185
CRO-5218 625952 623052 CRO-5215	279 287 292 290	332.5 338.5 366.5 359	6.5 6 6.5 8	2.5 3 3 6	1 3 3 3	0.41 0.33 0.37 0.39	1.66 2.03 1.80 1.71	2.47 3.02 2.69 2.54	1.62 1.98 1.76 1.67	74.2 90.3 98.9 106
* EE134102D/134143/134144D * EE221027D/221575/221576D * HM252349D/HM252310/HM252310D	282 292 290	340 367 392	6.5 8 5.5	6.4 6.4 3.3	3.3 1.5 6.4	0.37 0.39 0.33	1.80 1.71 2.03	2.69 2.54 3.02	1.76 1.67 1.98	76.5 117 180
* T-LM451349D/LM451310/LM451310D (CRO-5307) * CRO-5305 * EE275106D/275155/275156D	281 281 292	335 330.5 367	6.5 3.5 5	3.3 3.3 6.4	1.5 1.5 3.3	0.36 0.37 0.40	1.87 1.83 1.68	2.79 2.72 2.50	1.83 1.79 1.64	62 62.3 116
EE275106D/275155/275156D 292 367 5 6.4 3.3 0.40 1.68 2.50 1. Remarks: 1. Bearing numbers marked "" designate inch system bearings. 2. The bearing where parentheses adhered abolished inner ring spacer. B-185									1.64	116

d 269.875~304.800mm

	Boundary dimensions						Basic load ratings dynamic static dynamic st					
		mm				ki		dynamic kç	static gf			
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			
269.875	381.000	282.575	282.575	3.3	3.3	2,470	6,850	252,000	700,000			
270	410	222	222	4	4	1,910	4,550	195,000	465,000			
275	385	200	200	3	3	1,610	4,250	165,000	435,000			
276.225	406.400	268.290	260.355	6.4	1.5	2,110	6,000	216,000	610,000			
279.400	381.000 393.700 419.100 469.900	269.875 269.875 292.100 346.075	269.875 269.875 292.100 349.250	3.3 6.4 6.4 3.3	1.5 1.5 3.3 6.4	2,240 1,940 2,770 3,500	6,450 5,350 6,950 8,700	229,000 197,000 283,000 355,000	655,000 545,000 705,000 885,000			
279.578	380.898	244.475	244.475	3.3	1.5	1,950	6,200	199,000	635,000			
280	380 395	290 288	290 288	3.1 4	1.7 5	2,470 2,560	7,250 7,100	252,000 261,000	740,000 725,000			
285.750	380.898	244.475	244.475	3.3	1.5	1,950	6,200	199,000	635,000			
288.925	406.400	298.450	298.450	3.3	3.3	2,980	8,300	305,000	850,000			
292.100	476.250	296.047	292.100	3.3	1.5	3,050	6,800	310,000	695,000			
300	424 430 430 460 470 470 500	310 280 300 360 270 292 332	310 280 300 360 270 292 332	4 4 4 4 4 4 5	5 4 4 4 4 4 6	2,570 2,690 2,690 4,050 3,200 3,500 3,600	7,450 7,100 7,100 10,100 7,250 8,300 8,100	262,000 275,000 275,000 415,000 325,000 360,000 370,000	760,000 725,000 725,000 1,030,000 740,000 845,000 825,000			
300.038	422.275	311.150	311.150	3.3	3.3	3,350	9,600	340,000	980,000			
304.648	438.048 438.048	279.400 280.990	279.400 279.400	3.3 4.8	3.3 3.3	2,470 2,630	6,500 6,900	252,000 268,000	665,000 700,000			
304.800	419.100 444.500	269.875 247.650	269.875 241.300	6.4 1.5	1.5 8	2,390 1,850	6,850 4,600	244,000 188,000	695,000 470,000			

 $[\]textcircled{1} \ \ \ \text{Minimum allowable dimension for chamfer dimension } r \text{ or } r_{\text{i}}.$

Equivalent bearing load

dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_s}{F_1}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

For values of e, Y_2 and Y_0 see the table below.

Bearing numbers	Abı	utment ar	nd fillet di	mensior	ns	Constant	Axia	al load fac	ctors	Mass
			mm							kg
	$d_{ m a}$	$D_{\rm a}$	$S_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	e	Y_1	Y_2	Y_{o}	(approx.)
							•	2	•	(-117
* T-M252349D/M252310/M252310D	290	356	6	2.5	2.5	0.33	2.03	3.02	1.98	97.5
CRO-5403	305	382	6	3	3	0.27	2.49	3.71	2.43	91
CRO-5501	300	355	6	2.5	2.5	0.40	1.68	2.50	1.64	62.5
* EE275109D/275160/275161D	293.6	366	8	6.4	1.5	0.40	1.68	2.69	1.64	122
* CRO-5628 * EE135111D/135155/135156D CRO-5614 * EE722111D/722185/722186D	298.5 297 312.5 316	353 368 383.5 432	5 6.5 6 5	2.5 5 5 3.3	1.5 1.5 2.5 6.4	0.37 0.40 0.37 0.37	1.80 1.68 1.80 1.78	2.69 2.50 2.69 2.65	1.76 1.64 1.76 1.74	79.6 103 141 258
* T-LM654644D/LM654610/LM654610D (CRO-5679)	297	356	5	3.3	1.5	0.43	1.56	2.33	1.52	83.2
CRO-5650 (CRO-5676) 625956 (CRO-5684)	300 304.5	354 363.5	6.5 7	2.5 3	1.5 4	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	105 111
* T-LM654648D/LM654610/LM654610D (CRO-5710)	302	356	5	1.5	2.5	0.43	1.56	2.33	1.53	82.5
* M255449D/M255410/M255410DA	310	379	5	3.3	3.3	0.34	2.00	2.98	1.96	125
*EE921150D/921875/921876D	321	441	7	3.3	1.5	0.29	2.30	3.42	2.25	208
625960 CRO-6019 CRO-6022 CRO-6015 ☆CRO-6012 ☆CRO-6013 (CRO-6033) 623160	329 325.5 323 330 338 336 346.5	389.5 395.5 394 427 438 437 449	7 8 3 10 7 7 5	3 3 3 3 3 4	4 3 3 3 3 3 4	0.33 0.47 0.47 0.31 0.37 0.37	2.03 1.45 1.45 2.21 1.80 1.80 1.68	3.02 2.16 2.16 3.29 2.69 2.69 2.50	1.98 1.42 1.42 2.16 1.76 1.76	138 132 141 180 152 164 257
☆ * T-HM256849D/HM256810/HM256810DG2	322	394	6	3.3	3.3	0.34	2.00	2.98	1.95	143
* EE329119D/329172/329173D * M757448D/M757410/M757410D	328 328	409 407	8 7	3.3 4.8	3.3 3.3	0.33 0.47	2.04 1.43	3.04 2.12	2.00 1.39	143 140
* M257149D/M257110/M257110D * EE291202D/291750/291751D	322 328	392 416	5 9.5	6.4 1.5	1.5 8	0.33 0.38	2.03 1.78	3.02 2.65	1.98 1.74	115 127

Remarks: 1. Bearing numbers marked "*" designate inch system bearings. 2. Bearing numbers marked "%" designate bearing with hollow rollers and pin type cages. 3. The bearing where parentheses adhered abolished inner ring spacer.

d 304.800∼355mm

	Bou	ndary dimensi	ons			dynamic	Basic loa	nd ratings	static
		mm				dynamic k		dynamic ko	
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
304.800	495.300	342.900	349.250	6.4	3.3	3,650	9,400	370,000	960,000
304.902	412.648	266.700	266.700	3.3	3.3	2,610	7,450	267,000	760,000
305.003	438.048	280.990	279.400	4.8	3.3	2,630	6,900	268,000	700,000
310	430 430	310 310	310 310	4 5.5	2.2 2.2	2,880 3,050	8,100 8,600	294,000 310,000	825,000 875,000
317.500	422.275 447.675	269.875 327.025	269.875 327.025	3.3 3.3	1.5 3.3	2,260 3,400	7,050 9,550	231,000 345,000	715,000 995,000
320	460	338	338	4	5	2,940	8,650	300,000	880,000
327	445	230	230	4	2	2,150	5,650	219,000	575,000
330	470 510	340 340	340 340	2.5 6	2.5 6	3,150 3,900	10,200 9,650	320,000 395,000	1,040,000 985,000
330.200	482.600 533.400	306.388 254.000	311.150 254.000	3.3 6	1.5 6	2,810 3,200	7,900 6,750	287,000 330,000	805,000 690,000
333.375	469.900	342.900	342.900	3.3	3.3	4,000	11,000	405,000	1,130,000
340	480 520	350 278	350 278	5 5	6 6	3,450 3,250	10,400 7,500	350,000 330,000	1,060,000 765,000
341.312	457.098	254.000	254.000	3.3	1.5	2,370	6,900	241,000	705,000
342.900	533.400	307.985	301.625	3.3	3.3	3,150	6,900	320,000	705,000
343.052	457.098 457.098	254.000 254.000	254.000 254.000	3.3 3.3	1.5 1.5	2,370 2,430	6,900 6,750	241,000 248,000	705,000 685,000
346.075	488.950	358.775	358.775	3.3	3.3	4,350	12,800	445,000	1,300,000
347.662	469.900	292.100	292.100	3.3	3.3	3,200	9,100	325,000	925,000
355	490	316	316	3.3	1.5	3,500	10,000	355,000	1,020,000

lacktriangled Minimum allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load

dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_s}{F_1}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static
Por=Fr+YoFa

For values of e, Y_2 and Y_0 see the table below.

Bearing numbers	Abı	utment ar	nd fillet di	mensior	ns	Constant	Axia	Axial load factors			
			mm							kg	
	$d_{ m a}$	D_{a}	$S_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	e	Y_1	Y_2	$Y_{ m o}$	(approx.)	
* EE724121D/724195/724196D	330	450	3	6.4	3.3	0.40	1.68	2.50	1.64	273	
* M257248D/M257210/M257210D	325	388	5	3.3	3.3	0.32	2.12	3.15	2.07	107	
*M757449D/M757410/M757410D	328	407	7	4.8	3.3	0.47	1.43	2.12	1.39	139	
CRO-6213 CRO-6204	333 333.5	396.5 397.5	8.5 7.5	3 4	2 2	0.40 0.33	1.68 2.03	2.50 3.02	1.64 1.98	133 136	
LM258649D/LM258610/LM258610D (CRO-6431) *T-HM259049D/HM259010/HM259010D	334 339.6	398 418	7 5	3.3 2.5	1.5 2.5	0.32 0.33	2.10 2.02	3.13 3.00	2.06 1.97	110 161	
625964	355	420.5	7	3	4	0.33	2.03	3.02	1.98	183	
CRO-6501	353.5	416	5.5	3	2	0.33	2.03	3.02	1.98	99.8	
CRO-6604 CRO-6602	366 366	440 469	5.5 5	2 5	2 5	0.33 0.40	2.02 1.68	3.00 2.50	1.97 1.64	141 221	
*EE526131D/526190/526191D *CRO-6606	351 378.5	448 488	3 6.5	3.3 5	1.5 5	0.39 0.37	1.72 1.80	2.56 2.69	1.68 1.76	197 221	
*HM261049D/HM261010/HM261010DA	357	439	5	2.5	2.5	0.33	2.02	3.00	1.97	187	
625968 623068	373 382.5	440 478	7 6.5	4 4	5 4	0.33 0.37	2.03 1.80	3.02 2.69	1.98 1.76	200 213	
*LM761648D/LM761610/LM761610D	359	432	5	1.5	2.5	0.47	1.43	2.12	1.40	125	
*EE971355D/972100/972103D	378	502	11	3.3	3.3	0.33	2.03	3.02	1.98	252	
*LM761649D/LM761610/LM761610D (CRO-6945) CRO-6910 (CRO-6944)	361 361	432 426	5 5	3.3 3.3	1.5 1.5	0.47 0.47	1.43 1.43	2.12 2.12	1.39 1.40	117 105	
☆ * T-HM262749D/HM262710/HM262710DG2	371	456	6	2.5	2.5	0.33	2.02	3.00	1.97	227	
* M262449D/M262410/M262410D	369	443	8	3.3	3.3	0.33	2.03	3.02	1.98	148	
CRO-7105	378	450	7	3.3	1.5	0.33	2.03	3.02	1.98	170	

Remarks: 1. Bearing numbers marked "*" designate inch system bearings. 2. Bearing numbers marked "%" designate bearing with hollow rollers and pin type cages. 3. The bearing where parentheses adhered abolished inner ring spacer.

d 355.600∼406.400mm

	Bou	ndary dimensi	ons			dynamic	Basic loa	d ratings dynamic	static
		mm				,	N	kç	
d	D	B_2	C_2	$r_{ m s min}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
	444.500	241.300	241.300	3.3	1.5	1,760	6,200	180,000	635,000
	457.200	252.412	252.412	3.3	1.5	2,470	7,850	251,000	800,000
355.600	482.600	265.112	269.875	3.3	1.5	2,790	7,650	285,000	780,000
	488.950	317.500	317.500	3.3	1.5	3,500	10,000	350,000	1,020,000
	508	370	370	5	6	3,700	11,200	380,000	1,140,000
	520	370	370	5.5	3.5	4,500	12,300	455,000	1,260,000
360	520	410	410	5	5	5,150	14,700	525,000	1,500,000
	540	340	340	5	3	4,350	11,100	445,000	1,130,000
	600	540	540	5	5	6,700	18,100	685,000	1,840,000
	600	396	396	5	6	5,500	13,000	560,000	1,320,000
000 000	523.875	382.588	382.588	6.4	3.3	4,450	13,100	455,000	1,330,000
368.300	596.900	342.900	342.900	6.4	6.4	4,600	10,600	470,000	1,090,000
374.650	501.650	250.825	260.350	3.3	1.5	2,360	6,250	241,000	640,000
	536	390	390	5	6	4,900	14,100	500,000	1,440,000
	560	282	282	5	6	3,550	8,700	365,000	890,000
380	560	285	285	5	5	3,250	7,700	330,000	785,000
	560	360	360	6	1.5	4,650	12,100	470,000	1,230,000
	560	360	360	5	1.5	5,050	13,500	515,000	1,380,000
384.175	546.100	400.050	400.050	6.4	3.3	5,400	16,100	550,000	1,640,000
385.762	514.350	317.500	317.500	3.3	3.3	3,650	11,100	370,000	1,130,000
390	510	350	350	3.5	1.5	3,700	11,800	375,000	1,210,000
393.700	546.100	288.925	288.925	6.4	1.5	3,200	10,200	325,000	1,040,000
395	545	268.7	288.7	7.5	4	2,970	8,650	305,000	880,000
	560	380	380	5	5	4,800	14,100	490,000	1,440,000
400	564	412	412	5	6	4,850	14,700	495,000	1,500,000
	635	470	470	5	2.5	7,200	18,000	735,000	1,840,000
406.400	546.100	268.288	288.925	6.4	1.5	2,290	6,550	233,000	670,000
TUU-TUU	546.100	288.925	288.925	6.4	1.5	3,200	10,200	325,000	1,040,000

lacktriangled Minimum allowable dimension for chamfer dimension r or r_1 .

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_s}{F_1}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static
Por=Fr+YoFa

Bearing numbers	Abı	utment an	d fillet di	mension	ıs	Constant	Axia	al load fac	ctors	Mass
			mm							kg
	$d_{ m a}$	$D_{\rm a}$	S_{a}	$r_{\rm as}$	$r_{ m las}$					
			min	max	max	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
* L163149D/L163110/L163110D	370	422	6.5	3.3	1.5	0.31	2.20	3.27	2.15	89.5
* LM263149D/LM263110/LM263110D	372	434	6	3.3	1.5	0.32	2.12	3.15	2.07	106
* LM763449D/LM763410/LM763410D	375	453	3	3.3	1.5	0.47	1.43	2.14	1.40	145
* M263349D/M263310/M263310D (CRO-7123)	374	459	5	3.3	1.5	0.33	2.03	3.02	1.98	173
625972 (CRO-7227)	394	466.5	7	4	5	0.33	2.03	3.02	1.98	236
CRO-7220	391	0	5	4.5	3	0.33	2.03	3.02	1.98	260
☆CRO-7217	396	478	8.5	4	4	0.33	2.03	3.02	1.98	297
CRO-7211	400	496	5	4	2.5	0.33	2.03	3.02	1.98	270
CRO-7210	400	550	8	4	4	0.36	1.89	2.81	1.98	520
623172 (CRO-7228)	414.6	541.5	8	4	4.5	0.40	1.68	2.50	1.64	447
☆ * HM265049D/HM265010/HM265010DG2 (CRO-7406)	393.7	487	6	6.4	3.3	0.33	2.03	3.02	1.98	280
* EE181455D/182350/182351D	393.7 421	541	7.5	6.4	5.3 6.4	0.33	2.03 1.62	2.42	1.59	373
* EE101433D/102330/102331D	421	541	7.5	0.4	0.4	0.42	1.02	2.42	1.59	3/3
*LM765149D/LM765110/LM765110D	393	472	2	3.3	1.5	0.47	1.43	2.12	1.40	145
625976	410	494	8	4	5	0.33	2.03	3.02	1.98	277
623076	421	518	6.5	4	4	0.37	1.80	2.69	1.76	240
CRO-7612	417	525	7	4	4	0.40	1.68	2.50	1.64	208
CRO-7622	416	514	7	5	1.5	0.40	1.68	2.50	1.64	302.22
☆CRO-7621	423	515	6.5	4	1.5	0.40	1.68	2.50	1.64	312
☆ * T-HM266449D/HM266410/HM266410DG2	411	507	6.5	6.4	3.3	0.33	2.03	3.02	1.98	312
*LM665949D/LM665910/LM665910D	409	482	7	2.5	2.5	0.42	1.61	2.40	1.58	240
CRO-7801	411	478	7	3	1.5	0.33	2.03	3.02	1.98	186
*LM767745D/LM767710/LM767710D	418	510	6.5	6.4	1.5	0.48	1.42	2.11	1.38	219
CRO-7901	434	508	3	6	3	0.48	1.42	2.11	1.39	200
☆CRO-8005	436	515	8	4	4	0.40	1.68	2.50	1.64	300
625980	434	518.5	7	4	5	0.33	2.03	3.02	1.98	324
CRO-8010	447	579	6.5	4	2	0.33	2.03	3.02	1.98	564
* EE234161D/234215/234216D	438	505	1.5	6.4	1.5	0.47	1.43	2.12	1.40	190
* LM767749D/LM767710/LM767710D	427	510	6.5	6.4	1.5	0.48	1.42	2.11	1.38	201

d 406.400~488.950mm

	Bou	ındary dimensi	ons			ali un a	Basic loa		
		mm				dynamic k	static N	dynamic kç	static gf
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
		_	_						
	565.150	381.000	381.000	6.4	3.3	4,750	14,100	485,000	1,440,000
406.400	590.550	400.050	400.050	6.4	3.3	4,850	13,600	490,000	1,380,000
	609.600	309.562	317.500	6.4	3.5	3,700	9,600	380,000	980,000
409.575	546.100	334.962	334.962	6.4	1.5	4,100	12,700	415,000	1,290,000
415.925	590.550	434.975	434.975	6.4	3.3	6,300	18,900	640,000	1,930,000
400	592	432	432	5	6	5,350	16,300	545,000	1,660,000
420	650	460	460	5	5	6,950	18,300	710,000	1,870,000
	571.500	279.400	279.400	3.3	1.5	3,200	9,850	330,000	1,010,000
431.800	571.500	336.550	336.550	6.4	1.5	3,700	11,800	380,000	1,200,000
	635.000	355.600	355.600	6.4	6.4	5,650	15,000	580,000	1,530,000
432.003	609.524	317.500	317.500	6.4	3.5	4,350	11,500	445,000	1,170,000
	620	454	454	6	6	6,500	19,900	665,000	2,030,000
440	635	470	470	6.4	3.3	7,100	22,100	725,000	2,260,000
440	650	355	355	7.5	4	5,350	13,400	545,000	1,370,000
	650	460	460	6	6	6,750	20,700	690,000	2,110,000
447.675	635.000	463.550	463.550	6.4	3.3	7,100	22,100	725,000	2,260,000
	596.900	276.225	279.400	3.3	1.5	2,900	9,150	296,000	935,000
457.200	596.900	276.225	279.400	3.3	1.6	2,870	9,400	292,000	955,000
	660.400	323.850	323.847	6.4	3.3	4,150	11,200	425,000	1,140,000
460	650	474	474	6	6	6,500	19,900	665,000	2,030,000
475	660	450	450	5	3	6,300	20,400	645,000	2,080,000
	678	494	494	6	6	6,250	19,600	640,000	2,000,000
480	678	494	494	6	6	6,250	19,600	640,000	2,000,000
.00	700	390	390	6	6	4,700	13,400	480,000	1,370,000
482.600	615.950	330.200	330.200	6.4	3.3	4,000	13,400	405,000	1,370,000
488.950	660.400	365.125	361.950	6.4	8	5,350	16,100	550,000	1,640,000
A 100					-	-,	, . • •	,	., ,

lacktriangled Minimum allowable dimension for chamfer dimension r or r.

Equivalent bearing load

dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_s}{F_1}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static
Por=Fr+YoFa

Bearing numbers	Ab	utment an	d fillet di	mension	ıs	Constant	Axia	Mass		
			mm							kg
	$d_{ m a}$	$D_{\rm a}$	S_{a}	$r_{\rm as}$	$r_{ m las}$					
			min	max	max	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
CRO-8103	441	525	6.5	6.4	3.3	0.35	1.95	2.90	1.91	310
* EE833161D/833232/833233D	448	549	6.5	6.4	3.3	0.33	2.07	3.09	2.03	395
* EE911603D/912400/912401D	441	568	1.5	6.4	3.5	0.38	1.76	2.62	1.72	332
☆ * M667947D/M667911/M667911DG2	431	510	5.5	6.4	1.5	0.42	1.61	2.40	1.57	226
☆ * T-M268749D/M268710/M268710DG2	444	549	9	6.4	3.3	0.33	2.03	3.02	1.98	421
625984 (CRO-8414)	457	545	7	4	5	0.33	2.03	3.02	1.98	374
CRO-8402	455	593	8	4	4	0.33	2.03	3.02	1.98	600
*T-LM869449D/LM869410/LM869410D	453	537	8	1.5	2.5	0.55	1.24	1.84	1.21	193
*LM769349D/LM769310/LM769310D	453	534	6.5	6.4	1.5	0.44	1.52	2.26	1.49	232
☆ * EE931170D/931250/931251XDG2	490	607	6.6	5	5	0.32	2.12	3.15	2.07	402
EE736173D/736238/736239D	464	572	6.5	6.4	3.5	0.35	1.95	2.90	1.91	297
625988 (CRO-8839)	479	572.5	8	5	5	0.33	2.03	3.02	1.64	430
☆CRO-8808	494	607	9	5	5	0.33	2.03	3.02	1.98	498
☆CRO-8807	484	607	9	6	3	0.33	2.03	3.02	1.98	400
CRO-8806	483	595	11	5	5	0.33	2.03	3.02	1.98	600
☆ * M270749D/M270710/M270710DG2	478	591	8	6.4	3.3	0.33	2.03	3.02	1.98	509
* L770849D/L770810/L770810D	478	567	5.5	3.3	1.5	0.47	1.43	2.12	1.39	201
* EE244181D/244235/244236D	490	583	5.5	2.5	3	0.40	1.67	2.49	1.63	207
* EE737179D/737260/737260D	495	616	6.5	6.4	3.3	0.37	1.80	2.69	1.76	379
625992A	499	598.5	7	5	5	0.33	2.03	3.02	1.98	493
CRO-9501	506	614	10	4	2.5	0.34	1.98	2.94	1.93	465
625996	525	623	7	5	5	0.33	2.03	3.02	1.98	563
CRO-9612	524	650	2	5	5	0.33	2.03	3.02	1.98	554
CRO-9602	517	645	8	5	5	0.4	1.68	2.50	1.64	436
☆ * LM272249D/LM272210/LM272210DG2	504	585	6.5	6.4	3.3	0.33	2.03	3.02	1.98	250
☆ * T-EE640193D/640260/640261DG2	519	624	9	6	5	0.31	2.20	3.27	2.15	364

d 489.026~585.788mm

	Bou	ndary dimension	ons			dunamia		ad ratings	atatia
		mm				dynamic k	static N	dynamic kç	static gf
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m lsmin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
489.026	634.873	320.675	320.675	3.3	3.3	3,650	12,000	370,000	1,220,000
500	670 690 705 730 730	515 480 515 420 440	515 480 515 420 440	5 5 6 6	1.5 5 6 6	6,900 6,000 8,450 7,450 7,200	24,600 19,900 27,100 19,900 20,600	700,000 610,000 860,000 760,000 735,000	2,510,000 2,020,000 2,760,000 2,030,000 2,100,000
501.650	711.200	520.700	520.700	6.4	3.3	8,650	27,300	885,000	2,790,000
508.000	762.000	463.550	463.550	6.4	6.4	7,800	21,400	795,000	2,180,000
509.948	654.924	377.000	379.000	6.4	1.5	5,100	17,600	520,000	1,790,000
514.350	673.100	422.275	422.275	6.4	3.3	5,950	20,500	605,000	2,090,000
519.112	736.600	536.575	536.575	6.4	3.3	9,100	28,700	925,000	2,930,000
520	735	535	535	5	7	9,100	28,700	925,000	2,930,000
533.400	965.200	495.300	495.300	7.5	7.5	11,100	28,700	1,130,000	2,920,000
536.575	761.873	558.800	558.800	6.4	3.3	10,100	30,500	1,030,000	3,100,000
539.750	784.225	339.725	342.900	6.4	3.3	4,800	12,200	490,000	1,240,000
555.625	698.500	349.250	349.250	6.4	3.2	4,350	14,300	445,000	1,460,000
558.800	736.600 736.600	322.265 409.575	322.268 409.575	6.4 6.4	3.3 3.3	4,300 6,100	13,500 20,500	435,000 625,000	1,380,000 2,090,000
570	780 810	515 590	515 590	6 6	6 6	9,200 11,000	31,000 35,500	935,000 1,120,000	3,150,000 3,600,000
571.500	812.800	593.725	593.725	6.4	3.3	11,900	36,500	1,220,000	3,750,000
584.200	762.000	396.875	401.638	6.4	3.3	6,550	22,300	670,000	2,280,000
585.788	771.525	479.425	479.425	6.4	3.3	8,550	29,000	875,000	2,960,000

Equivalent bearing load dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}}$ > e				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

Bearing numbers	Abutment and fillet dimensions					Constant	Axia	al load fac	ctors	Mass
			mm							kg
	$d_{\mathtt{a}}$	D_{a}	$S_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	e	Y_1	Y_2	$Y_{ m o}$	(approx.)
* LM772749D/LM772710/LM772710DA	513	600	6.5	2.5	2.5	0.47	1.43	2.12	1.40	268
CRO-10008 CRO-10005 6259/500 ☆CRO-10023 ☆CRO-10003	520 530 553 554 550	616 640 649.5 702 683	8 7 7.5 7.5 11	4 4 5 5 5	1.5 4 5 5 5	0.40 0.33 0.33 0.40 0.33	1.68 2.03 2.03 1.68 2.03	2.50 3.02 3.02 2.50 3.02	1.64 1.98 1.98 1.64 1.98	598 600 632 606 535
☆ * M274149D/M274110/M274110DG2	534	663	9.5	6.4	3.3	0.33	2.03	3.02	1.98	726
☆ * EE531201D/531300/531301XDG2	549	711	9.5	5	5	0.38	1.77	2.64	1.73	740
☆CRO-10208 (CRO-10214)	533.5	527	5	5	5	0.41	1.65	2.46	1.61	320
* LM274449D/LM274410/LM274410D	540	648	8	6.4	3.3	0.33	2.03	3.02	1.98	390
☆ * M275349D/M275310/M275310DG2 (CRO-10408)	552	684	9.5	6.4	3.3	0.33	2.03	3.02	1.98	761
☆CRO-10402	558	688	11	4	6	0.33	2.03	3.02	1.98	750
☆CRO-10702	680	929.2	7.5	6	6	0.32	2.12	3.15	2.07	1,662
☆ * M276449D/M276410/M276410DG2	564	711	9.5	6.4	3.3	0.33	2.03	3.02	1.98	890
* EE522126D/523087/523088D	575	733	6.5	6.4	3.3	0.48	1.41	2.10	1.38	552
CRO-11101 (CRO-11103)	579	670.5	6.5	5	5	0.33	2.03	3.02	1.98	298
* EE843221D/843290/843291D (CRO-11217) ☆ * LM377449D/LM377410/LM377410DG2 (CRO-11216)	585 588	699 696	8.5 8	6.4 6.4	3.3 3.3	0.34 0.35	1.98 1.95	2.94 2.90	1.93 1.90	388 502
☆CRO-11402 ☆CRO-11403	609 620	733 760	7.5 10	5 5	5 5	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	625 845
☆ * M278749D/M278710/M278710DAG2	609	756	11	6.4	3.3	0.33	2.03	3.02	1.98	1,080
☆ * LM778549D/LM778510/LM778510DG2	615	717	7	6.4	3.3	0.47	1.43	2.14	1.40	511
*LM278849D/LM278810/LM278810D	615	726	10	6.4	3.3	0.35	1.95	2.90	1.91	750

d 585.788∼730mm

	Bou	ndary dimensi	ons		Basic load ratings dynamic static dynamic static					
		mm				•	N	kç		
d	D	B_2	C_2	$r_{ m s min}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
585.788	771.525	479.425	479.425	6.4	3.3	7,350	25,700	750,000	2,620,000	
595.312	844.550 844.550	615.950 615.950	615.950 615.950	6.4 6.4	3.3 3.3	12,300 12,600	39,000 40,500	1,250,000 1,290,000	4,000,000 4,100,000	
609.600	787.400 863.600	361.950 660.400	361.950 660.400	6.4 6.4	3.3 3.3	6,450 13,500	20,300 42,000	655,000 1,380,000	2,070,000 4,300,000	
611.500	832.800	593.725	593.725	6.4	3.3	11,500	37,500	1,170,000	3,850,000	
630	920	600	600	7.5	7.8	13,100	39,000	1,340,000	3,950,000	
650	1,030	560	560	7.5	12	13,500	35,000	1,380,000	3,550,000	
657.225	933.450	676.275	676.275	6.4	3.3	15,300	48,000	1,560,000	4,900,000	
660	1,070	642	642	7.5	7.5	15,400	43,500	1,570,000	4,450,000	
660.400	812.800	365.125	365.125	6.4	3.3	6,200	23,200	630,000	2,360,000	
670	960 1,090 1,090	700 710 710	700 710 710	7.5 7.5 7.5	7.5 7.5 7.5	16,700 19,100 17,400	51,500 50,000 47,500	1,700,000 1,950,000 1,780,000	5,300,000 5,100,000 4,850,000	
679.450	901.700	552.450	552.450	6.4	3.3	11,200	38,000	1,140,000	3,900,000	
680	870	460	460	6	3	7,500	27,400	765,000	2,790,000	
682.625	965.200	701.675	701.675	6.4	3.3	16,100	50,500	1,640,000	5,150,000	
685.800	876.300	352.425	355.600	6.4	3.3	6,050	21,800	615,000	2,220,000	
710	900	410	410	5	2.5	7,650	26,900	780,000	2,740,000	
711.200	914.400 914.400	317.500 317.500	317.500 317.500	6.4 6.4	3.3 16	5,350 5,350	17,900 17,900	545,000 545,000	1,820,000 1,820,000	
730	1,070	642	642	7.5	7.5	15,400	46,500	1,570,000	4,750,000	

Equivalent bearing load dynamic $P_{\rm r}=XF_{\rm r}+YF_{\rm a}$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}}$ > e				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

static
Por=Fr+YoFa

Bearing numbers	Al	outment a	nd fillet di	mensio	าร	Constant	Axia	ıl load fa	ctors	Mass
			mm							kg
	$d_{ m a}$	$D_{\rm a}$	$S_{ m a}$ min	$r_{ m as}$ max	$r_{ m las}$ max	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
☆CRO-11701	628	718	9.5	6.4	3.3	0.35	1.95	2.90	1.91	610
☆CRO-11913	654	781	7	6.4	3.3	0.33	2.03	3.02	1.98	1,135
☆ * M280049D/M280010/M280010DG2	633	786	11	6.4	3.3	0.33	2.03	3.02	1.98	1,160
☆ * EE649241D/649310/649311DG2	636	747	9.5	6.4	3.3	0.33	2.03	3.02	1.98	458
☆ * M280349D/M280310/M280310DG2	659	796	13.5	6.4	3.3	0.33	2.03	3.02	1.98	1,250
☆CRO-12202	660	776	11.5	6.4	3.3	0.33	2.03	3.02	1.98	960
☆CRO-12604	702	848	7.5	6	6	0.33	2.03	3.02	1.98	1,390
☆CRO-13001	765	947	8.5	6	10	0.32	2.12	3.15	2.07	1,760
☆ * M281649D/M281610/M281610DG2	699	870	11	6.4	3.3	0.33	2.03	3.02	1.98	1,630
☆CRO-13202	760	991	9	6	6	0.32	2.12	3.15	2.07	1,950
☆ * L281149D/L281110/L281110DG2	682.8	777	9	6.4	3.3	0.33	2.03	3.02	1.98	448
☆CRO-13401	719	901	8	6	6	0.33	2.03	3.02	1.98	1,600
☆CRO-13404	782	997	13.5	6	6	0.29	2.32	3.45	2.26	2,690
☆CRO-13402	799	995	13.5	6	6	0.32	2.12	3.15	2.07	2,600
☆ * LM281849D/LM281810/LM281810DG2	714	852	11	6.4	3.3	0.33	2.03	3.02	1.98	1,040
CRO-13602	713	824	8	5	2.5	0.43	1.57	2.34	1.53	582
☆M282249D/M282210/M282210DG2	723	900	13	6.4	3.3	0.33	2.03	3.02	1.98	1,770
☆ * EE655271D/655345/655346DG2 (CRO-13708)	717	831	8	6.4	3.3	0.42	1.61	2.40	1.57	539
☆CRO-14208	745	850	10	4	2	0.33	2.03	3.02	1.98	620
☆ * EE755281D/755360/755361DG2 ☆ * EE755280D/755360/755361DG2	744 762	873 873	9.5 8	2.5 6.4	5 3.3	0.38 0.38	1.77 1.77	2.64 2.64	1.73 1.73	527 527
☆CRO-14601	780	1,020	7	6	6	0.33	2.03	3.02	1.98	1,900

d 730.250∼1,200.150mm

	Bou	ndary dimensio	ons		dynamic	Basic lo static	ad ratings dynamic	static	
		mm				k	(N	k	gf
d	D	B_2	C_2	$r_{ m s min}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
730.250	1,035.050	755.650	755.650	6.4	3.3	18,100	59,500	1,850,000	6,050,000
749.300	990.600	605.000	605.000	6.4	3.3	12,600	45,500	1,290,000	4,650,000
762.000	1,066.800 1,079.500	723.900 787.400	736.600 787.400	12.7 12.7	4.3 4.8	17,700 19,200	58,500 65,000	1,800,000 1,960,000	5,950,000 6,600,000
800	1,120	820	820	7.5	7	21,000	72,500	2,140,000	7,400,000
825.500	1,168.400	844.550	844.550	12.7	4.8	22,300	76,500	2,270,000	7,800,000
840	1,170	840	840	6	6	21,900	76,500	2,230,000	7,800,000
863.600	1,130.300 1,219.200	669.925 876.300	669.925 889.000	12.7 12.7	4.8 4.8	15,800 24,100	59,500 83,000	1,610,000 2,450,000	6,050,000 8,450,000
938.212	1,270.000	825.500	825.500	12.7	4.8	22,500	80,000	2,300,000	8,150,000
950	1,360	880	880	7.5	4	27,000	89,000	2,750,000	9,050,000
1,200.150	1,593.850	990.600	990.600	12.7	4.8	33,500	132,000	3,400,000	13,500,000

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

Bearing numbers	Abutment and fillet dimensions					Constant	Axia	Axial load factors		
	$d_{\scriptscriptstyle a}$	D_{a}	$egin{array}{c} mm \ S_\mathrm{a} \end{array}$	$r_{ m as}$	$r_{ m las}$					kg
	ω_{a}	D_a	min	max	max	e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
☆ * M283449D/M283410/M283410D	774	966	13	6.4	3.3	0.33	2.03	3.02	1.98	2,210
☆ * LM283649D/LM283610/LM283610DG2	786	936	10.5	6.4	3.3	0.33	2.03	3.02	1.98	1,250
☆ * M284148D/M284111/M284110DG2 ☆ * M284249D/M284210/M284210DG2	840 810	985 1,005	3.5 13	12.7 12.7	4.3 4.8	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	2,220 2,480
☆CRO-16001	858	1,052	10	6	6	0.33	2.03	3.02	1.98	3,960
☆ * M285848D/M285810/M285810DG2	879	1,085	13	12.7	4.8	0.33	2.03	3.02	1.98	3,010
☆CRO-16803	897	1,099	12	5	5	0.33	2.03	3.02	1.98	3,970
☆ * LM286249D/LM286210/LM286210DG2 ☆ * EE547341D/547480/547481DG2 (CRO-17301)	906 918	1,065 1,135	11 6.5	12.7 12.7	4.8 4.8	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	1,950 3,640
☆ * LM287649D/LM287610/LM287610DG2	990	1,190	10	12.7	4.8	0.33	2.03	3.02	1.98	4,100
☆CRO-19001	1,030	1,278	12	6	3	0.35	1.95	2.90	1.91	4,100
☆ * LM288949D/LM288910/LM288910DG2	1,260	1,500	13	12.7	4.8	0.33	2.03	3.02	1.98	6,130

d 140~711.200mm

		Boundar	y dimension	s		dynamic	Basic lo	ad ratings dynamic	static	Bearing numbers
			mm			k		kį		namboro -
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
	198	174	174	2	1.5	595	1,470	60,500	150,000	CRO-2810LL
140	198	174	174	2	1.5	615	1,510	63,000	154,000	CRO-2812LL
200	282	206	206	2.5	2.5	950	2,450	97,000	250,000	CRO-4022LL
216.103	330.2	263.525	269.875	3.3	1.5	1,770	4,000	180,000	405,000	* CRO-4303LL
220	295 310 320	315 280 290	315 280 290	2.5 2.5 3	1 1 2.7	1,270 1,590 1,780	3,850 4,100 4,850	130,000 162,000 181,000	395,000 420,000 495,000	CRO-4424LL CRO-4427LL CRO-4436LL
240	338 338	248 340	248 340	3 2.5	3 1	1,590 2,040	4,200 6,000	162,000 208,000	430,000 610,000	CRO-4811LL CRO-4817LL
245	345	310	310	3	1	2,070	5,950	211,000	610,000	CRO-4906LL
250	365	270	270	3	2.5	1,920	4,750	196,000	485,000	CRO-5015LL
254	358.775 358.775	269.875 269.875	269.875 269.875	3.3 3.3	1.5 3.3	1,940 1,850	4,900 4,750	198,000 188,000	500,000 485,000	* CRO-5117LL * CRO-5116LL
260	365	339	339	4	1	2,250	5,950	229,000	610,000	CRO-5224LL
260.35	422.275	314.325	317.5	3.3	4.8	2,680	5,950	274,000	606,000	* CRO-5227LL
279.4	393.7	269.875	269.875	6.4	1.5	2,000	4,950	204,000	505,000	* CRO-5652LL
280	380 395 395 410	290 290 340 268	290 290 340 268	3 4 2.5 6.4	1 1.5 3.2 2.2	2,060 2,120 2,590 2,140	5,750 5,450 7,150 5,000	210,000 216,000 264,000 219,000	585,000 560,000 730,000 505,000	CRO-5660LL CRO-5665LL CRO-5664LL CRO-5639LL
285	400	340	340	4	1	2,560	7,650	261,000	780,000	CRO-5709LL
290	400	346	346	4	3.1	2,560	7,650	261,000	780,000	CRO-5814LL
300	400 420 430	254 310 295	254 310 305	4 4 5	5 3.2 1	1,920 2,510 2,150	5,300 6,850 5,550	196,000 256,000 219,000	540,000 695,000 565,000	CRO-6038LL CRO-6042LL CRO-6031LL
304.648	438.048	280.99	279.4	3.7	2.8	2,250	5,450	229,000	555,000	* CRO-6143LL
310	430 430	310 350	310 350	4 2.5	1.5 3.2	2,340 2,820	6,600 7,950	239,000 288,000	670,000 815,000	CRO-6220LL CRO-6222LL
320	480	360	360	4	2	3,600	8,850	370,000	900,000	CRO-6426LL
343.052	457.098 457.098 457.098	254 254 299	254 254 299	3.3 3.3 3.3	1.5 0.6 1.5	2,060 1,900 2,470	5,500 5,050 7,100	210,000 194,000 252,000	560,000 515,000 725,000	* CRO-6930LL * CRO-6920LL * CRO-6936LL
355	490	316	316	4	2.3	2,520	6,600	257,000	675,000	CRO-7109LL
360	480	375	375	3	2.8	3,400	10,200	345,000	1,040,000	CRO-7226LL
410	546	400	400	5	1.5	3,850	11,900	390,000	1,210,000	CRO-8204LL
420	620	395	320	6	6	4,550	11,800	465,000	1,200,000	CRO-8412LL
440	590 620	480 454	480 454	6 6	1.5 1.5	4,550 5,800	13,900 16,600	465,000 595,000	1,420,000 1,700,000	CRO-8830LL CRO-8832LL
457.2	596.9	276.225	279.4	3.3	1.5	2,540	6,800	259,000	695,000	* CRO-9107LL
479.425	679.45	495.3	495.3	6.4	0.6	6,450	18,400	660,000	1,870,000	* CRO-9610LL
482.6	615.95	330.2	330.2	6.4	3.3	3,200	9,650	330,000	985,000	* CRO-9725LL
530	715	590	590	6	4	8,200	26,900	835,000	2,740,000	CRO-10607LL
595.312 711.2	844.55 914.4 914.4	615.95 387.35 410	615.95 387.35 410	6.4 6.4 5	3.0 3.3 2.5	10,600 6,300 6,400	32,000 19,600 20,700	1,080,000 645,000 655,000	3,250,000 2,000,000 2,110,000	* CRO-11919LL * CRO-14214LL * CRO-14209LL

FJ.

Constant	Axial	load fac	ctors	Mass
				kg
e	Y_1	Y_2	$Y_{\rm o}$	(approx.)
0.40 0.47	1.68 1.43	2.50 2.12	1.64 1.40	16 15.5
0.33	2.03	3.02	1.98	39
0.55	1.23	1.82	1.20	78.2
0.37 0.33 0.39	1.80 2.03 1.74	2.69 3.02 2.59	1.76 1.98 1.70	57.5 63.5 77
0.43 0.40	1.57 1.68	2.34 2.50	1.53 1.64	67.8 94.4
0.40	1.68	2.50	1.64	90.5
0.40	1.68	2.50	1.64	90
0.40 0.55	1.68 1.24	2.50 1.84	1.64 1.21	83 81.7
0.40	1.68	2.50	1.64	103
0.55	1.24	1.84	1.21	177
0.47	1.43	2.12	1.40	96.4
0.33 0.33 0.40 0.33	2.03 2.07 1.68 2.07	3.02 3.09 2.50 3.09	1.98 2.03 1.64 2.03	90 108 126 116
0.40	1.68	2.50	1.64	134
0.40	1.68	2.50	1.64	129
0.28 0.40 0.33	2.43 1.68 2.03	3.61 2.50 3.02	2.37 1.64 1.98	84.6 128 136
0.47	1.43	2.12	1.40	136
0.40 0.40	1.68 1.68	2.50 2.50	1.64 1.64	133 150
0.47	1.43	2.12	1.40	228
0.47 0.33 0.43	1.43 2.03 1.57	2.12 3.02 2.34	1.40 1.98 1.53	105 107 130
0.33	2.03	3.02	1.98	159
0.33	2.03	3.02	1.98	180
0.33	2.03	3.02	1.98	253
0.37	1.80	2.69	1.76	384
0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	358 426
0.47	1.43	2.12	1.40	192
0.33	2.03	3.02	1.98	565
0.33	2.03	3.02	1.98	225
0.32	2.12	3.15	2.07	700
0.33	2.03	3.02	1.98	1130
0.38 0.38	1.78 1.77	2.65 2.64	1.74 1.73	616 596

1. Type, Structure and Characteristics

The barrel shaped spherical rolling elements of a selfaligning bearing track along two rows of raceway grooves in the inner ring. The center of the outer ring's raceway aligns with the center of the bearing. The self-aligning feature accommodates errors in housing assembly and misalignments between the inner and outer rings caused by bent shafts. The bearings have a large load capacity and are suitable for applications with vibration and impact loads. In addition to a cylindrical shaft bore, the bearings are available with a tapered shaft bore. The tapered bore bearings can be shaft mounted using an adapter or removable sleeves. **Table 1** shows the types of the self-aligning roller bearings. Please consult with **NTN** Engineering for the special product (do part number starts with 2p)

Table 1 Model of Self-Aligning Roller Bearings

Model	Standard (Model B)	Model C	Model 213		
Structure					
Bearing Series	Bearings except Model C	24024~24038	213's bore should be more than 55mm.		
Roller	A symmetrical roller	Symmetrical roller	A symmetrical roller		
Roller guide type	Guided by the inner rib which is united with the inner ring.	By the guide ring located between two rows of rollers.	By the guide ring located between the rollers on the outer ring raceway.		
Cage type	Pressed cage Machined cage	Pressed cage	Machined cage		

1.2 Lubrication holes and grooves

Holes and grooves to supply lubricant are provided on self-aligning roller bearings with outside diameters greater than 320mm. If required, lubrication holes and grooves can be manufactured for bearings with ODs smaller than 320mm. Consult NTN Engineering for further details and add the supplemental code D1 to the part number. Table 2 shows the dimensions for lubrication holes and grooves. The number of lubrication holes are shown in Table 3.

When a knock pin for lubricant retention is necessary, please contact \mbox{NTN} Engineering.

Table 2 Lubrication hole and groove dimensions

Unit mm

Nominal bearing width		Oil groove width	Oil hole dia	Oil groove depth		
over	incl	Wo	do	Width series 1, 2, 3	Width series 4	
	100 120	14 16	8 10	2.5 3.0	2.0 2.5	
	160	20	12	3.5	3.0	
	200 315	27 33	16 20	5.0 6.0	3.5 5.0	
315	_	42	25	7.0	6.5	

Table 3 Lubrication hole number

N C	lominal utside	Hole number	
01	/er	incl	Z_{o}
-	_	320	4
3	20	1,010	8
1,0	10	_	12

8

2. Dimensional Accuracy/Rotation Accuracy

Refer to Table 3.3 (Page A-12)

3. Recommended Fitting

Refer to Table 4.2 (Page A-24)

4. Bearing Internal Clearance

Refer to Table 5.10 (Page A-36)

5. Allowable aligning angle

These bearings have a self-aligning function, and their allowable aligning angle varies depending on the dimension series and load conditions, but are mostly described as follows.

6. Assembly of Tapered Hole Roller Bearings

Tapered hole spherical roller bearings use the measurement method as shown in Fig.1. A suitable tightening rate can be achieved by pushing the bearing toward the axial direction until it reaches the reduction rate of the radial internal clearance or pushing rate of axial direction. When heavy and high speed loads are applied, or when it is necessary to keep a higher tightening rate as the temperature difference between the inner and outer rings rises, be sure to have the maximum reduction rate of radial internal clearance or the pushing rate of the axial direction, as shown in Table 4, by using a bearing with a radial internal clearance of more than C3. The clearance after mounting in this case should be larger than the minimum clearance after mounting as shown in Table 4.

Fig.1 Measurement method of spherical roller bearing internal clearance

Table 4 Assembly of tapered hole spherical roller bearings

Unit:mm

										Unit:mm
Nominal be	earing bore		n rate of	Р	ushing rate o	f axial direction	on	Minimum r	esidual intern	al claaranca
C	d	radial intern	al clearance	tapeı	r 1/12	tapeı	r 1/30	I WIII III III II	esiduai iiileiii	ai cicarance
over	incl	min	max	min	max	min	max	CN	C3	C4
80	100	0.045	0.055	0.7	0.8	1.75	2.25	0.035	0.05	0.08
100	120	0.05	0.06	0.75	0.9	1.9	2.25	0.05	0.065	0.1
120	140	0.065	0.075	1.1	1.2	2.75	3	0.055	0.08	0.11
140	160	0.075	0.09	1.2	1.4	3	3.75	0.055	0.09	0.13
160	180	0.08	0.1	1.3	1.6	3.25	4	0.06	0.1	0.15
180	200	0.09	0.11	1.4	1.7	3.5	4.25	0.07	0.1	0.16
200	225	0.1	0.12	1.6	1.9	4	4.75	0.08	0.12	0.18
225	250	0.11	0.13	1.7	2	4.25	5	0.09	0.13	0.2
250	280	0.12	0.15	1.9	2.4	4.75	6	0.1	0.14	0.22
280	315	0.13	0.16	2	2.5	5	6.25	0.11	0.15	0.24
315	355	0.15	0.18	2.4	2.8	6	7	0.12	0.17	0.26
355	400	0.17	0.21	2.6	3.3	6.5	8.25	0.13	0.19	0.29
400	450	0.2	0.24	3.1	3.7	7.75	9.25	0.13	0.2	0.31
450	500	0.21	0.26	3.3	4	8.25	10	0.16	0.23	0.35
500	560	0.24	0.3	3.7	4.6	9.25	11.5	0.17	0.25	0.36
560	630	0.26	0.33	4	5.1	10	12.5	0.2	0.29	0.41
630	710	0.3	0.37	4.6	5.7	11.5	14.5	0.21	0.31	0.45
710	800	0.34	0.43	5.3	6.7	13.3	16.5	0.23	0.35	0.51
800	900	0.37	0.47	5.7	7.3	14.3	18.5	0.27	0.39	0.57
900	1,000	0.41	0.53	6.3	8.2	15.8	20.5	0.3	0.43	0.64
1,000	1,120	0.45	0.58	6.8	8.7	17	22.5	0.32	0.48	0.7
1,120	1,250	0.49	0.63	7.4	9.4	18.5	24.5	0.34	0.54	0.77

7. General Operating Cautions

Pressed cages or machined cages are standard depending on the bearing type and dimensions. However, a standard cage may not be used under high speed specifications or in conditions under severe vibration or impact.

When bearings are operated under small loads (about $F_{\rm r} \leq 0.04 C_{\rm or}$), or under axial loads only, prevent rolling elements from smearing by operating in conditions where $F_{\rm a}/F_{\rm r} \leq 2{\rm e}$. (Refer to the dimension table for the value of "e.") This is most apparent when using large size spherical roller bearings due to the large roller and cage mass. Please consult NTN Engineering for further details.

Cylindrical bore

Tapered bore taper 1:12

d 100∼140mm

ı	Boundary dimensions		dynamic			static	Bearing	numbers	Abutment and fillet dimensions			
		mm			kN		kgf	0.45-11-1			mm	
,	D	D	0	a	a	a	<i>a</i>	Cylindrical	tapered [®]	$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore	min	max	max
	105	50	0	010	470	04 500	47.500	001000	00100DV	110	155	0
	165	52	2	310	470	31,500	47,500	23120B	23120BK	110	155	2
	170	65 65	2	380	590	38,500	60,000	2P2009	2P2009K	110	160	2
	170	65	2	405	640	41,500	65,500	☆2P2014	2P2014K	110	160	2
100	180	46	2.1	315	415	32,000	42,500	22220B	22220BK	112	168	2
	180	60.3	2.1	405	580	41,500	59,000	23220B	23220BK	112	168	2
	215	47	3	370	465	37,500	47,500	21320	21320K	114	201	2.5
	215	73	3	605	755	61,500	77,000	22320B	22320BK	114	201	2.5
	170	45	2	282	455	28,800	46,500	23022B	23022BK	120	160	2
	180	56	2	370	580	37,500	59,500	23122B	23122BK	120	170	2
	180	69	2	450	755	46,000	77,000	24122B	24122BK30	120	170	2
110	200	53	2.1	410	570	42,000	58,000	22222B	22222BK	122	188	2
110	200	69.8	2.1	515	760	52,500	77,500	23222B	23222BK	122	188	2
	240	50	3	495	615	50,500	62,500	21322	21322K	124	226	2.5
	240	80	3	745	930	76,000	95,000	22322B	22322BK	124	226	2.5
							-					
	180	46	2	296	495	30,000	50,500	23024B	23024BK	130	170	2
	180	60	2	390	670	39,500	68,500	24024B	24024BK30	130	170	2
	180	60	2	395	695	40,000	71,000	☆24024C	24024CK30	130	170	2
	180	69	2	415	785	42,500	80,000	☆2P2416	2P2416K	130	170	2
120	200	62	2	455	705	46,500	71,500	23124B	23124BK	130	190	2
	200	80	2	575	945	58,500	96,500	24124B	24124BK30	130	190	2
	215	58	2.1	485	700	49,500	71,500	22224B	22224BK	132	203	2
	215	76	2.1	585	880	59,500	89,500	23224B	23224BK	132	203	2
	260	86	3	880	1,120	89,500	114,000	22324B	22324BK	134	246	2.5
	200	52	2	375	620	38,500	63,500	23026B	23026BK	140	190	2
	200	69	2	505	895	51,500	91,000	24026B	24026BK30	140	190	2
	200	69	2	490	860	50,000	87,500	☆24026C	24026CK30	140	190	2
	210	64	2	495	795	50,500	81,000	23126B	23126BK	140	200	2
130	210	80	2	585	995	60,000	102,000	24126B	24126BK30	140	200	2
	230	64	3	570	790	58,000	80,500	22226B	22226BK	144	216	2.5
	230	80	3	685	1,060	70,000	108,000	23226B	23226BK	144	216	2.5
	280	93	4	1,000	1,290	102,000	131,000	22326B	22326BK	148	262	3
139.734	218	80	1.1	605	1,050	61.500	106,000	2P2803	2P2803K	146	211	1
100.704					.,555							•
140	210	53	2	405	690	41,000	70,500	23028B	23028BK	150	200	2
1.0	210	69	2	510	945	52,000	96,500	24028B	24028BK30	150	200	2

Smallest allowable dimension for chamfer dimension r.
 Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 Remarks: 1. Bearing numbers marked "☆" are C type.
 B-206 B-206

Constant Axial load factors

 Y_2

3.15

2.65

2.61

 $Y_{\rm o}$

2.07

1.74

1.72

 Y_1

2.12

1.78

1.75

0.32

0.38

0.38

0.32

0.30

0.38

0.28

0.35

0.37

0.35

0.25

0.32

2.12

2.23

1.78

2.39

1.92

1.81

1.91

2.73

2.09

3.15

3.32

2.65

3.56

2.86

2.69

2.84

4.06

3.12

2.07

2.18

1.74

2.33

1.88

1.77

1.86

2.67

2.05

7.91

8.47

11

11.2

14.3

26.8

10.8

6.35

8.57

7.78

8.2

10.8

10.9

13.9

26.2

10.3

6.12

8.43

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm B}}{F_{\rm B}}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

static

Mass (approx.) kg

tapered

bore

4.16

5.62

5.69

Cylindrical

bore

4.3

5.84

5.91

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

For values of e, Y_1 , Y_2 and Y_0 see the table below.

Cylindrical bore

Tapered bore taper 1:12

d 140∼180mm

	Boundary dimensions		dynamic	Basic lo static kN	ad ratings dynamic	static kgf	Bearing	numbers		utment a dimens		
		111111			KIN		kgi	Cylindrical	tapered ²	7		
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore	$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max
			· S Hilli	01	0.01	01	001	20.0	20.0		max	max
	210	69	2	520	940	53.000	95.500	☆24028C	24028CK30	150	200	2
	225	68	2.1	540	895	55,000	91,000	23128B	23128BK	152	213	2
	225	85	2.1	670	1,150	68,500	117,000	24128B	24128BK30	152	213	2
140	250	68	3	685	975	70,000	99,500	22228B	22228BK	154	236	2.5
	250	88	3	805	1,270	82,000	129,000	23228B	23228BK	154	236	2.5
	300	102	4	1,130	1,460	115,000	149,000	22328B	22328BK	158	282	3
			-	1,100	1,100	,						
	225	56	2.1	445	775	45,500	79,000	23030B	23030BK	162	213	2
	225	75	2.1	585	1,060	59,500	108,000	24030B	24030BK30	162	213	2
	225	75	2.1	600	1,090	61,000	111,000	☆24030C	24030CK30	162	213	2
450	250	80	2.1	730	1,190	74,500	121,000	23130B	23130BK	162	238	2
150	250	100	2.1	885	1,520	90,500	155,000	24130B	24130BK30	162	238	2
	270	73	3	775	1,160	79,000	119,000	22230B	22230BK	164	256	2.5
	270	96	3	935	1,460	95,000	149,000	23230B	23230BK	164	256	2.5
	320	108	4	1,270	1,750	130,000	179,000	22330B	22330BK	168	302	3
	000	45	0	000	010	00.000	00.500	00000	000001/	170	010	0
	220 240	45 60	2 2.1	320 505	610 885	33,000 51,500	62,500 90,000	23932 23032B	23932K 23032BK	170 172	210 228	2 2
	240 240	80	2.1	650	1,200	66,500	122,000	23032B 24032B	24032BK30	172	228	2
	240	80	2.1	665	1,250	67,500	127,000	☆24032C	24032BK30 24032CK30	172	228	2
160	270	86	2.1	840	1,230	85,500	140,000	23132B	23132BK	172	258	2
100	270	109	2.1	1,040	1,780	106,000	181,000	24132B	24132BK30	172	258	2
	290	80	3	870	1,290	88,500	132,000	22232B	22232BK	174	276	2.5
	290	104	3	1,050	1,660	107,000	170,000	23232B	23232BK	174	276	2.5
	340	114	4	1,410	1,990	144,000	203,000	22332B	22332BK	178	322	3
			_									_
	230	45	2	330	650	34,000	66,000	23934	23934K	180	220	2
	260	67	2.1	630	1,080	64,000	110,000	23034B	23034BK	182	248	2
	260	90	2.1	800	1,470	81,500	150,000	24034B	24034BK30	182	248	2
4=0	260	90	2.1	815	1,500	83,000	153,000	☆24034C	24034CK30	182	248	2
170	280	88	2.1	885	1,490	90,500	152,000	23134B	23134BK	182	268	2
	280	109	2.1	1,080	1,880	110,000	191,000	24134B	24134BK30	182	268	2
	310	86	4	1,000	1,520	102,000	155,000	22234B	22234BK	188	292	3
	310	110	4	1,180	1,960	120,000	200,000	23234B	23234BK	188	292	3
	360	120	4	1,540	2,180	157,000	223,000	22334B	22334BK	188	342	3
	250	52	2	440	835	45,000	85,000	23936	23936K	190	240	2
180	280	74	2.1	740	1,290	75,500	132,000	23036B	23036BK	192	268	2
	280	100	2.1	965	1,770	98,500	181,000	24036B	24036BK30	192	268	2

Smallest allowable dimension for chamfer dimension r.
 Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 Remarks: 1. Bearing numbers marked "☆" are C type.
 B-208

Mass (approx.)

kg

Constant Axial load factors

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	≤ e	$\frac{F_{i}}{F_{i}}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

e	Y_1	Y_2	$Y_{ m o}$	Cylindrical bore	tapered bore
0.30	2.23	3.32	2.18	8.48	7.66
0.30	2.25	3.35	2.20	10.2	9.86
0.38	1.80	2.68	1.76	13.3	13.1
0.28	2.39	3.55	2.33	14	13.7
0.36	1.90	2.83	1.86	18.8	18.2
0.37	1.80	2.69	1.76	33.8	33
0.24	2.76	4.11	2.70	7.73	7.45
0.33	2.06	3.07	2.02	10.7	10.5
0.30	2.25	3.34	2.20	10.5	10.3
0.32	2.11	3.15	2.06	15.6	15.1
0.40	1.69	2.51	1.65	20.2	20
0.27	2.46	3.66	2.40	18.1	17.7
0.36	1.88	2.79	1.83	24.1	23.4
0.35	1.92	2.86	1.88	42.7	41.8
0.18	3.69	5.49	3.61	5.5	5.33
0.25	2.74	4.09	2.68	9.42	9.09
0.32	2.10	3.13	2.06	13	12.8
0.31	2.18	3.24	2.13	12	11.8
0.32	2.11	3.15	2.07	19.8	19.2
0.40	1.67	2.48	1.63	26	25.6
0.28	2.42	3.60	2.37	22.7	22.2
0.36	1.86	2.77	1.82	30	29.1
0.35	1.94	2.89	1.90	50.8	49.7
0.17	3.91	5.83	3.83	5.8	5.62
0.25	2.66	3.96	2.60	12.7	12.3
0.34	1.98	2.95	1.94	17.7	17.4
0.31	2.16	3.22	2.12	17.4	17.1
0.31	2.15	3.21	2.11	21.5	20.8
0.39	1.74	2.59	1.70	27.2	26.8
0.28	2.39	3.56	2.34	28	27.3
0.36	1.87	2.79	1.83	36.8	35.7
0.34	1.96	2.91	1.91	59.8	58.5
0.19	3.52	5.25	3.45	8.21	7.95
0.26	2.59	3.85	2.53	16.7	16.1
0.35	1.91	2.85	1.87	23.3	22.9

Cylindrical bore

Tapered bore taper 1:12

d 180∼240mm

March Marc		Bounda		ensions	dynamic	static	ad ratings dynamic	static	Bearing	numbers		Abutment and fillet dimensions	
280 100 2.1 965 1.770 98,500 181,000 24036C 24036CK30 192 268 2 290 110 2.1 1.050 1.890 107,000 193,000 22336B 23136BK 194 286 2.5 300 31 33 1.250 2.210 127,000 225,000 24136B 23136BK 194 286 2.5 320 86 4 1.040 1.610 106,000 164,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1.740 2.560 177,000 261,000 22336B 23336BK 202 278 2 290 100 2.1 970 1.820 96,500 186,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1.820 96,500 186,000 24038B 23038BK 202 278 2 290 100 2.1 970 1.820 96,500 186,000 24138B 24138BK30 202 278 2			mm			kN		kgf	.			mm	
280 100 2.1 965 1,770 98,500 181,000		_	_			_			•	•			
180	d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore	min	max	max
180		222	400	0.4		4 ===0	00 500	404.000	1 0 10000	0.100001/00	400		
180 300 96 3 1,030 1,730 105,000 176,000 23136B 23136BK 194 286 2.5						,							
180 300 118 3 1,250 2,210 127,000 225,000 24136B 24136BK30 194 286 2.5 320 182 41,040 1,610 106,000 164,000 22336B 22336BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 23336B 23236BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 23236BK 198 302 3 3 380 126 4 1,740 2,560 177,000 261,000 22336B 23236BK 198 302 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					,	,							
320 86 4 1,040 1,610 106,000 164,000 22236B 22336BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 302 3 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 302 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3													
320 112 4 1,230 2,000 125,000 204,000 23236B 23236BK 198 302 3 380 126 4 1,740 2,560 177,000 261,000 22336B 22336BK 198 362 3 380 126 4 1,740 2,560 177,000 261,000 23938 23338K 200 250 2 290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 24038C 24038CK30 202 278 2 230 104 3 1,190 2,020 122,000 206,000 23138B 23138BK 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22338B 22338BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23338B 23238BK 208 322 3 400 132 5 1,870 2,780 191,000 284,000 23338B 23338BK 212 378 4 4 4 3 1,630 2,780 191,000 284,000 23340B 2340BK 212 298 2 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 340 140 3 1,630 2,900 166,000 295,000 24408B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 2440B 2340BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 2340B 2340BK 234 326 2.5 340 118 3 1,350 2,570 138,000 269,000 2340B 2340BK 234 326 2.5 340 118 3 1,350 2,570 138,000 269,000 2344B 2344BK 234 326 2.5 370 150 4 1,880 3,400 192,000 345,000 2444B 2344BK 234 326 2.5 370 150 4 1,880 3,400 192,000 345,000 2444B 2344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2444B 2344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2444	180				,								
260 52 2 460 890 47,000 91,000 23938 23938K 200 250 2 290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 997 1,850 185,000 186,000 24038B 24038BK30 202 278 2 290 100 2.1 997 1,850 185,000 24038B 24038BK30 202 278 2 278				-									
260 52 2 460 890 47,000 91,000 23938 23938K 200 250 2 278 2 290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ★24038C 24038CK30 202 278 2 2302 128 3 1,420 2,480 144,000 253,000 24138B 23138BK 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22338B 23238BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23138B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 200 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 200 132 5 1,870 2,790 191,000 284,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 2340BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 2240BK 218 342 3 360 128 4 1,610 2,640 165,000 295,000 2340B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 295,000 2340B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 295,000 2340B 2340BK 218 342 3 340 118 3 1,350 2,570 138,000 265,000 22340B 22340BK 218 342 3 340 118 3 1,350 2,570 138,000 265,000 2344B 2344BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23140B 23144BK 233 352 3 400 184 4 1,540 2,670 157,000 272,000 23144B 23144BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 400 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 2444B 2244BK 238 352 3 400 150 4 2,040 3,400 208,000 345,000 2444B 2244BK 244 438 4 2440 150 4 2,040 3,400 208,000 345,000 22344B 23344BK 242 438 4 240 320 3				-	,	,							
290 75 2.1 755 1,350 77,000 138,000 23038B 23038BK 202 278 2 290 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ☆24038C 24038CK30 202 278 2 2 320 128 3 1,420 2,480 144,000 253,000 24138B 24138BK30 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22138B 24138BK30 204 306 2.5 340 92 4 1,400 2,330 143,000 253,000 24138B 24138BK30 204 306 2.5 340 120 4 1,400 2,330 143,000 237,000 22238B 22338BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 2 280 60 2.1 545 1,100 56,000 112,000 23940 23940K 212 268 2 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140BK 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22140B 23140BK 214 326 2.5 360 98 4 1,610 2,640 165,000 269,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 22340B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 340 140 33 1,350 2,570 138,000 269,000 23240B 23240BK 218 342 3 340 140 33 1,350 2,570 138,000 269,000 23240B 23240BK 218 342 3 340 140 34 1,580 2,670 157,000 272,000 23144B 23044BK 234 326 2.5 370 120 4 1,580 2,670 157,000 272,000 24044B 23044BK 234 326 2.5 370 120 4 1,580 2,670 157,000 272,000 24044B 23044BK 234 326 2.5 370 120 4 1,580 3,400 192,000 345,000 21444B 23144BK30 238 352 3 400 184 4 1,580 2,460 161,000 251,000 2244B 23244BK 238 352 3 400 184 4 2,010 3,350 205,000 345,000 24144B 23144BK30 238 352 3 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 242 438 4 240 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 242 438 4 400 150 4 2,040 3,400 208,000 345,000 2244B 23244BK 242 438 4 4 240 150 4 2,040 3,400 208,000 345,000 22444B 23244BK 242 438 4 4 240 150 4 2,040 3,550 205,000 340,000 22344B 23244BK 242 438 4 2440		380	126	4	1,740	2,560	177,000	261,000	22336B	22336BK	198	362	3
190 100 2.1 995 1,850 102,000 188,000 24038B 24038BK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ★24038C 24038CK30 202 278 2 290 100 2.1 970 1,820 98,500 186,000 ★24038C 24038CK30 202 278 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		260	52	2	460	890	47,000	91,000	23938	23938K	200	250	2
190 100 2.1 970 1,820 98,500 186,000		290	75	2.1	755	1,350	77,000	138,000	23038B	23038BK	202	278	2
190 320 104 3 1,190 2,020 122,000 206,000 23138B 23138BK 204 306 2.5 320 128 3 1,420 2,480 144,000 253,000 24138B 24138BK30 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22238B 22238BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4 280 60 2.1 545 1,100 56,000 112,000 23940 23940K 212 268 2 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 265,000 22440B 22440BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 23944 23944K 232 288 2 370 120 4 1,540 2,670 157,000 272,000 23144B 23044BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 400 144 4 2,010 3,350 205,000 340,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 22344B 23244BK 238 382 3 400 144 4 2,040 3,400 208,000 345,000 2444B 22344BK 238 382 3 400 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 234 438 4 240 320 60 2.1 565 1,190 58,000 121,000 23948 23948K 252 308 2		290	100	2.1	995	1,850	102,000	188,000	24038B	24038BK30	202	278	2
200 128 3 1,420 2,480 144,000 253,000 24138B 24138BK30 204 306 2.5 340 92 4 1,160 1,810 118,000 185,000 22238B 22238BK 208 322 3 400 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 23238BK 212 378 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		290	100	2.1	970	1,820	98,500	186,000	☆24038C	24038CK30	202	278	2
340 92 4 1,160 1,810 118,000 185,000 22238B 22238BK 208 322 3 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 400 132 5 1,870 2,790 191,000 284,000 22338B 22338BK 212 378 4	190	320	104	3	1,190	2,020	122,000	206,000	23138B	23138BK	204	306	2.5
200 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 3 4 2338B 23238BK 208 322 3 3 3 3 3 3 3 3		320	128	3	1,420	2,480	144,000	253,000	24138B	24138BK30	204	306	2.5
200 340 120 4 1,400 2,330 143,000 237,000 23238B 23238BK 208 322 3 3 4 3 4 4 3 4 4 4		340	92	4	1,160	1,810	118,000	185,000	22238B	22238BK	208	322	3
200		340	120	4	1,400	2,330	143,000	237,000	23238B	23238BK	208	322	3
200 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 23044B 23044BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23044BK 238 352 3 370 120 4 1,880 3,400 192,000 345,000 24044B 24044BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,670 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,5000 340,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 242 438 4 201 240 240 240 240 240 240 240 240 240 240		400	132	5	1,870	2,790	191,000	284,000	22338B	22338BK	212	378	4
200 310 82 2.1 915 1,620 93,000 165,000 23040B 23040BK 212 298 2 310 109 2.1 1,160 2,140 118,000 219,000 24040B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 23044B 23044BK 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23044BK 238 352 3 370 120 4 1,880 3,400 192,000 345,000 24044B 24044BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,670 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 2,5000 340,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 24144B 24144BK30 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 22344BK 242 438 4 201 240 240 240 240 240 240 240 240 240 240		280	60	2.1	545	1,100	56,000	112,000	23940	23940K	212	268	2
200 310 109 2.1 1,160 2,140 118,000 219,000 23140B 24040BK30 212 298 2 340 112 3 1,350 2,270 137,000 231,000 23140B 23140BK 214 326 2.5 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 360 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 232 288 2 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 24044BK30 234 326 2.5 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 23244BK 238 382 3 400 144 4 2,010 3,350 2,650 340,000 251,000 22244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4						,							
200		310	109	2.1	1.160				24040B	24040BK30	212	298	
200 340 140 3 1,630 2,900 166,000 295,000 24140B 24140BK30 214 326 2.5 360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 23240BK 222 398 4 2340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 192,000 345,000 24144B 24144BK30 238 382 3 400 150 4 2,040 3,400 208,000 345,000 22344B 23244BK 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4						, -							
360 98 4 1,310 2,010 134,000 205,000 22240B 22240BK 218 342 3 360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4	200	340	140	3	,	•			24140B	24140BK30	214	326	
360 128 4 1,610 2,640 165,000 269,000 23240B 23240BK 218 342 3 420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4			98		,	,			22240B	22240BK	218	342	3
420 138 5 2,040 3,050 208,000 310,000 22340B 22340BK 222 398 4 300 60 2.1 565 1,170 57,500 119,000 23944 23944K 232 288 2 340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 294401 294401K30 <th></th> <th></th> <th></th> <th></th> <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						,							
340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK													
340 90 3 1,060 1,920 108,000 195,000 23044B 23044BK 234 326 2.5 340 118 3 1,350 2,570 138,000 262,000 24044B 24044BK30 234 326 2.5 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK		300	60	2.1	565	1.170	57.500	119.000	23944	23944K	232	288	2
220 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 294401 2P4401K30 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4													
220 370 120 4 1,540 2,670 157,000 272,000 23144B 23144BK 238 352 3 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4						,					_		
220 370 150 4 1,880 3,400 192,000 345,000 24144B 24144BK30 238 352 3 400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4			_			,			_				_
400 108 4 1,580 2,460 161,000 251,000 22244B 22244BK 238 382 3 400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4	220				,	,			_				
400 144 4 2,010 3,350 205,000 340,000 23244B 23244BK 238 382 3 400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4						•							
400 150 4 2,040 3,400 208,000 345,000 2P4401 2P4401K30 238 382 3 460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4													
460 145 5 2,350 3,500 240,000 360,000 22344B 22344BK 242 438 4 240 320 60 2.1 565 1,190 58,000 121,000 23948 23948K 252 308 2													
741)									_				
741)	0.40	320	60	21	565	1 190	58 000	121 000	23948	23948K	252	308	2
	240	360	92	3	1,130	2,140	116,000	219,000	23048B	23048BK	254	346	2.5

Smallest allowable dimension for chamfer dimension r.
 Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 Remarks: 1. Bearing numbers marked "☆" are C type.
 B-210

$\frac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm b}}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Consta	nt Axia	al load fac	ctors	Mass	(approx.)
				k	g
				Cylindrical	tapered
e	Y_1	Y_2	$Y_{\rm o}$	bore	bore
0.33	2.04	3.04	2.00	23	22.6
0.37	1.82	2.70	1.78	27.5	26.3
0.32	2.11	3.15	2.07	25.1	24.2
0.39	1.72	2.56	1.68	34.3	33.8
0.27	2.49	3.70	2.43	29.3	28.6
0.35	1.91	2.84	1.86	39	37.8
0.34	1.97	2.93	1.92	70	68.5
0.18	3.81	5.67	3.73	8.6	8.34
0.26	2.65	3.94	2.59	17.7	17.1
0.33	2.03	3.02	1.98	24.3	23.9
0.31	2.16	3.22	2.12	23	22.6
0.33	2.07	3.09	2.03	35.3	34.2
0.40	1.69	2.51	1.65	42.8	42.2
0.27	2.47	3.68	2.42	36.6	35.8
0.36	1.89	2.82	1.85	47.6	46.2
0.34	1.97	2.94	1.93	81	79.3
0.17	3.91	5.82	3.82	12.1	11.7
0.26	2.59	3.85	2.53	22.7	21.9
0.35	1.94	2.89	1.90	31	30.5
0.33	2.05	3.05	2.00	43.3	42
0.41	1.64	2.44	1.60	53.4	52.6
0.28	2.45	3.64	2.39	44	43
0.36	1.88	2.79	1.83	57.2	55.5
0.34	1.98	2.95	1.94	93.2	91.2
0.19	3.62	5.39	3.54	13.1	12.7
0.26	2.59	3.85	2.53	29.9	28.8
0.34	1.97	2.94	1.93	40.2	39.6
0.33	2.07	3.09	2.03	53.3	51.6
0.41	1.66	2.47	1.62	67	66
0.27	2.46	3.66	2.40	60.4	59.1
0.36	1.85	2.76	1.81	80	77.6
0.41	1.64	2.44	1.61	81.9	80.8
0.33	2.06	3.07	2.02	117	115
0.16	4.13	6.15	4.04	14	13.6
0.25	2.69	4.01	2.63	33.4	32.2

Cylindrical bore

Tapered bore taper 1:12

d 240~300mm

<i>a</i> 240												
	Bounda		nsions	dynamic	static	oad ratings dynamic	Bearing numbers static		numbers	Abutment and fillet dimensions		
		mm			kN	ŀ	gf	Culindrical	toporod@		mm	
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Cylindrical bore	tapered bore	$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max
			D IIIII	•	- 01	•	- 01					
	360	118	3	1,410	2,770	144,000	282,000	24048B	24048BK30	254	346	2.5
	400	128	4	1,730	3,050	177,000	310,000	23148B	23148BK	258	382	3
0.40	400	160	4	2,110	3,800	215,000	390,000	24148B	24148BK30	258	382	3
240	440	120	4	1,940	3,100	198,000	315,000	22248B	22248BK	258	422	3
	440	160	4	2,430	4,100	247,000	420,000	23248B	23248BK	258	422	3
	500	155	5	2,720	4,100	278,000	420,000	22348B	22348BK	262	478	4
247.65	400.0	5 120.6	65 4	1,590	2,780	162,000	283,000	2P5002	2P5002K	266	382	3
	360	70	2.1	805	1,590	82,000	163,000	2P5203	2P5203K	272	348	2
	360	75	2.1	760	1,580	77,500	161,000	23952	23952K	272	348	2
	400	104	4	1,420	2,620	144,000	267,000	23052B	23052BK	278	382	3
	400	140	4	1,830	3,550	186,000	365,000	24052B	24052BK30	278	382	3
260	440	144	4	2,140	3,850	219,000	395,000	23152B	23152BK	278	422	3
	440	180	4	2,510	4,600	256,000	470,000	24152B	24152BK30	278	422	3
	480	130	5	2,230	3,600	228,000	365,000	22252B	22252BK	282	458	4
	480	174	5	2,760	4,700	281,000	480,000	23252B	23252BK	282	458	4
	540	165	6	3,100	4,750	320,000	485,000	22352B	22352BK	288	512	5
	350	52	2	525	1,220	54,000	125,000	23856	23856K	290	340	2
	380	75	2.1	830	1,750	84,500	179,000	23956	23956K	292	368	2
	420	106	4	1,510	2,920	154,000	297,000	23056B	23056BK	298	402	3
	420	140	4	1,950	3,950	199,000	405,000	24056B	24056BK30	298	402	3
	440	160	4	2,180	4,250	222,000	435,000	2P5604	2P5604K	298	422	3
280	460	146	5	2,300	4,250	234,000	435,000	23156B	23156BK	302	438	4
	460	180	5	2,730	5,200	278,000	530,000	24156B	24156BK30	302	438	4
	500	130	5	2,310	3,800	236,000	390,000	22256B	22256BK	302	478	4
	500	176	5	2,930	5,150	298,000	525,000	23256B	23256BK	302	478	4
	580	175	6	3,500	5,350	360,000	545,000	22356B	22356BK	308	552	5
290	430	110	4	1,380	2,860	141,000	291,000	2P5802	2P5802K	308	412	3
	420	90	3	1,110	2,320	113,000	237,000	23960	23960K	314	406	2.5
	460	118	4	1,890	3,550	193,000	365,000	23060B	23060BK	318	442	3
	460	160	4	2,450	4,950	250,000	505,000	24060B	24060BK30	318	442	3
300	500	160	5	2,750	5,000	280,000	510,000	23160B	23160BK	322	478	4
	500	200	5	3,300	6,400	340,000	650,000	24160B	24160BK30	322	478	4
	540	140	5	2,670	4,350	272,000	440,000	22260B	22260BK	322	518	4
	540	192	5	3,450	6,000	355,000	615,000	23260B	23260BK	322	518	4
	•		•	-,	-,	,	,					•

 ^{540 192 5 5,450 5,555} Smallest allowable dimension for chamfer dimension r.
 Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 B-212

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm B}}{F_{\rm B}}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

	Consta	nt Axia	al load fac	ctors	Mass (approx.)			
					k	g		
					Cylindrical	tapered		
	e	Y_1	Y_2	Y_{o}	bore	bore		
ı								
	0.32	2.09	3.12	2.05	43	42.3		
	0.32	2.11	3.15	2.07	65.8	63.8		
	0.40	1.69	2.51	1.65	82.2	80.9		
	0.28	2.43	3.62	2.38	81.7	80		
	0.37	1.83	2.72	1.79	108	105		
	0.32	2.10	3.13	2.06	148	145		
	0.31	2.18	3.24	2.13	58.2	56.3		
	0.18	3.76	5.60	3.67	21.6	21		
	0.19	3.53	5.26	3.45	24	23.3		
	0.26	2.63	3.92	2.57	48.5	46.8		
	0.34	1.96	2.91	1.91	65.2	64.1		
	0.33	2.05	3.06	2.01	91.4	88.6		
	0.41	1.63	2.43	1.60	114	112		
	0.28	2.45	3.64	2.39	106	104		
	0.37	1.83	2.72	1.79	141	137		
	0.32	2.13	3.18	2.09	183	179		
	0.12	5.42	8.07	5.30	11	10.6		
	0.17	3.88	5.78	3.79	26.4	25.6		
	0.25	2.73	4.06	2.67	52.4	50.6		
	0.33	2.06	3.07	2.02	69	67.9		
	0.35	1.92	2.86	1.88	88.6	84.9		
	0.32	2.13	3.18	2.09	97.7	94.6		
	0.39	1.73	2.58	1.69	120	118		
	0.26	2.57	3.83	2.51	112	110		
	0.36	1.90	2.83	1.86	150	145		
	0.31	2.16	3.22	2.12	224	220		
	0.25	2.69	4.00	2.63	56	54.1		
	0.20	3.34	4.98	3.27	40	38.7		
	0.25	2.66	3.96	2.60	72.4	70.2		
	0.34	1.97	2.93	1.92	98	96.4		
	0.32	2.11	3.15	2.07	131	127		
	0.40	1.69	2.51	1.65	161	159		
	0.26	2.57	3.83	2.51	141	138		
	0.36	1.88	2.79	1.83	193	187		

Cylindrical bore

Tapered bore taper 1:12

d 300∼380mm

	Bounda	Boundary dimensions		dynamic	Basic Io	oad ratings dynamic	static	Bearing	numbers	Abutment and fillet dimensions		
		mm		•	kN	•	gf			111101	mm	10113
							J	Cylindrical	tapered ²	$d_{ m a}$	D_{a}	$r_{ m as}$
d	D	B	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore	min	max	max
300	620	185	7.5	3,600	5,400	365,000	550,000	22360B	22360BK	336	584	6
	400	80	2.1	870	2,210	89,000	226,000	24864	24864K30	332	388	2
	440	90	3	1,140	2,460	116,000	251,000	23964	23964K	334	426	2.5
	480	121	4	1,960	3,850	200,000	395,000	23064B	23064BK	338	462	3
	480	160	4	2,510	5,200	255,000	530,000	24064B	24064BK30	338	462	3
320	540	176	5	3,100	5,800	320,000	590,000	23164B	23164BK	342	518	4
	540	218	5	3,850	7,300	390,000	745,000	24164B	24164BK30	342	518	4
	580	150	5	3,100	5,050	315,000	515,000	22264B	22264BK	342	558	4
	580	208	5	4,000	7,050	410,000	720,000	23264B	23264BK	342	558	4
	580	213	5	3,950	6,900	405,000	705,000	2P6404	2P6404K	342	558	4
330	540	186	5	3,100	6,000	315,000	615,000	2P6601	2P6601K	352	518	4
	460	90	3	1,220	2,650	124,000	270,000	23968	23968K	354	446	2.5
	520	133	5	2,310	4,550	235,000	465,000	23068B	23068BK	362	498	4
	520	180	5	3,000	6,200	305,000	630,000	24068B	24068BK30	362	498	4
340	580	190	5	3,600	6,600	365,000	670,000	23168B	23168BK	362	558	4
	580	243	5	4,600	8,950	470,000	910,000	24168B	24168BK30	362	558	4
	620	224	6	4,450	8,000	455,000	815,000	23268B	23268BK	368	592	5
	620	229	6	4,450	8,000	455,000	815,000	2P6802	2P6802K	368	592	5
	440	60	2.1	735	1,830	74,500	187,000	23872	23872K	372	428	2
	480	75	3	1,090	2,350	111,000	239,000	2P7202	2P7202K	374	466	2.5
	480	90	3	1,320	2,930	135,000	298,000	23972	23972K	374	466	2.5
	520	133	5	1,790	3,900	182,000	395,000	2P7201	2P7201K	382	498	4
	530	127	5	2,060	4,100	210,000	415,000	2P7205	2P7205K	382	508	4
360	540	134	5	2,370	4,700	242,000	480,000	23072B	23072BK	382	518	4
	540	180	5	3,100	6,600	320,000	675,000	24072B	24072BK30	382	518	4
	600	192	5	3,750	7,050	385,000	715,000	23172B	23172BK	382	578	4
	600	243	5	4,600	9,150	470,000	935,000	24172B	24172BK30	382	578	4
	610	255	5	4,300	8,300	440,000	845,000	2P7206	2P7206K	382	588	4
	650	232	6	4,850	8,700	495,000	885,000	23272B	23272BK	388	622	5
	520	106	4	1,560	3,550	159,000	360,000	23976	23976K	398	502	3
000	560	135	5	2,510	5,150	256,000	525,000	23076B	23076BK	402	538	4
380	560	180	5	3,250	7,100	330,000	725,000	24076B	24076BK30	402	538	4
	620	194	5	3,900	7,500	400,000	765,000	23176B	23176BK	402	598	4
	620	243	5	4,800	9,650	490,000	985,000	24176B	24176BK30	402	598	4

 ^{620 243 5 7,000 5,523} Smallest allowable dimension for chamfer dimension r.
 Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 B-214

$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
X	Y	X	Y		
1	Y_1	0.67	Y_2		

Consta	nt Axia	ctors	Mass (approx.)			
				k	q	
				Cylindrical	tapered	
e	Y_1	Y_2	$Y_{\rm o}$	bore	bore	
	•	2				
0.32	2.13	3.17	2.08	270	265	
0.47	0.00	E 04	0.00		00.4	
0.17	3.90	5.81	3.82	22.8	22.4	
0.19	3.50	5.21	3.42	43	41.7	
0.25	2.73	4.06	2.67	78.2	75.5	
0.33	2.06	3.07	2.02	103	101	
0.33	2.06	3.07	2.02	167	162	
0.40	1.67	2.48	1.63	207	204	
0.26	2.57	3.83	2.51	172	168	
0.36	1.86	2.77	1.82	243	236	
0.36	1.86	2.77	1.82	241	233	
0.34	1.99	2.96	1.94	166	160	
0.17	3.91	5.83	3.83	44.7	43.3	
0.25	2.68	3.99	2.62	104	100	
0.34	1.98	2.95	1.94	140	138	
0.33	2.05	3.06	2.01	210	204	
0.42	1.61	2.39	1.57	269	265	
0.37	1.84	2.75	1.80	300	291	
0.37	1.84	2.75	1.80	298	288	
0.12	5.78	8.61	5.66	19.2	18.6	
0.14	4.94	7.36	4.83	37.1	36.1	
0.17	3.99	5.93	3.90	47.2	45.7	
0.25	2.69	4.01	2.63	92.8	89.5	
0.23	2.92	4.35	2.86	95.3	92.3	
0.24	2.78	4.14	2.72	110	106	
0.33	2.06	3.07	2.02	147	145	
0.32	2.11	3.15	2.07	222	215	
0.40	1.67	2.48	1.63	281	277	
0.41	1.64	2.44	1.60	290	277	
0.36	1.87	2.78	1.83	339	329	
0.19	3.54	5.27	3.46	69.9	67.7	
0.24	2.87	4.27	2.80	115	111	
0.30	2.23	3.32	2.18	153	150	
0.31	2.16	3.22	2.12	235	228	
0.39	1.73	2.58	1.69	292	287	
0.03	1.75	2.50	1.03	202	201	

Cylindrical bore

Tapered bore taper 1:12

d 380∼460mm

mm kN kgf Cylindrical ta	pered d _a	$egin{array}{c} mm \ & D_{\mathrm{a}} \end{array}$	nd ons $r_{ m as}$	
	· Wa	1)		
d D B $r_{ m smin}$ $C_{ m r}$ $C_{ m or}$ $C_{ m r}$ $C_{ m or}$ bore		max	$r_{ m as}$ max	
680 240 6 5,200 9,650 530,000 985,000 23276B 232	276BK 408	652	5	
380 680 245 6 5,200 9,650 536,000 985,000 2P7603 2P	7603K 408	652	5	
390 510 90 3 1,310 3,050 133,000 310,000 2P7801 2P	7801K 404	496	2.5	
		400		
7	880K30 412		2	
7.1.1	980K 418	_	3	
	080BK 422		4	
400	080BK30 422		4	
650 200 6 4,200 8,050 425,000 820,000 23180B 23	180BK 428		5	
	180BK30 428		5	
	280BK 428		5	
720 260 6 5,850 10,600 595,000 1,080,000 2P8002 2P 8	8002K 428	692	5	
520 75 2.1 1,090 2,710 111,000 277,000 23884 238	384K 432	508	2	
	984K 438		3	
	084BK 442		4	
	084BK30 442		4	
	184BK 448		5	
	184BK30 448		5	
	284BK 456		6	
100 272 710 0,000 12,000 000,000 1,200,000	100	, = .		
600 118 4 2,030 4,700 207,000 480,000 23988 23 9	988K 458	582	3	
650 157 6 3,300 6,850 335,000 695,000 23088B 23 0	D88BK 468	622	5	
650 212 6 4,300 9,450 440,000 960,000 24088B 24 0	088BK30 468	622	5	
440 720 226 6 5,200 10,100 530,000 1,030,000 23188B 23 1	188BK 468	692	5	
720 280 6 6,450 13,100 660,000 1,330,000 24188B 24 1	188BK30 468	692	5	
790 280 7.5 6,900 12,800 705,000 1,310,000 23288B 23 2	288BK 476	754	6	
790 285 7.5 6,900 12,800 705,000 1,310,000 2P8802 2P 8	8802K 476	754	6	
4F0 000 100 0 0.000 7.400 015.000 755.000 0P0000 0P	0000K 404	000	0.5	
450 620 190 3 3,050 7,400 315,000 755,000 2P9002 2P 9	9002K 464	606	2.5	
580 118 3 1,840 4,850 187,000 495,000 24892 248	892K30 474	566	2.5	
	992K 478		3	
620 140 4 2,440 6,000 248,000 610,000 2P9203 2P	9203K 478		3	
	092BK 488		5	
, , , , , , , , , , , , , , , , , , , ,	092BK30 488		5	
	192BK 496		6	
	192BK30 496		6	

<sup>760 300 7.5 7,100 1,500

•</sup> Smallest allowable dimension for chamfer dimension r.

• Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.

B-216

Constant Axial load factors

Equivalent bearing load dynamic Pr=XFr+YFa

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
X	Y	X	Y		
1	Y_1	0.67	Y_2		

Mass (approx.)

kg Cylindrical tapered static $P_{\text{or}}=F_{\text{r}}+Y_{\text{o}}F_{\text{a}}$ For values of e, Y_{1} , Y_{2} and Y_{o} see the table below.

					Cyllilarical	lapereu
	e	Y_1	Y_2	$Y_{\rm o}$	bore	bore
1						
	0.36	1.89	2.82	1.85	380	369
	0.36	1.89	2.82	1.85	382	370
	0.50	1.09	2.02	1.05	302	370
Ī	0.15	4.41	6 57	4.01	47.0	4E 7
	0.15	4.41	6.57	4.31	47.3	45.7
	0.18	3.76	5.59	3.67	45.3	44.5
	0.18	3.71	5.53	3.63	73	70.7
	0.24	2.80	4.16	2.73	149	144
	0.32	2.09	3.11	2.04	202	200
	0.31	2.21	3.28	2.16	264	256
	0.38	1.77	2.63	1.73	329	324
	0.37	1.81	2.69	1.73	457	443
	0.37	1.81	2.69	1.77	457	443
Ī	0.12	5.42	8.08	5.30	34.8	33.6
	0.17	3.95	5.88	3.86	76.2	73.8
	0.24	2.85	4.24	2.78	157	152
	0.32	2.13	3.18	2.09	210	207
	0.32	2.11	3.15	2.07	354	343
	0.40	1.69	2.51	1.65	440	433
					_	
	0.36	1.86	2.77	1.82	544	528
	0.18	3.66	5.46	3.58	101	98
	0.24	2.85	4.24	2.78	181	175
	0.32	2.11	3.15	2.07	245	241
	0.31	2.15	3.21	2.11	370	358
	0.39	1.75	2.61	1.71	456	449
	0.36	1.88	2.80	1.84	600	582
	0.36	1.88	2.80	1.84	595	576
	0.50	1.00	2.00	1.04	333	370
	0.27	2.49	3.71	2.43	166	157
-						
	0.18	3.76	5.59	3.67	73.6	72.3
	0.17	3.95	5.88	3.86	107	104
	0.21	3.22	4.80	3.15	122	118
	0.23	2.88	4.29	2.82	206	200
	0.04	0.45	0.04		070	0=0

0.31

0.31

0.39

2.15

2.14

1.71

3.21

3.19

2.55

2.11

2.10

1.67

276

443

550

272

429

541

Cylindrical bore

Tapered bore taper 1:12

d 460∼600mm

	Boundary dimensions			Basic I	oad ratings		Bearing numbers Abutment and fillet dimensions					
		mm		dynamic	static kN	dynamic	static kgf			fillet	dimensi mm	ions
							3	Cylindrical	tapered ²	$d_{ m a}$	$D_{\rm a}$	$r_{\rm as}$
d	D	В	$r_{ m s min}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore	min	max	max
460	830	296	7.5	7,750	14,500	790,000	1,470,000	23292B	23292BK	496	794	6
480	650 660 700 700 790 790	128 200 165 218 248 308	5 3 6 6 7.5 7.5	2,330 3,550 3,650 4,650 6,200 7,450	5,500 8,350 7,700 10,500 12,300 15,300	238,000 360,000 370,000 475,000 635,000 760,000	565,000 850,000 785,000 1,070,000 1,260,000 1,560,000	23996 2P9602 23096B 24096B 23196B 24196B	23096BK 24096BK30 23196BK 24196BK30	502 494 508 508 516 516	628 646 672 672 754 754	4 2.5 5 6 6
490	870 650	310 130	7.5 5	8,300 2,270	15,500 5,450	232,000	1,580,000	23296B 2P9801	23296BK 2P9801K	516 512	834 628	6 4
500	620 670 720 720 830 830 920	90 128 167 218 264 325 336	3 5 6 6 7.5 7.5 7.5	1,550 2,370 3,850 4,750 6,950 8,050 9,400	3,950 5,600 8,300 10,900 13,700 16,700 17,800	158,000 242,000 390,000 485,000 705,000 825,000 960,000	405,000 570,000 845,000 1,110,000 1,400,000 1,700,000 1,820,000	238/500 239/500 230/500B 240/500B 231/500B 241/500B 232/500B	238/500K 239/500K 230/500BK 240/500BK30 231/500BK 241/500BK30 232/500BK	514 522 528 528 536 536 536	606 648 692 692 794 794 884	2.5 4 5 5 6 6
530	710 780 780 870 870 980	136 185 250 272 335 355	5 6 6 7.5 7.5 9.5	2,640 4,400 5,600 7,000 8,300 10,400	6,450 9,350 12,700 14,200 17,400 19,800	269,000 445,000 570,000 715,000 850,000 1,060,000	655,000 955,000 1,290,000 1,450,000 1,770,000 2,020,000	239/530 230/530B 240/530B 231/530B 241/530B 232/530B	239/530K 230/530BK 240/530BK30 231/530BK 241/530BK30 232/530BK	552 558 558 566 566 574	688 752 752 834 834 936	4 5 5 6 6 8
545	755	230	4	4,550	10,800	460,000	1,100,000	2P10901	2P10901K	563	737	3
560	680 750 820 820 920 920 1,030	90 140 195 258 280 355 365	3 5 6 6 7.5 7.5 9.5	1,650 2,830 4,800 6,100 7,650 9,950 11,100	4,450 6,700 10,500 14,100 15,500 20,800 21,100	168,000 288,000 490,000 620,000 780,000 1,010,000 1,130,000	455,000 680,000 1,070,000 1,440,000 1,580,000 2,120,000 2,150,000	238/560 239/560 230/560B 240/560B 231/560B 241/560B 232/560B	238/560K 239/560K 230/560BK 240/560BK30 231/560BK 241/560BK30 232/560BK	574 582 588 588 596 596 604	666 728 792 792 884 884 986	2.5 4 5 5 6 6
600	800 870	150 200	5 6	3,150 5,250	7,800 12,000	325,000 535,000	795,000 1,220,000	239/600 230/600B	239/600K 230/600BK	622 628	778 842	4 5

 ^{870 200} b 5,250 12,555
 Smallest allowable dimension for chamfer dimension r.
 Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 B-218

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
X	Y	X	Y		
1	Y_1	0.67	Y_2		

Consta	ınt Ax	ial load	factors	Mas	SS (approx.)
					kg
				Cylindric	al tapered
e	Y_1	Y_2	$Y_{\rm o}$	bore	bore
0.00	1.07	0.70	1.00	704	600
0.36	1.87	2.78	1.83	704	683
0.18	3.85	5.73	3.76	123	119
0.27	2.52	3.75	2.46	195	185
0.23	2.94	4.38	2.88	217	209
0.30	2.22	3.30	2.17	285	280
0.31	2.15	3.21	2.11	492	477
0.39	1.74	2.59	1.70	608	600
0.36	1.87	2.78	1.83	814	790
0.16	4.10	6.10	4.01	114	109
0.13	5.38	8.02	5.26	59.6	57.5
0.17	4.02	5.98	3.93	131	127
0.23	2.98	4.44	2.91	226	218
0.30	2.28	3.40	2.23	295	290
0.32	2.12	3.16	2.08	584	566
0.39	1.72	2.57	1.69	716	705
0.39	1.74	2.59	1.70	1,000	971
0.17	3.94	5.87	3.86	157	152
0.22	3.03	4.52	2.97	306	295
0.30	2.24	3.33	2.19	413	406
0.30	2.22	3.30	2.17	653	633
0.38	1.79	2.67	1.75	800	788
0.39	1.74	2.59	1.70	1,200	1,170
0.28	2.45	3.65	2.40	301	286
0.11	5.97	8.88	5.83	66.1	63.7
0.16	4.09	6.09	4.00	182	176
0.22	3.03	4.51	2.96	353	340
0.30	2.29	3.40	2.24	467	459
0.30	2.27	3.38	2.22	752	729
0.39	1.75	2.61	1.71	948	934
0.36	1.88	2.80	1.84	1,360	1,320
0.18	3.85	5.73	3.76	218	211
0.21	3.17	4.72	3.10	400	386

Cylindrical bore

Tapered bore taper 1:12

d 600∼780mm

		Boundary dimensions		dynamic	Basic Io static kN	oad ratings dynamic	static	Bearing n	numbers		tment a dimensi		
			mm			KIN		kgf	Cylindrical	tapered [©]	.a		
	d	D	B	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	bore	bore	$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max
		870	272	6	6,450	15,600	655,000	1,590,000	240/600B	240/600BK30	628	842	5
	000	980	300	7.5	9,000	18,400	920,000	1,880,000	231/600B	231/600BK	636	944	6
	600	980	375	7.5	10,700	23,200	1,090,000	2,360,000	241/600B	241/600BK30	636	944	6
		1,090	388	9.5	12,200	23,700	1,240,000	2,420,000	232/600B	232/600BK	644	1,046	8
		780	150	4	3,050	8,800	310,000	895,000	248/630	248/630K30	648	762	3
		850	165	6	3,700	9,250	375,000	945,000	239/630	239/630K	658	822	5
63		920	212	7.5	5,900	13,000	600,000	1,330,000	230/630B	230/630BK	666	884	6
	630	920	290	7.5	7,550	17,900	770,000	1,830,000	240/630B	240/630BK30	666	884	6
		1,030	315	7.5	9,600	19,900	975,000	2,030,000	231/630B	231/630BK	666	994	6
		1,030	400	7.5	11,600	25,000	1,180,000	2,550,000	241/630B	241/630BK30	666	994	6
		1,150	412	12	13,700	26,800	1,400,000	2,740,000	232/630B	232/630BK	684	1,096	10
		900	170	6	4,100	10,300	420,000	1,050,000	239/670	239/670K	698	872	5
		980	230	7.5	6,550	14,600	665,000	1,490,000	230/670B	230/670BK	706	944	6
		980	308	7.5	8,650	20,600	885,000	2,100,000	240/670B	240/670BK30	706	944	6
	670	1,090	336	7.5	11,000	22,800	1,120,000	2,330,000	231/670B	231/670BK	706	1,054	6
		1,090	412	7.5	12,700	28,000	1,300,000	2,850,000	241/670B	241/670BK30	706	1,054	6
		1,220	438	12	16,100	32,000	1,640,000	3,250,000	232/670B	232/670BK	724	1,166	10
	680	980	220	7.5	6,050	14,000	615,000	1,430,000	2P13601	2P13601K	716	944	6
		950	180	6	4,450	11,500	450,000	1,170,000	239/710	239/710K	738	922	5
		1,030	236	7.5	7,200	16,200	730,000	1,650,000	230/710B	230/710BK	746	994	6
	710	1,030	315	7.5	9,300	22,500	945,000	2,300,000	240/710B	240/710BK30	746	994	6
	710	1,150	345	9.5	11,600	24,900	1,190,000	2,540,000	231/710B	231/710BK	754	1,106	8
		1,150	438	9.5	14,500	32,000	1,470,000	3,250,000	241/710B	241/710BK30	754	1,106	8
		1,280	450	12	16,300	32,500	1,660,000	3,300,000	232/710B	232/710BK	764	1,226	10
		920	128	5	3,100	8,450	320,000	865,000	238/750	238/750K	772	898	4
		1,000	185	6	5,000	13,000	510,000	1,330,000	239/750	239/750K	778	972	5
	750	1,090	250	7.5	8,150	18,300	835,000	1,860,000	230/750B	230/750BK	786	1,054	6
	750	1,090	335	7.5	10,100	24,600	1,030,000	2,500,000	240/750B	240/750BK30	786	1,054	6
		1,220	365	9.5	12,800	27,200	1,310,000	2,780,000	231/750B	231/750BK	794	1,176	8
		1,360	475	15	18,200	36,500	1,860,000	3,750,000	232/750B	232/750BK	814	1,296	12
	760	1,140	325	7.5	10,200	23,800	1,040,000	2,430,000	☆2P15203	2P15203K	796	1,104	6
	780	1,220	375	9.5	12,800	28,700	1,300,000	2,920,000	2P15605	2P15605K	824	1,176	8

 [¶] Smallest allowable dimension for chamfer dimension r.
 № Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 Remarks: 1. Bearing numbers marked "☆" are C type.
 B-220 B-220

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
X	Y	X	Y		
1	Y_1	0.67	Y_2		

Consta	nt Axia	al load fac	ctors	Mass (approx.)			
				k	g		
				Cylindrical	tapered		
e	Y_1	Y_2	$Y_{\rm o}$	bore	bore		
0.29	2.33	3.47	2.28	544	535		
0.30	2.22	3.30	2.17	908	880		
0.37	1.81	2.70	1.77	1,130	1,110		
0.36	1.86	2.77	1.82	1,540	1,490		
0.17	4.07	6.06	3.98	158	155		
0.18	3.66	5.45	3.58	277	268		
0.22	3.14	4.67	3.07	481	464		
0.30	2.28	3.40	2.23	657	646		
0.30	2.27	3.38	2.22	1,050	1,020		
0.38	1.78	2.66	1.74	1,330	1,310		
0.36	1.87	2.78	1.83	1,900	1,840		
0.18	3.76	5.59	3.67	317	307		
0.10	3.07	4.57	3.00	594	573		
0.22	2.29	3.41	2.24	794	781		
0.30	2.22	3.30	2.17	1,250	1,210		
0.37	1.83	2.73	1.79	1,530	1,510		
0.36	1.89	2.73	1.85	2,270	2,200		
0.00	1.00	2.01	1.00	2,270	2,200	_	
0.21	3.17	4.72	3.10	550	533		
0.18	3.85	5.73	3.76	375	363		
0.22	3.02	4.50	2.96	663	640		
0.29	2.36	3.51	2.31	884	870		
0.29	2.32	3.45	2.27	1,420	1,380		
0.37	1.80	2.69	1.76	1,800	1,770		
0.35	1.91	2.84	1.87	2,540	2,470		
0.12	5.72	8.51	5.59	179	173		
0.17	3.90	5.81	3.81	412	399		
0.21	3.20	4.76	3.13	790	763		
0.29	2.35	3.49	2.29	1,060	1,040		
0.29	2.32	3.45	2.27	1,700	1,650		
0.35	1.92	2.86	1.88	3,050	2,960		
0.24	2.79	4.15	2.73	1,100	1,060		
0.30	2.25	3.34	2.20	1,610	1,560		

Cylindrical bore

Tapered bore taper 1:12

d 790∼1,060mm

	Bounda	ary dime	ensions	dynamic	Basic Io static kN	pad ratings dynamic	static kgf	Bearing nu	umbers		tment ar dimension	
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Cylindrical bore	tapered bore	$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max
790	1,100	310	7.5	8,650	21,000	880,000	2,150,000	2P15802	2P15802K	826	1,064	6
800	1,060 1,150 1,150 1,280	195 258 345 375	6 7.5 7.5 9.5	5,400 8,400 11,200 14,400	13,700 19,500 27,800 31,000	550,000 860,000 1,140,000 1,460,000	1,400,000 1,990,000 2,840,000 3,150,000	239/800 230/800B 240/800B 231/800B	239/800K 230/800BK 240/800BK30 231/800BK	828 836 836 844	1,032 1,114 1,114 1,236	5 6 6 8
850	1,030 1,120 1,220 1,220 1,220 1,220 1,220 1,360 1,500	136 200 272 290 290 330 365 400 515	5 6 7.5 7.5 7.5 7.5 7.5 12	3,600 5,850 9,750 9,150 10,500 11,000 12,500 15,500 22,300	10,500 15,100 22,700 22,000 24,000 26,900 31,500 34,000 47,500	365,000 595,000 995,000 935,000 1,070,000 1,120,000 1,270,000 1,580,000 2,270,000	1,070,000 1,540,000 2,310,000 2,240,000 2,450,000 2,740,000 3,200,000 3,500,000 4,850,000	238/850 239/850 230/850B 2P17001 ☆2P17011 ☆2P17012 240/850B 231/850B 232/850B	238/850K 239/850K 230/850BK 2P17001K 2P17011K 2P17012K 240/850BK30 231/850BK	872 878 886 886 886 886 904 914	1,008 1,092 1,184 1,184 1,184 1,184 1,184 1,306 1,436	4 5 6 6 6 6 6 10 12
900	1,180 1,280 1,280 1,420	206 280 375 412	6 7.5 7.5 12	6,650 10,300 13,200 16,800	17,300 24,700 33,500 38,000	675,000 1,050,000 1,350,000 1,720,000	1,770,000 2,520,000 3,450,000 3,850,000	239/900 230/900B 240/900B 231/900B	239/900K 230/900BK 240/900BK30 231/900BK	928 936 936 954	1,152 1,244 1,244 1,366	5 6 6 10
950	1,250 1,280 1,330 1,360 1,360 1,360 1,400	224 260 300 300 320 412 380	7.5 7.5 7.5 7.5 7.5 7.5 7.5	7,750 8,650 8,400 11,500 11,500 15,500 14,100	20,500 22,200 21,200 28,400 28,000 40,000 33,500	790,000 885,000 855,000 1,180,000 1,170,000 1,580,000 1,440,000	2,090,000 2,270,000 2,170,000 2,900,000 2,860,000 4,100,000 3,400,000	239/950 2P19014 2P19013 230/950B ☆2P19022 240/950B 2P19019	239/950K 2P19014K 2P19013K 230/950BK 2P19022K 240/950BK30 2P19019K	986 986 986 986 986 986 986	1,214 1,244 1,294 1,324 1,324 1,324 1,364	6 6 6 6 6 6
1,000	1,320 1,320 1,420 1,420	236 258 308 412	7.5 7.5 7.5 7.5	8,600 8,500 12,400 16,000	22,700 22,600 30,000 42,000	875,000 865,000 1,260,000 1,640,000	2,310,000 2,300,000 3,050,000 4,250,000	239/1000 2P20002 230/1000B 240/1000B	240/1000BK30	<u>'</u>	1,284 1,284 1,384 1,384	6 6 6 6
1,050	1,500 1,400 1,500	250 325	9.5 7.5 9.5	9,300 13,600	24,700 33,500	950,000 1,390,000	2,520,000 3,400,000	☆2P21001 239/1060 230/1060B	2P21001K 239/1060K 230/1060BK	1,094 1,096 1,104	1,456 1,364 1,456	8 6 8

 [¶] Smallest allowable dimension for chamfer dimension r.
 № Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 Remarks: 1. Bearing numbers marked "☆" are C type.
 B-222 B-222

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

Consta	ınt Axi	ial load f	actors	Mass	(approx.)
				k	g
				Cylindrical	tapered
e	Y_1	Y_2	$Y_{\rm o}$	bore	bore
0.24	2.76	4.11	2.70	857	817
0.17	4.05	6.04	3.96	487	471
0.21	3.15	4.69	3.08	890	859
0.28	2.41	3.59	2.36	1,190	1,170
0.29	2.32	3.45	2.27	1,890	1,830
0.11	6.01	8.94	5.87	232	223
0.16	4.25	6.32	4.15	550	532
0.20	3.32	4.95	3.25	1,050	1,010
0.23	2.98	4.44	2.92	1,100	1,070
0.21	3.28	4.88	3.21	1,060	1,020
0.23	2.90	4.31	2.83	1,200	1,160
0.28	2.42	3.61	2.37	1,410	1,390
0.28	2.37	3.54	2.32	2,270	2,200
0.35	1.94	2.89	1.90	3,890	3,780
0.16	4.32	6.44	4.23	623	603
0.20	3.32	4.95	3.25	1,170	1,130
0.27	2.48	3.70	2.43	1,570	1,540
0.28	2.42	3.60	2.36	2,500	2,420
0.16	4.20	6.26	4.11	774	749
0.17	3.98	5.92	3.89	921	888
0.18	3.66	5.46	3.58	1,210	1,170
0.21	3.26	4.85	3.18	1,430	1,380
0.20	3.33	4.96	3.25	1,450	1,400
0.28	2.39	3.56	2.34	1,970	1,940
0.24	2.77	4.13	2.71	1,940	1,870
0.16	4.21	6.26	4.11	916	887
0.16	4.23	6.30	4.14	911	877
0.20	3.37	5.02	3.29	1,580	1,520
0.27	2.51	3.73	2.45	2,110	2,080
0.24	2.85	4.25	2.79	2,290	2,200
0.16	4.28	6.37	4.19	1,090	1,060
0.20	3.36	5.00	3.28	1,850	1,790

Cylindrical bore

Tapered bore taper 1:12

d 1,060∼1,800mm

	Bounda	mm	ensions	dynamic ł	dynamic static dynamic		Bearing no static kgf		ımbers	Abutment and fillet dimensions mm		
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Cylindrical bore	tapered bore	$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max
1,060	1,500 1,500	340 438	9.5 9.5	13,100 17,800	32,000 47,000	1,340,000 1,810,000	3,250,000 4,800,000	2P21202 240/1060B	2P21202K 240/1060BK30	1,104 1,104	1,456 1,456	
1,120	1,360 1,460 1,580 1,580	180 250 345 462	6 7.5 9.5 9.5	6,200 9,850 15,600 19,500	18,700 26,700 39,000 52,500	630,000 1,000,000 1,590,000 1,990,000	1,900,000 2,720,000 4,000,000 5,350,000	238/1120 239/1120 230/1120B 240/1120B	238/1120K 239/1120K 230/1120BK 240/1120BK30	1,148 1,156 1,164 1,164	1,332 1,424 1,536 1,536	6 8
1,180	1,420 1,540 1,540 1,660	180 272 355 475	6 7.5 7.5 9.5	6,350 11,000 13,700 20,700	19,700 29,800 40,500 55,500	650,000 1,120,000 1,390,000 2,110,000	2,010,000 3,050,000 4,150,000 5,650,000	238/1180 239/1180 249/1180 240/1180B	238/1180K 239/1180K 249/1180K30 240/1180BK30	1,208 1,216 1,216 1,224	1,392 1,504 1,504 1,616	6 6
1,200	1,700 1,700	410 410	9.5 12	17,600 17,800	44,500 45,000	1,800,000 1,810,000	4,550,000 4,600,000	2P24005 ☆2P24007	2P24005K 2P24007K	1,244 1,254	1,656 1,646	
1,250	1,630 1,750	280 390	7.5 9.5	12,100 17,200	33,500 44,000	1,230,000 1,760,000	3,400,000 4,500,000	239/1250 2P25002	239/1250K 2P25002K	1,286 1,294	1,594 1,706	
1,320	1,720 1,850 1,850	300 480 530	7.5 12 12	13,600 22,200 25,200	38,000 58,500 67,500	1,390,000 2,270,000 2,570,000	3,900,000 5,950,000 6,900,000	239/1320 2P26402 240/1320B	239/1320K 2P26402K 240/1320BK30	1,356 1,374 1,374	1,684 1,796 1,796	10
1,400	1,820	315	9.5	15,100	43,000	1,540,000	4,400,000	239/1400	239/1400K	1,444	1,776	8
1,500	1,820	315	7.5	12,300	41,500	1,260,000	4,200,000	248/1500	248/1500K30	1,536	1,784	6
1,800	2,180	375	9.5	17,500	60,500	1,790,000	6,200,000	248/1800	248/1800K30	1,844	2,136	8

Smallest allowable dimension for chamfer dimension r.
 Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30.
 Remarks: 1. Bearing numbers marked "☆" are C type.
 B-224 B-224

$\frac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

Consta	ant Axi	ial load 1	actors	Mass	Mass (approx.)			
				ŀ	κg			
				Cylindrical	tapered			
e	Y_1	Y_2	Y_{o}	bore	bore			
0.21	3.25	4.83	3.17	1,870	1,810			
0.21	2.49	3.71	2.44	2,450	2,140			
0.27	2. 10	0.7 1		2, 100	2,110			
0.11	5.97	8.89	5.84	536	517			
0.15	4.42	6.58	4.32	1,140	1,100			
0.21	3.29	4.80	3.21	2,160	2,090			
0.27	2.50	3.72	2.44	2,890	2,840			
0.11	6.27	9.34	6.13	559	539			
0.15	4.40	6.55	4.30	1,390	1,340			
0.21	3.28	4.88	3.21	1,740	1,660			
0.27	2.54	3.78	2.48	3,220	3,170			
0.21	3.19	4.75	3.12	2,860	2,750			
0.21	3.21	4.77	3.14	2,830	2,730			
0.15	4.42	6.58	4.32	1,600	1,550			
0.20	3.31	4.93	3.24	2,880	2,780			
0.16	4.34	6.46	4.24	1,900	1,840			
0.22	3.12	4.64	3.05	3,830	3,670			
0.25	2.65	3.94	2.59	4,320	4,240			
0.15	4.39	6.54	4.29	2,230	2,160			
0.15	4.54	6.75	4.43	1,660	1,580			
0.15	4.47	6.65	4.37	2,830	2,770			

1. Classification and Features

1. 1 Thrust ball bearings

Balls are arranged between a set of washers (a shaft washer and housing washer) and the contact angle is 90° . Axial loads can be supported in only one direction and radial loads cannot be supported. These bearings are unsuitable for high speed operation. **Table 1** shows the standard cage models.

Table 1 Standard cage model

Bearing series	511	512	513	514
Press cage	51120 ~51152	51220 ~51224	51320	_
Machined cage	51156 ~511/750	51226 ~51292	51322 ~51340	51420

Fig.1 Single type thrust ball bearing (Example of the press cage)

1. 2 Cylindrical roller thrust bearings

These bearings use cylindrical rollers and have single row, double row, 3 row, 4 row, and also duplex types. Bearings can support only axial loads and are suitable to heavy loads. Their axial rigidity is high. Cages are the machined type.

Fig.2 Cylindrical roller thrust bearing

1. 3 Tapered roller thrust bearings

These are thrust bearings using tapered rollers, and the single type bearings have three types of housing washers. One type is the housing raceway with a rib, the other one is without a rib, and the third bearing is the full complement roller type. Double type bearings are mainly used to support axial loads on the roll neck of rolling mill. Machined cages are used for cages.

Fig.3 Tapered roller thrust bearings (Single type)

Fig.4 Tapered roller thrust bearings (Double type)

1. 4 Self-aligning thrust roller bearings

These bearings have a self-aligning nature using barrel-shaped rollers. The allowable aligning angle varies depending on the bearing's dimension system, but it is 1° - 2° for normal loads. Cages are machined type and the guide sleeve is on the axial housing raceway. Since the load capacity for axial loads is high, these bearings can support a certain amount of radial load in the instances that axial loads are applied. However, it is necessary to use these bearing where the load conditions meet $F_{\rm r}/F_{\rm a} \leq 0.55$.

These bearings have some spots where lubricant cannot enter such as the gap between the cage and guide sleeve. It is necessary to use oil lubrication even in low speed operation.

Fig.5 Self-aligning thrust roller bearing

2. Dimensional Accuracy / Rotation Accuracy

Thrust ball bearings	··Table 3.6 (Page A-18)
Cylindrical roller thrust bearings	·Table 3.6 (Page A-18)
Tapered roller thrust bearings ·····	·Table 3.8 (Page A-19)
Self-aligning thrust roller bearings ·····	··Table 3.8 (Page A-19)

3. Recommended Fitting

Thrust ball bearings
Cylindrical roller thrust bearings
Tapered roller thrust bearings
Self-aligning thrust roller bearings

Table 4.3 (Page A-26)

4. General Operating Cautions

Thrust bearings need to load a certain amount of axial load to prevent sliping between the rolling elements and axial housing raceway. Please consult with **NTN** Engineering for details.

Equivalent bearing load dynamic $P_{\rm a}\!=\!F_{\rm a}$

static

d 100~190mm

В	oundary d	limens	ions	dynamic	Basic loa	ad ratings dynamic	static	Bearing numbers	Dimer	sions		utment a		Mass
	m	m		,	N	*	kgf		m	m		mm		kg
											d_{a}	$D_{\rm a}$	$r_{\rm as}$	
d	D	T	$r_{ m smin}$	C_{a}	C_{oa}	$C_{ m a}$	C_{oa}		$d_{1\mathrm{s}\mathrm{max}}^{}$	$D_{1\mathrm{s}\mathrm{min}}$	min	max	max	(approx.)
	135	25	1	85.0	268	8,700	27,300	51120	135	102	121	114	1	0.987
100	150	38	1.1	147	410	14,900	42,000	51220	150	103	130	120	1	2.29
.00	170	55 85	1.5 3	237 370	595	24,100	60,500	51320 * 51420	170 205	103 103	142	128 145	1.5	4.88 14.7
	210	65	3	370	970	37,500	99,000	↑ 5 14ZU	205	103	165	145	2.5	14.7
	145	25	1	87.0	288	8,900	29,400	51122	145	112	131	124	1	1.07
110	160	38	1.1	153	450	15,600	46,000	51222	160	113	140	130	1	2.46
	190	63	2	267	705	27,300	72,000	*51322	187	113	158	142	2	7.67
							-							
	155	25	1	89.0	310	9,100	31,500	51124	155	122	141	134	1	1.11
120	170	39	1.1	154	470	15,700	48,000	51224	170	123	150	140	1	2.71
	210	70	2.1	296	805	30,000	82,500	*51324	205	123	173	157	2	10.8
	170	30	1	104	050	10.000	00.000	51126	170	132	154	146	1	1.73
120	190	30 45	1.5	191	350 565	10,600 19,400	36,000 57,500	* 51126 * 51226	187	133	166	154	1.5	4.22
130	225	75	2.1	330	960	33,500	97,500	* 51226 * 51326	220	134	186	169	2	12.7
	223	75	۷.۱	000	300	00,000	37,500	4 3 1 3 2 0	220	104	100	103		12.7
	180	31	1	107	375	10,900	38,500	*51128	178	142	164	156	1	1.90
140	200	46	1.5	193	595	19,700	60,500	*51228	197	143	176	164	1.5	4.77
	240	80	2.1	350	1,050	35,500	107,000	*51328	235	144	199	181	2	15.3
								. =						
450	190	31	1	109	400	11,100	41,000	*51130	188	152	174	166	1	2.00
150	215	50	1.5	220	685	22,400	70,000	* 51230 * 51230	212	153	189	176	1.5	5.87
	250	80	2.1	360	1,130	37,000	115,000	* 51330	245	154	209	191	2	16.1
	200	31	1	112	425	11.400	43,500	*51132	198	162	184	176	1	2.10
160	225	51	1.5	223	720	22,800	73,000	*51232	222	163	199	186	1.5	6.32
.00	270	87	3	450	1,470	45,500	150,000	*51332	265	164	225	205	2.5	20.7
						•								
	215	34	1.1	134	510	13,700	52,000	*51134	213	172	197	188	1	2.77
170	240	55	1.5	261	835	26,600	85,000	*51234	237	173	212	198	1.5	7.81
	280	87	3	465	1,570	47,000	160,000	* 51334	275	174	235	215	2.5	21.6
	225	34	1.1	135	525	13,700	E4 000	* 51136	222	183	207	198	1	2.92
180	250	56	1.5	266	525 875	27,100	54,000 89,000	* 51136 * 51236	247	183	222	208	1.5	2.92 8.34
100	300	95	3	490	1,700	50,000	174,000	* 51236 * 51336	295	184	251	229	2.5	27.5
	500	55	J	700	1,700	50,000	177,000	. 01000	200	104	201	223	2.0	21.0
190	240	37	1.1	170	655	17,400	67,000	*51138	237	193	220	210	1	3.75
190	270	62	2	310	1,060	31,500	108,000	*51238	267	194	238	222	2	11.3

Smallest allowable dimension for chamfer dimension r.
 Maximum allowable dimension for shaft washer outer dimension d.
 Maximum allowable dimension for housing washer inner dimension D.
 Remarks: Bearing numbers marked "*" signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing. B-230

Equivalent bearing load dynamic $P_a = F_a$

static

d 190~420mm

Во	undary	dimens	ions	dynamic	Basic loa static	ad ratings dynamic	static	Bearing numbers	Dimer	sions		utment a		Mass
	n	nm		- 1	kN		kgf		m	m	J	mm		kg
d	D	T	$r_{ m smin}$	$C_{ m a}$	C_{oa}	$C_{ m a}$	C_{oa}		$d_{1\mathrm{smax}}$	$D_{1\mathrm{s}\mathrm{min}}$	$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max	(approx.)
W	D	-	' S HIIII	O a	Oba	O a	Oa		W Is max	2) Is min	111111	max	mux	(арргох.)
190	320	105	4	545	1,950	55,500	199,000	*51338	315	195	266	244	3	35.0
	250	37	1.1	172	675	17,500	69,000	*51140	247	203	230	220	1	3.92
200	280	62	2	315	1,110	32,000	113,000	*51240	277	204	248	232	2	11.8
	340	110	4	595	2,220	61,000	227,000	*51340	335	205	282	258	3	41.8
	270	37	1.1	177	740	18,100	75,500	*51144	267	223	250	240	1	4.27
220	300	63	2	325	1,210	33,000	123,000	*51244	297	224	268	252	2	13.0
					-,									
240	300	45	1.5	228	935	23,200	95,000	*51148	297	243	276	264	1.5	6.87
240	340	78	2.1	415	1,650	42,500	168,000	*51248	335	244	299	281	2	22.4
	320	45	1.5	232	990	23,600	101,000	*51152	317	263	296	284	1.5	7.38
260	360	79	2.1	440	1,810	45,000	184,000	*51252	355	264	319	301	2	24.2
					<u> </u>	<u> </u>	<u> </u>							
280	350	53	1.5	305	1,270	31,000	130,000	*51156	347	283	322	308	1.5	11.8
	380	80	2.1	460	1,970	47,000	201,000	*51256	375	284	339	321	2	26.1
	380	62	2	355	1,560	36,000	159,000	*51160	376	304	348	332	2	17.2
300	420	95	3	590	2,680	60,000	273,000	*51260	415	304	371	349	2.5	40.6
320	400	63	2	365	1,660	37,000	169,000	*51164	396	324	368	352	2	18.4
	440	95	3	595	2,800	61,000	285,000	*51264	435	325	392	368	2.5	44.9
	420	64	2	375	1,760	38,000	179,000	*51168	416	344	388	372	2	19.7
340	460	96	3	605	2,920	61,500	298,000	*51268	455	345	412	388	2.5	47.8
360	440 500	65 110	2 4	380 720	1,860	39,000	190,000	*51172 *51272	436 495	364 365	408 444	392 416	2	21.1
	500	110	4	720	3,650	73,500	375,000	*51272	495	305	444	410	3	69.0
000	460	65	2	380	1,910	39,000	195,000	*51176	456	384	428	412	2	22.3
380	520	112	4	735	3,800	74,500	390,000	*51276	515	385	464	436	3	73.7
	400	0.5	0	000	0.010	40.000	005.000	W E4400	470	404	440	400	0	00.0
400	480 540	65 112	2 4	390 745	2,010 3,950	40,000 76,000	205,000 405,000	*51180 *51280	476 535	404 405	448 484	432 456	2 3	23.3 76.9
	340	114	7	740	0,300	70,000	+00,000	* 31200	JJJ	400	404	400	J	70.8
420	500	65	2	395	2,110	40,500	215,000	*51184	495	424	468	452	2	24.4
420	580	130	5	865	4,850	88,500	490,000	*51284	575	425	516	484	4	109
					_									

Smallest allowable dimension for chamfer dimension r.
 Maximum allowable dimension for shaft washer outer dimension d.
 Maximum allowable dimension for housing washer inner dimension D.
 Remarks: Bearing numbers marked "*" signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing.

B-231 B-231

Equivalent bearing load dynamic $P_{\rm a}\!\!=\!\!F_{\rm a}$

static $P_{0a}=F_{a}$

d 440~750mm

<i>a</i> 44	440° - 750mm													
Во	undary (dimens	ions	dynamic	Basic lo static	oad ratings dynamic	static	Bearing numbers	Dimen	sions		utment a		Mass
	n	nm		k	N	kgf			mm			mm		kg
d	D	T	$r_{ m smin}$	$C_{ m a}$	C_{oa}	C	C_{oa}		$d_{1\mathrm{smax}}$	$D_{1\mathrm{s}\mathrm{min}}$	$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$,
α	D	1	7's min	C _a	Coa	C_{a}	C _{oa}		$a_{1\text{s max}}$	$D_{1 ext{s min}}$	min	max	max	(approx.)
	540	80	2.1	515	2.850	52,500	291,000	*51188	535	444	499	481	2	40.0
440	600	130	5	855	4,850	87,500	490,000	*51288	595	445	536	504	4	113
460	560	80	2.1 5	525	3,000	53,500	305,000	*51192	555 615	464 465	519 556	501 524	2	41.6
	620	130	Э	895	5,250	91,000	535,000	*51292	015	465	556	524	4	118
480	580	80	2.1	525	3,100	54,000	315,000	*51196	575	484	539	521	2	43.3
500	600	80	2.1	575	3,400	58,500	345,000	* 511/500	595	504	559	541	2	45.0
530	640	85	3	645	4,000	66,000	405,000	* 511/530	635	534	595	575	2.5	55.8
560	670	85	3	595	3,750	60,500	385,000	* 511/560	665	564	625	605	2.5	59.4
600	710	85	3	645	4,200	66,000	430,000	*511/600	705	604	666	644	2.5	62.6
630	750	95	3	720	4,850	73,500	495,000	* 511/630	745	634	702	678	2.5	82.5
670	800	105	4	825	5,850	84,000	600,000	*511/670	795	674	748	722	3	105
710	850	112	4	875	6,350	89,000	650,000	*511/710	845	714	794	766	3	129
750	900	120	4	1,010	7,650	103,000	780,000	* 511/750	895	755	841	809	3	155

Smallest allowable dimension for chamfer dimension r.
 Maximum allowable dimension for shaft washer outer dimension d.
 Maximum allowable dimension for housing washer inner dimension D.
 Remarks: Bearing numbers marked "*" signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing. B-232

Type 811 Type 812

Type 893

Type 874

d 100∼180mm

	Boundary dimensions			dynamic	Basic load ra	atings dynamic	static	Bearing numbers
		mm			kN		kgf	
d	D	T	$r_{ m smin}$	$C_{ m a}$	C_{oa}	$C_{ m a}$	$C_{ m oa}$	
	135	25	1	158	555	16,100	57,000	81120L1
	150	38	1.1	243	795	24,800	81,000	81220L1
100	170	42	1.5	335	1,370	34,500	140,000	89320L1
	210	50	3	580	2,650	59,000	271,000	87420L1
	145	25	1	165	605	16,800	61,500	81122L1
110	160	38	1.1	259	885	26,400	90,000	81222L1
110	190	48	2	430	1,770	44,000	180,000	89322L1
	230	54	3	725	3,150	74,000	325,000	87422L1
	155	25	1	172	655	17,500	66,500	81124L1
120	170	39	1.1	264	930	26,900	94,500	81224L1
120	210	54	2.1	555	2,300	56,500	235,000	89324L1
	250	58	4	830	3,900	84,500	395,000	87424L1
	170	30	1	197	755	20,100	77,000	81126L1
130	190	45	1.5	360	1,210	36,500	123,000	81226L1
100	225	58	2.1	615	2,600	63,000	265,000	89326L1
	270	63	4	895	4,250	91,500	435,000	87426L1
	180	31	1	206	815	21,000	83,000	81128L1
140	200	46	1.5	370	1,280	38,000	130,000	81228L1
	240	60	2.1	695	2,980	71,000	305,000	89328L1
	280	63	4	940	4,600	96,000	470,000	87428L1
	190	31	1	214	870	21,800	89,000	81130L1
150	215	50	1.5	455	1,580	46,000	161,000	81230L1
	250	60	2.1	710	3,130	72,500	320,000	89330L1
	200	31	1	221	930	22,600	95,000	81132L1
160	225	51	1.5	518	1,930	53,000	197,000	81232L1
	270	67	3	835	3,690	85,500	375,000	89332L1

Dimer	nsions		Abutment and fillet dimensions				
m	mm		mm				
			D_{a}	$r_{ m as}$	kg		
d_1	D_1	min	max	max	(approx.)		
105	400	400	400		4 000		
135	102	128	106	1	1.220		
150	103	139	109	1	2.730		
170	103	163	110	1.5	4.500		
210	103	203	112	3	9.500		
145	112	138	116	1	1.330		
160	113	149	119	1	2.980		
190	113	183	122	2	6.350		
230	113	221	118	3	11.850		
				_			
155	122	148	126	1	1.410		
170	123	159	129	1	3.280		
210	123	201	132	2	9.000		
250	123	241	132	4	15.690		
170	132	162	137	1	2.020		
187	133	178	140	1.5	5.050		
225	134	216	143	2	10.370		
270	134	262	147	4	19.750		
178	142	172	147	1	2.250		
197	143	188	150	1.5	5.460		
240	144	231	154	2	12.600		
280	144	273	158	4	20.940		
188	152	182	157	1	2.410		
212	153	202	160	1.5	6.870		
250	154	242	165	2	13.320		
198	162	192	167	1	2.500		
222	163	216	174	1.5	6.910		
270	164	262	177	3	17.250		

d 180∼304.8mm

	Boundary dimensions		dynamic	Basic load ratings dynamic static dynamic		static	Bearing numbers	
		mm		ĺ	κN	ŀ	kgf	
d	D	T	$r_{ m smin}$	$C_{ m a}$	C_{oa}	$C_{ m a}$	C_{oa}	
180	220	22	1.0	160	715	16,300	72,500	RT3615
100	300	73	3.0	1,090	4,900	111,000	495,000	2RT3618
190	270	62	2.5	745	2,780	76,000	284,000	RT3812
	330	70	4.0	1,260	5,900	129,000	600,000	2RT3811
	340	75	5.0	1,320	6,150	134,000	630,000	2RT4028
200	340	85	5.0	1,260	4,950	128,000	505,000	2RT4030
200	370	85	4.0	1,760	7,400	179,000	755,000	2RT4024
	400	122	5.0	2,230	8,250	227,000	840,000	2RT4032
203.2	406.4	76.2	6.0	1,530	7,850	156,000	800,000	3RT4101
210	250	25	1.5	133	635	13,600	64,500	RT4206
	270	25	1.0	217	1,060	22,100	109,000	RT4411
000	360	85	outer 4.0 inner 2.0	1,380	5,950	140,000	610,000	2RT4416
220	400	80	2.0	1,720	7,750	175,000	790,000	2RT4425
	430	88	5.0	1,880	9,100	191,000	930,000	3RT4406
202.25	520.7	114.3	4.0	5,100	20,500	520,000	2,090,000	2RT4426
222.25	520.7	165	4.0	5,100	20,500	520,000	2,090,000	2RT4427
0.40	320	45	2.0	670	3,350	6,800	340,000	2RT4814
240	425	90	2.0	1,820	8,850	186,000	905,000	2RT4803
254	457.2	95.25	6.0	2,360	12,100	240,000	1,240,000	3RT5107
260	340	55	1.5	790	3,350	80,500	340,000	RT5211
270	540	105	5.0	3,100	15,800	315,000	1,610,000	3RT5404
000	380	55	2.5	645	2,900	65,500	296,000	RT5606
280	520	109	4.0	2,900	13,200	296,000	1,340,000	2RT5610
290	350	35	1.5	345	1,760	35,000	180,000	RT5805
304.8	457.2	95.25	6.0	1,770	8,250	181,000	840,000	2RT6108

lacktriangle RT: single row, 2RT: double row, 3RT: triple row lacktriangle Smallest allowable dimension for chamfer dimension r.

Dimens			Abutment and fillet dimensions				
			$D_{\rm a}$	$r_{ m as}$	kg		
d_1	D_1	min	max	max	(approx.)		
219	219 181		187	1	1.77		
300	184	298	188	2.5	23.3		
270	195	264	196	2	11.0		
				_	11.9		
329.5	190.5	327	200	3	27.9		
340	340 201		204	4	31.4		
340	202	332	212	4	35.0		
370	200.5	362	210	3	44.3		
396	204	388	216	4	80.3		
404.038	205.562	389	214	5	52.1		
250	210	243	217	1.5	2.51		
269	269 221		234	1	3.16		
359	221	349	233	outer 3 inner 2	38.1		
399	221	382	244	2	48.5		
430	222	418	230	4	64.6		
E14.7	000	E11	001	2	105		
514.7	228	511	231	3 3	135		
514.7	228	511	231	3	203		
316	244	313	247	2	10.4		
425	241	408	254	2	61.6		
456	256	453	261	5	76.0		
339.5	260.4	328	270	1.5	13.9		
530	277	530	282	4	125		
375	285	358	302	2	18.0		
520	280	501	309	3	113		
350	290	338	302	1.5	6.92		
454.8	307.2	450	318	5	60.0		

d 320∼560mm

	Bou	ndary dimens	ions	dynamic	Basic load ra	dynamic	static	Bearing numbers
		mm			kN	ŀ	kgf	
d	D	T	$r_{ m smin}^{lack}$	$C_{ m a}$	C_{oa}	$C_{ m a}$	$C_{ m oa}$	
320	380 440 600	30 95 115	1.5 3.0 5.0	274 1,670 4,100	1,510 7,100 20,600	28,000 171,000 415,000	154,000 725,000 2,110,000	RT6405 RT6406 3RT6404
360	610	120	5.0	3,800	18,200	390,000	1,860,000	2RT7205
380	520	112	4.0	1,900	7,850	194,000	800,000	RT7607
400	500 540	63 85	4.0 4.0	1,300 1,970	6,400 10,100	132,000 200,000	650,000 1,030,000	RT8009 RT8005
425	650	110	4.0	3,500	19,200	360,000	1,960,000	2RT8502
440	540	45	2.5	755	5,300	77,000	540,000	2RT8807
540	705	100	5.0	2,240	11,700	228,000	1,200,000	RT10802
560	660 670 820	50 85 113	3.0 3.0 5.0	1,040 1,850 4,350	7,850 10,200 26,000	106,000 188,000 445,000	800,000 1,040,000 2,650,000	2RT11207 RT11204 2RT11208

lacktriangle RT: single row, 2RT: double row, 3RT: triple row lacktriangle Smallest allowable dimension for chamfer dimension r.

Dimensions				Abutment and fillet dimensions				
mm				mm				
			$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	kg		
	d_1	D_1	min	max	max	(approx.)		
	379	321	368	336	1.5	6.64		
	435	325	428	334	2.5	44.0		
	600	321	584	336	4	162		
605 365		598	378	4	157			
	515	385	500	404	3	73.8		
	495	405	488	412	3	27.9		
	540	403	526	414	3	59.2		
	650	430	635	443	3	145		
	539	441	532	460	2	24.2		
	695	565	682	582	4	99.5		
	659	561	653	571	2.5	32.9		
	660	570	657	575	2.5	58.1		
	810	570	790	590	4	210		

Drawing B

d 101.600∼254.000mm

	E	Boundary dimen	sions		dynamic	Basic Io	oad ratings dynamic	static	Bearing numbers
		mm			kN			gf	
d	D	T	$r_{ m smin}$	$r_{1\mathrm{s}\mathrm{min}}$	$C_{ m a}$	$C_{ m oa}$	C_{a}	C_{oa}	
101.600	215.900 215.900	46.038 46.038	3.3 1.5	3.3 1.5	700 805	2,730 2,920	71,000 82,000	279,000 297,000	* CRT2010 * CRT2014
107.950	228.600	69.850	2	5.6	1,070	3,100	109,000	320,000	* CRT2223
114.300	250.825	53.975	4.06	4.06	995	3,750	102,000	380,000	* CRT2301
127.000	266.700	58.738	4	4	1,130	4,650	115,000	475,000	* CRT2503
130	225	55	2.1	2.1	640	2,590	65,500	264,000	CRT2615
145	190	31	1	1	216	815	22,000	83,000	CRT2906
152.400	317.500	69.850	6.4	6.4	1,520	6,250	155,000	640,000	* CRT3018
168.275	304.800 304.800	69.850 69.850	6.4 6.4	6.4 6.4	1,250 1,350	4,950 5,100	127,000 138,000	505,000 520,000	* CRT3407 * CRT3409
170	320	100	6	6	1,620	6,400	166,000	650,000	CRT3410
174.625	358.775	82.550	6.4	6.4	1,720	7,050	175,000	720,000	* CRT3503
177.800	368.300	82.550	8	8	2,190	8,900	223,000	910,000	*CRT3617
203.200	419.100 419.100 419.100	92.075 92.075 120.650	9.7 9.7 9.7	9.7 9.7 9.7	2,400 2,490 2,240	10,200 10,600 9,450	244,000 254,000 229,000	1,040,000 1,090,000 965,000	* CRT4108 * CRT4112 * CRT4105
220	370	90	4	4	1,690	7,250	172,000	740,000	CRT4405
227	325	50	2	2	610	2,720	62,000	277,000	CRT4502
228.600	482.600 482.600	104.775 104.775	11.2 11.2	11.2 11.2	3,450 3,250	15,600 14,300	350,000 330,000	1,590,000 1,460,000	* CRT4604 * CRT4605
234.950	546.100	127.000	16	16	5,700	27,900	580,000	2,850,000	* CRT4707V
254.000	539.750	117.475	11.2	11.2	3,850	17,100	395,000	1,740,000	* CRT5103
A Minim	سنام ملطميينمالم امم	nension for chamf							

Drawing C

Drawing no.	Dimensi		Mass kg
	111111		ĸy
	D_1	d_1	(approx.)
В	101.6	215.9	9.06
Α	102.591	215.138	8.23
В	107.95	228.6	14.0
В	114.3	250.825	13.9
В	128.6	265.1	17.7
Α	130.3	225	9.14
В	147	188	2.30
В	152.4	317.5	28.5
В	168.275	304.8	24.6
Α	168.275	302.5	22.2
Α	170.5	320	39.4
В	174.625	358.775	39.9
В	177.8	368.3	45.0
Α	203.2	416.7	60.9
B B	203.2 203.2	419.1 419.1	64.9 79.8
	203.2	419.1	79.0
Α	221	369	39.2
Α	227	325	13.3
В	230.6	480.6	101
Α	230.6	480.6	93.2
С	234.95	546.1	160
Α	254	539.75	140

Drawing A

Drawing B

d 260∼920mm

	В	Soundary dimer	nsions		dynamic	Basic I	oad ratings dynamic	static	Bearing numbers
		mm			kN		, ,	kgf	
d	D	T	$r_{ m smin}$	$r_{1\mathrm{smin}}^{ullet}$	C_{a}	C_{oa}	$C_{ m a}$	$C_{ m oa}$	
060	000	00	0.4	0.4	000	0.050	04.000	400.000	OPTION
260	360	60	2.1	2.1	890	3,950	91,000	400,000	CRT5207
279.400	603.250	136.525	11.2	11.2	5,100	23,300	520,000	2,380,000	* CRT5613
290	395	80	3	3	1,330	5,150	136,000	525,000	CRT5804
320	580	155	7.5	7.5	4,800	18,900	490,000	1,920,000	CRT6408
	710	235	7.5	7.5	8,600	31,000	880,000	3,200,000	CRT6401
340	460	96	3	3	1,640	7,300	167,000	745,000	CRT6803
350	460	85	3	3	1,390	5,850	142,000	600,000	CRT7012
360	600	120	6.9	5.5	3,800	17,500	390,000	1,780,000	CRT7207
406.400	711.200	146.050	9.7	9.7	6,100	30,500	620,000	3,150,000	*CRT8101
406.4	711.2	166.5	5	5	8,250	33,500	840,000	3,400,000	CRT8104
450	570 750	100 145	4 8	4 8	1,560 6,350	7,750 31,500	159,000 645,000	790,000 3,200,000	CRT9002 CRT9003
500.000									
508.000	990.600	196.850	12.7	12.7	12,100	62,500	1,230,000	6,400,000	* CRT10202
600	745	105	5	5	2,530	13,600	258,000	1,390,000	CRT12002
920	1,120	150	7.5	7.5	5,500	32,500	560,000	3,350,000	CRT18401

Drawing C

Drawing no.	Dime	ensions	Mass
	r	nm	kg
	D_1	d_1	(approx.)
			, ,
Α	260.3	360	18.3
В	279.4	603.25	205
Α	291	395	27.8
В	320.5	580	179
Α	320	708	465
Α	340	460	49.9
Α	351	450	37.3
Α	366	620	136
В	406.4	711.2	245
Α	409	709	301
Α	452	570	60.3
В	450.5	750	257
В	508	990.6	701
Α	600.5	745	101
Α	922	1,118	295

d 170∼550mm

	Boundary dimensions mm		ons	Basic lo dynamic kN	ad ratings static kgf	Bearing numbers			Abutme fillet dim mr	ensions			Mass kg	
d	D	T	$r_{ m smin}$	$r_{1\mathrm{s}\mathrm{min}}$	C_{a}	C_{a}		D_1	A	$d_{ m a}$	D_{a}	$r_{\rm a}$	$r_{1\mathrm{a}}$	(approx.)
170	240	84	2.5	1	365	37,000	CRTD3401	184	20	179	190	2	1	12
180	280	90	2	1	645	65,500	CRTD3618	196	20	189	202	2	1	20
200	560	138	3	4	1,630	166,000	CRTD4013	430	40	413	438	2.5	3	105
212	300	96	2	1	435	44,000	CRTD4203	236	22	228	242	2	1	19.5
220	340	130	2	1.5	860	88,000	CRTD4401	250	39	242	256	2	1.5	42.1
240	320 380	96 105	2 1.5	0.6 1.5	405 840	41,500 85,500	CRTD4802 CRTD4803	256 270	22 27	246 267	262 274	2 1.5	1 1.5	21 41.5
250	360 380	96 100	1.5 2	0.6 1	635 905	64,500 92,000	CRTD5007 CRTD5005	285 275	24 22	274 266	289 281	1.5 2	0.6 1	28 40
260	360 400	92 120	2 3	1 1.5	580 920	59,500 93,500	CRTD5216 CRTD5217	285 290	20 25	272 276	291 298	2 2.5	1 1.5	26 51.5
300	420	100	2	2	880	89,500	CRTD6001	330	23	320	335	2	2	38
305	530	200	5	1.5	2,500	255,000	CRTD6104	345	56	332	357	4	1.5	165
320	440 470	108 130	3 3	2 2	980 1,390	100,000 142,000	CRTD6406 CRTD6404	355 350	20 30	344 335	363 358	2.5 2.5	2 2	43 73
350	490	130	3	1.1	1,150	118,000	CRTD7012	390	30	375	398	2.5	1.5	72
380	560	130	3	2	1,630	166,000	CRTD7612	430	32	410	438	2.5	2	102
410	560	160	5	2	1,660	169,000	CRTD8201	440	40	428	446	4	2	111
420	620	170	3	1.1	2,190	223,000	CRTD8403	465	35	448	473	2.5	1	155
440	645	167	5	2	2,070	211,000	CRTD8802	500	50	470	495	2	2	176
470	720	200	4	4	3,450	355,000	CRTD9408	535	40	507	545	3	3	261
550	760	230	4	2	2,910	296,000	CRTD11002	610	50	577	622	4	2	296

1 Minimum allowable dimension for chamfer dimension r or r.

Remarks: 1. C_a does not means allowable load ratings. Please contact NTN Engineering.

B-244

d 100∼200mm

r.	mm		•	Static	uynamic	Basic load ratings dynamic static dynamic static				Bearing Dimension numbers			
<i>P</i>	mm		kN			kgf		mm		mm			
D	T	$r_{ m smin}$	$C_{ m a}$	C_{oa}	$C_{ m a}$	$C_{ m oa}$		D_1	d_1	B_1	C	A	
170	42	1.5	345	1,160	35,500	118,000	29320	129	163	14	20.8	58	
210	67	3	685	2,130	69,500	217,000	29420	146	200	24	32	62	
190	48	2	445	1,500	45,000	152,000	29322	143	182	16	23	64	
230	73	3	845	2,620	86,500	267,000	29422	162	220	26	35	69	
210	54	2.1	535	1,770	54,500	181,000	29324	159	200	18	26	70	
250	78	4	975	3,050	99,000	310,000	29424	174	236	29	37	74	
225	58	2.1	615	2,100	62,500	215,000	29326	171	215	19	28	76	
270	85	4	1,080	3,550	110,000	360,000	29426	189	255	31	41	81	
240	60	2.1	685	2,360	70,000	241,000	29328	183	230	20	29	82	
280	85	4	1,110	3,750	114,000	385,000	29428	199	268	31	41	86	
215	39	1.5	340	1,340	34,500	136,000	29230	178	208	14	19	82	
250	60	2.1	675	2,390	68,500	243,000	29330	194	240	20	29	87	
300	90	4	1,280	4,350	131,000	445,000	29430	214	285	32	44	92	
225	39	1.5	360	1,460	36,500	149,000	29232	188	219	14	19	86	
270	67	3	820	2,860	84,000	292,000	29332	208	260	24	32	92	
320	95	5	1,500	5,150	153,000	525,000	29432	229	306	34	45	99	
240	42	1.5	425	1,770	43,500	180,000	29234	198	233	15	20	92	
280	67	3	855	3,050	87,000	310,000	29334	216	270	23	32	96	
340	103	5	1,660	5,750	169,000	590,000	29434	243	324	37	50	104	
250	42	1.5	450	1,920	45,500	196,000	29236	208	243	15	20	97	
300	73	3	995	3,600	102,000	365,000	29336	232	290	25	35	103	
360	109	5	1,840	6,200	188,000	635,000	29436	255	342	39	52	110	
270	48	2	530	2,230	54,000	227,000	29238	223	262	15	24	104	
320	78	4	1,150	4,250	117,000	430,000	29338	246	308	27	38	110	
380	115	5	2,010	6,800	205,000	695,000	29438	271	360	41	55	117	
280	48	2	535	2,300	54,500	234,000	29240	236	271	15	24	108	
340	85	4	1,280	4,600	131,000	470,000	29340	261	325	29	41	116	
400	122	5	2,230	7,650	228,000	780,000	29440	286	380	43	59	122	
	210 190 230 210 250 225 270 240 280 215 250 300 225 270 320 240 280 340 250 300 360 270 320 380 280 340	210 67 190 48 230 73 210 54 250 78 225 58 270 85 240 60 280 85 215 39 250 60 300 90 225 39 270 67 320 95 240 42 280 67 340 103 250 42 300 73 360 109 270 48 320 78 380 115 280 48 340 85	210 67 3 190 48 2 230 73 3 210 54 2.1 250 78 4 225 58 2.1 270 85 4 240 60 2.1 280 85 4 215 39 1.5 250 60 2.1 300 90 4 225 39 1.5 270 67 3 320 95 5 240 42 1.5 280 67 3 340 103 5 250 42 1.5 300 73 3 360 109 5 270 48 2 320 78 4 380 115 5 280 48 2 340 85 4	210 67 3 685 190 48 2 445 230 73 3 845 210 54 2.1 535 250 78 4 975 225 58 2.1 615 270 85 4 1,080 240 60 2.1 685 280 85 4 1,110 215 39 1.5 340 250 60 2.1 675 300 90 4 1,280 225 39 1.5 360 270 67 3 820 320 95 5 1,500 240 42 1.5 425 280 67 3 855 340 103 5 1,660 250 42 1.5 450 300 73 3 995 360 109 5 1,840 270 48 2 <td< th=""><th>210 67 3 685 2,130 190 48 2 445 1,500 230 73 3 845 2,620 210 54 2.1 535 1,770 250 78 4 975 3,050 225 58 2.1 615 2,100 270 85 4 1,080 3,550 240 60 2.1 685 2,360 280 85 4 1,110 3,750 215 39 1.5 340 1,340 250 60 2.1 675 2,390 300 90 4 1,280 4,350 225 39 1.5 360 1,460 270 67 3 820 2,860 320 95 5 1,500 5,150 240 42 1.5 425 1,770 280 67 3 855 3,050 340 103 5 1,660</th><th>210 67 3 685 2,130 69,500 190 48 2 445 1,500 45,000 230 73 3 845 2,620 86,500 210 54 2.1 535 1,770 54,500 250 78 4 975 3,050 99,000 225 58 2.1 615 2,100 62,500 270 85 4 1,080 3,550 110,000 240 60 2.1 685 2,360 70,000 280 85 4 1,110 3,750 114,000 215 39 1.5 340 1,340 34,500 250 60 2.1 675 2,390 68,500 300 90 4 1,280 4,350 131,000 225 39 1.5 360 1,460 36,500 270 67 3 820 2,860</th><th>210 67 3 685 2,130 69,500 217,000 190 48 2 445 1,500 45,000 152,000 230 73 3 845 2,620 86,500 267,000 210 54 2.1 535 1,770 54,500 181,000 250 78 4 975 3,050 99,000 310,000 225 58 2.1 615 2,100 62,500 215,000 270 85 4 1,080 3,550 110,000 360,000 240 60 2.1 685 2,360 70,000 241,000 280 85 4 1,110 3,750 114,000 385,000 215 39 1.5 340 1,340 34,500 136,000 250 60 2.1 675 2,390 68,500 243,000 300 90 4 1,280 4,350 131,000<!--</th--><th>210 67 3 685 2,130 69,500 217,000 29420 190 48 2 445 1,500 45,000 152,000 29322 230 73 3 845 2,620 86,500 267,000 29422 210 54 2.1 535 1,770 54,500 181,000 29324 250 78 4 975 3,050 99,000 310,000 29424 225 58 2.1 615 2,100 62,500 215,000 29326 270 85 4 1,080 3,550 110,000 360,000 29426 240 60 2.1 685 2,360 70,000 241,000 29328 280 85 4 1,110 3,750 114,000 385,000 29428 215 39 1.5 340 1,340 34,500 136,000 29230 250 60 2.1 <</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 190 48 2 445 1,500 45,000 152,000 29322 143 230 73 3 845 2,620 86,500 267,000 29422 162 210 54 2.1 535 1,770 54,500 181,000 29324 159 250 78 4 975 3,050 99,000 310,000 29326 171 270 85 4 1,080 3,550 110,000 360,000 29426 189 240 60 2.1 685 2,360 70,000 241,000 29328 183 280 85 4 1,110 3,750 114,000 385,000 29428 199 215 39 1.5 340 1,340 34,500 136,000 29230 178 250 60 2.1 675<!--</th--><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 <</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110</th></th></th></td<>	210 67 3 685 2,130 190 48 2 445 1,500 230 73 3 845 2,620 210 54 2.1 535 1,770 250 78 4 975 3,050 225 58 2.1 615 2,100 270 85 4 1,080 3,550 240 60 2.1 685 2,360 280 85 4 1,110 3,750 215 39 1.5 340 1,340 250 60 2.1 675 2,390 300 90 4 1,280 4,350 225 39 1.5 360 1,460 270 67 3 820 2,860 320 95 5 1,500 5,150 240 42 1.5 425 1,770 280 67 3 855 3,050 340 103 5 1,660	210 67 3 685 2,130 69,500 190 48 2 445 1,500 45,000 230 73 3 845 2,620 86,500 210 54 2.1 535 1,770 54,500 250 78 4 975 3,050 99,000 225 58 2.1 615 2,100 62,500 270 85 4 1,080 3,550 110,000 240 60 2.1 685 2,360 70,000 280 85 4 1,110 3,750 114,000 215 39 1.5 340 1,340 34,500 250 60 2.1 675 2,390 68,500 300 90 4 1,280 4,350 131,000 225 39 1.5 360 1,460 36,500 270 67 3 820 2,860	210 67 3 685 2,130 69,500 217,000 190 48 2 445 1,500 45,000 152,000 230 73 3 845 2,620 86,500 267,000 210 54 2.1 535 1,770 54,500 181,000 250 78 4 975 3,050 99,000 310,000 225 58 2.1 615 2,100 62,500 215,000 270 85 4 1,080 3,550 110,000 360,000 240 60 2.1 685 2,360 70,000 241,000 280 85 4 1,110 3,750 114,000 385,000 215 39 1.5 340 1,340 34,500 136,000 250 60 2.1 675 2,390 68,500 243,000 300 90 4 1,280 4,350 131,000 </th <th>210 67 3 685 2,130 69,500 217,000 29420 190 48 2 445 1,500 45,000 152,000 29322 230 73 3 845 2,620 86,500 267,000 29422 210 54 2.1 535 1,770 54,500 181,000 29324 250 78 4 975 3,050 99,000 310,000 29424 225 58 2.1 615 2,100 62,500 215,000 29326 270 85 4 1,080 3,550 110,000 360,000 29426 240 60 2.1 685 2,360 70,000 241,000 29328 280 85 4 1,110 3,750 114,000 385,000 29428 215 39 1.5 340 1,340 34,500 136,000 29230 250 60 2.1 <</th> <th>210 67 3 685 2,130 69,500 217,000 29420 146 190 48 2 445 1,500 45,000 152,000 29322 143 230 73 3 845 2,620 86,500 267,000 29422 162 210 54 2.1 535 1,770 54,500 181,000 29324 159 250 78 4 975 3,050 99,000 310,000 29326 171 270 85 4 1,080 3,550 110,000 360,000 29426 189 240 60 2.1 685 2,360 70,000 241,000 29328 183 280 85 4 1,110 3,750 114,000 385,000 29428 199 215 39 1.5 340 1,340 34,500 136,000 29230 178 250 60 2.1 675<!--</th--><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 <</th><th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110</th></th>	210 67 3 685 2,130 69,500 217,000 29420 190 48 2 445 1,500 45,000 152,000 29322 230 73 3 845 2,620 86,500 267,000 29422 210 54 2.1 535 1,770 54,500 181,000 29324 250 78 4 975 3,050 99,000 310,000 29424 225 58 2.1 615 2,100 62,500 215,000 29326 270 85 4 1,080 3,550 110,000 360,000 29426 240 60 2.1 685 2,360 70,000 241,000 29328 280 85 4 1,110 3,750 114,000 385,000 29428 215 39 1.5 340 1,340 34,500 136,000 29230 250 60 2.1 <	210 67 3 685 2,130 69,500 217,000 29420 146 190 48 2 445 1,500 45,000 152,000 29322 143 230 73 3 845 2,620 86,500 267,000 29422 162 210 54 2.1 535 1,770 54,500 181,000 29324 159 250 78 4 975 3,050 99,000 310,000 29326 171 270 85 4 1,080 3,550 110,000 360,000 29426 189 240 60 2.1 685 2,360 70,000 241,000 29328 183 280 85 4 1,110 3,750 114,000 385,000 29428 199 215 39 1.5 340 1,340 34,500 136,000 29230 178 250 60 2.1 675 </th <th>210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000</th> <th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 <</th> <th>210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110</th>	210 67 3 685 2,130 69,500 217,000 29420 146 200 190 48 2 445 1,500 45,000 152,000 29322 143 182 230 73 3 845 2,620 86,500 267,000 29322 162 220 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 250 78 4 975 3,050 99,000 310,000 29424 174 236 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 280 85 4 1,110 3,750 114,000	210 67 3 685 2,130 69,500 217,000 29420 146 200 24 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 250 78 4 975 3,050 99,000 310,000 29424 174 236 29 225 58 2.1 615 2,100 62,500 215,000 29326 171 215 19 270 85 4 1,080 3,550 110,000 360,000 29426 189 255 31 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 <	210 67 3 685 2,130 69,500 217,000 29420 146 200 24 32 190 48 2 445 1,500 45,000 152,000 29322 143 182 16 23 230 73 3 845 2,620 86,500 267,000 29422 162 220 26 35 210 54 2.1 535 1,770 54,500 181,000 29324 159 200 18 26 250 78 4 975 3,050 99,000 310,000 29326 171 215 19 28 270 85 4 1,080 3,550 110,000 360,000 29326 171 215 19 28 240 60 2.1 685 2,360 70,000 241,000 29328 183 230 20 29 280 85 4 1,110	

Equivalent bearing load dynamic $P_a=F_a+1.2F_r$

static $P_{\text{oa}}=F_{\text{a}}+2.7F_{\text{r}}$ when $\frac{F_{\text{r}}}{F_{\text{a}}}\leq 0.55$

Al fille	Mass		
$d_{ m a}$	$egin{array}{c} m{mm} \ D_{\mathrm{a}} \end{array}$	$r_{ m as}$	kg
min	max	max	(approx.)
130	150	1.5	3.94
150	175	2.5	11.5
145	165	2	5.78
165	190	2.5	15
160	180	2	7.92
180	205	3	18.6
170	195	2	9.76
195	225	3	23.7
185	205	2	11.4
205	235	3	25.2
179	196	1.5	4.56
195	215	2	12
220	250	3	30.5
189	206	1.5	4.88
210	235	2.5	15.9
230	265	4	37
201	218	1.5	6.02
220	245	2.5	16.6
245	285	4	45
211	228	1.5	6.27
235	260	2.5	21.2
260	300	4	52.9
225	245	2	8.8
250	275	3	26
275	320	4	62
235	255	2	9.14
265	295	3	31.9
290	335	4	73.3

d 220∼400mm

	Boundary dimensions		al a		ad ratings	-4-4-	Bearing		Di	mensio	sions		
		mm		dynamic I	static kN	dynamic I	static cgf	numbers			mm		
d	D	T	$r_{ m smin}$	C_{a}	C_{oa}	$C_{ m a}$	C_{oa}		D_1	d_1	B_1	C	A
	300	48	2	555	2,480	56,500	253,000	29244	254	292	15	24	117
220	360	85	4	1,390	5,200	141,000	530,000	29344	280	345	29	41	125
220	420	122	6	2,300	8,100	235,000	825,000	29444	308	400	43	58	132
	340	60	2.1	825	3,600	84,000	365,000	29248	283	330	19	30	130
240	380	85	4	1,380	5,250	140,000	535,000	29348	300	365	29	41	135
	440	122	6	2,400	8,700	245,000	885,000	29448	326	420	43	59	142
	360	60	2.1	870	3,950	88,500	400,000	29252	302	350	19	30	139
260	420	95	5	1,710	6,800	175,000	695,000	29352	329	405	32	45	148
	480	132	6	2,740	10,000	279,000	1,020,000	29452	357	460	48	64	154
	380	60	2.1	875	4,050	89,000	415,000	29256	323	370	19	30	150
280	440	95	5	1,800	7,250	184,000	740,000	29356	348	423	32	46	158
	520	145	6	3,350	12,400	340,000	1,270,000	29456	387	495	52	68	166
	420	73	3	1,190	5,350	121,000	545,000	29260	353	405	21	38	162
300	480	109	5	2,140	8,250	218,000	840,000	29360	379	460	37	50	168
	540	145	6	3,450	13,200	350,000	1,340,000	29460	402	515	52	70	175
	440	73	3	1,260	5,800	128,000	595,000	29264	372	430	21	38	172
320	500	109	5	2,220	8,800	226,000	895,000	29364	399	482	37	53	180
	580	155	7.5	3,700	14,200	375,000	1,440,000	29464	435	555	55	75	191
	460	73	3	1,240	5,800	126,000	590,000	29268	395	445	21	37	183
340	540	122	5	2,650	10,700	270,000	1,090,000	29368	428	520	41	59	192
	620	170	7.5	4,400	17,500	445,000	1,790,000	29468	462	590	61	82	201
	500	85	4	1,510	7,050	154,000	720,000	29272	423	485	25	44	194
360	560	122	5	2,710	11,100	276,000	1,130,000	29372	448	540	41	59	202
	640	170	7.5	4,500	18,500	460,000	1,890,000	29472	480	610	61	82	210
	520	85	4	1,590	7,650	162,000	780,000	29276	441	505	27	42	202
380	600	132	6	3,200	13,300	325,000	1,360,000	29376	477	580	44	63	216
	670	175	7.5	4,900	19,700	500,000	2,010,000	29476	504	640	63	85	230
400	540	85	4	1,620	7,950	165,000	810,000	29280	460	526	27	42	212
400	620	132	6	3,400	14,500	345,000	1,480,000	29380	494	596	44	64	225
	710	185	7.5	5,450	22,100	555,000	2,250,000	29480	534	680	67	89	236

lacktriangledown Smallest allowable dimension for chamfer dimension r.

Equivalent bearing load dynamic $P_a=F_a+1.2F_r$

static $P_{\text{oa}}=F_{\text{a}}+2.7F_{\text{r}}$ when $\frac{F_{\text{r}}}{F_{\text{a}}}\leq 0.55$

	Abutment and fillet dimensions								
	mm		kg						
$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$							
min	max	max	(approx.)						
260	275	2	9.94						
285	315	3	34.5						
310	355	5 5	34.3 77.8						
310	333	5	11.0						
285	305	2	17.5						
300	330	3	36.6						
330	375	5	82.6						
305	325	2	18.6						
330	365	4	52						
360	405	5	108						
325	345	2	19.8						
350	390	4	54.6						
390	440	5	140						
355	380	2.5	30.9						
380	420	4	75.8						
410	460	5	147						
375	400	2.5	33.5						
400	440	4	79.9						
435	495	6	181						
400	490		101						
395	420	2.5	34.4						
430	470	4	107						
465	530	6	230						
420	455	3	50.5						
450	495	4	112						
485	550	6	240						
440	475	0	FO 4						
440	475	3	53.4						
480	525	5	143						
510	575	6	267						
460	490	3	55.8						
500	550	5	148						
540	610	6	321						

d 420∼800mm

	Bounda	ary dime	nsions	dynamic		oad ratings dynamic	static	Bearing numbers		Dir	mensior	ıs	
		mm			kN		kgf	Hambers			mm		
d	D	T	$r_{ m smin}$	$C_{ m a}$	C_{oa}	$C_{ m a}$	$C_{ m oa}$		D_1	d_1	B_1	C	A
420	580	95	5	2,100	10,400	214,000	1,060,000	29284	489	564	30	46	225
	650	140	6	3,600	15,500	365,000	1,580,000	29384	520	626	48	68	235
	730	185	7.5	5,500	22,800	560,000	2,330,000	29484	556	700	67	89	244
440	600	95	5	2,150	10,900	219,000	1,110,000	29288	508	585	30	49	235
	680	145	6	3,800	16,400	385,000	1,680,000	29388	548	655	49	70	245
	780	206	9.5	6,400	26,200	650,000	2,670,000	29488	588	745	74	100	260
460	620	95	5	2,150	11,000	219,000	1,120,000	29292	530	605	30	46	245
	710	150	6	4,200	18,500	430,000	1,880,000	29392	567	685	51	72	257
	800	206	9.5	6,600	27,900	670,000	2,840,000	29492	608	765	74	100	272
480	650	103	5	2,400	12,000	245,000	1,220,000	29296	556	635	33	55	259
	730	150	6	4,200	18,700	430,000	1,910,000	29396	590	705	51	72	270
	850	224	9.5	7,500	31,500	765,000	3,200,000	29496	638	810	81	108	280
500	670	103	5	2,540	13,000	259,000	1,330,000	292/500	574	654	33	55	268
	750	150	6	4,300	19,300	435,000	1,970,000	293/500	611	725	51	74	280
	870	224	9.5	7,850	33,000	805,000	3,350,000	294/500	661	830	81	107	290
530	710	109	5	2,720	14,000	278,000	1,430,000	292/530	610	692	39	55	288
	800	160	7.5	5,000	23,300	510,000	2,380,000	293/530	648	772	54	76	295
	920	236	9.5	8,650	36,000	880,000	3,700,000	294/530	697	880	86	115	308
560	750	115	5	3,200	16,600	325,000	1,700,000	292/560	642	732	38	61	302
	980	250	12	9,300	40,500	945,000	4,100,000	294/560	743	938	90	121	321
600	800	122	5	3,500	18,300	355,000	1,870,000	292/600	686	780	40	63	321
	1,030	258	12	10,200	44,500	1,040,000	4,550,000	294/600	785	978	90	125	360
630	850	132	6	4,300	22,800	435,000	2,330,000	292/630	717	822	44	70	338
	1,090	280	12	11,600	51,000	1,180,000	5,200,000	294/630	830	1,040	100	136	365
670	1,150	290	15	12,900	57,000	1,320,000	5,850,000	294/670	880	1,105	106	138	387
710	1,060	212	9.5	8,350	40,500	850,000	4,150,000	293/710	850	1,030	76	102	393
	1,220	308	15	14,100	63,500	1,440,000	6,450,000	294/710	925	1,165	112	150	415
750	1,280	315	15	15,700	69,000	1,600,000	7,000,000	294/750	983	1,220	116	152	436
800	1,360	335	15	17,000 on for cham		1,730,000	8,050,000	294/800	1,040	1,300	120	162	462

lacktriangledown Smallest allowable dimension for chamfer dimension r.

Equivalent bearing load dynamic $P_a = F_a + 1.2F_r$ static $P_{oa} = F_a + 2.7F_r$ when $\frac{F_r}{F_a} \leq 0.55$

	Abutment a		Mass
	mm		kg
$d_{ m a}$	$D_{\rm a}$	$r_{ m as}$	
min	max	max	(approx.)
400	505	4	70.0
490 505	525 575	4 5	76.6
525 560	575 630	5 6	172 333
360	630	0	333
510	545	4	79.6
550	600	5	195
595	670	8	428
530	570	4	82.8
575	630	5	221
615	690	8	443
555	595	4	98.6
595	650	5	228
645	730	8	552
575	615	4	102
615	670	5	235
670	750	8	569
610	650	4	122
655	710	6	288
715	790	8	669
640	690	4	144
755	835	10	815
	705		
690	735	4	171
800	885	10	897
725	780	5	213
845	935	10	1,110
895	990	12	1,280
970	020	0	669
870 950	930 1,050	8 12	
300	1,000	14	1,520
995	1,105	12	1,690
1,060	1,175	12	2,040

Bearings for special applications

Contents

Split cylindrical roller bearings: Double-fractured	·····C- 2	2
Split spherical roller bearings: Double-fractured ······	·····C- 3	3
Double-fractured split cylindrical roller bearings: Continuous casting equipment	·····C- 4	ŀ
Cylindrical roller bearings with self-aligning rings: Continuous casting equipment	·····C- 5	5
Bearings for preparing rolls: Sendzimir rolling mills	·····C- 6	;
Enclosed-type tapered roller bearings for wheels: Sintering machines	·····C- 8	3
Cylindrical roller bearings: Chain conveyors	·····C- 9)
Tapered roller thrust bearings: Screw down operations	·····C-10)
Tension leveler roll unit: Cartridge unit ······	·····C-14	ŀ
Tension lever roll unit: Backup unit	·····C-15	5
Turn table bearings: 3–row cylindrical roller type	·····C-16	ò
Sealed spherical roller bearings: Model WA	·····C-18	3
Spherical surface slide bearings	·····C-20)

Bearings for special applications

Split Cylindrical Roller Bearings: Double–Fractured

NTN

- Since the inner ring, outer ring and cage are split in two parts, it is possible to mount the bearing in places where a united bearing is difficult or impossible to mount. (ie. Places where mounting from the shaft end is impossible, an obstacle exists on the shaft, or the shaft is very long.)
- Inspection and maintenance after mounting is easy.

Drawing A Fixed side

Drawing B Free side

d 120∼770mm

		Bounda	ary dimensi	ons		dynamic k	Basic lo static	ad ratings dynamic	static kgf	Bearing [®] Dr numbers	awing no.
d	D	В	C	r_1	r_2	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
120	R254	125	60	C4	4	450	510	46,000	52,000	* RE2436 * RE2437	B A
127	254	114.3	63.5	C5	C2	555	720	56,500	73,500	RE2512	Α
160	240	76	38	C3	СЗ	238	340	24,200	35,000	RE3220 RE3221	A B
164	240	76	38	C3	СЗ	238	340	24,200	35,000	RE3308 RE3309	A B
170	R340	120	56	C3.5	3.5	435	565	44,500	57,500	* RE3420 * RE3421	A B
180	285.75	109	55.5	C3.5	C3.5	415	580	42,500	59,000	RE3617	Α
190	290	92	46	C3.5	C3.5	350	510	36,500	52,000	RE3812 RE3813	A B
200	311.15	109.5	60.3	C3.2	C3.2	480	760	49,000	77,500	RE4022	Α
210	360	92	46	C3	C3	370	595	37,500	60,500	RE4206 RE4207	A B
230	360	92	46	C3	СЗ	350	550	35,500	56,500	RE4604 RE4605	A B
235	360	92	46	С3	СЗ	350	550	35,500	56,500	RE4702 RE4703	A B
260	360	92	46	СЗ	СЗ	350	550	35,500	56,500	RE5209 RE5210	A B
280	400	92	48	С3	СЗ	460	755	47,000	77,000	RE5606 RE5607	B A
320	622.3	272	160.4	C12	C6	2,900	4,250	295,000	435,000	RE6405	Α
335	480	115	56	C3	С3	545	955	56,000	97,500	RE6702 RE6703	A B
360	R600	200	116	C6	6	1,940	3,250	198,000	330,000	* RE7203	В
460	740	294	170	C4	C4	3,650	6,150	370,000	625,000	RE9208	В
500	850.9	360	210	C12	C6	5,250	9,050	535,000	525,000	RE10013	В
575	800	180	90	C3	С3	1,370	2,570	140,000	262,000	RE11501 RE11502	A B
640	900	200	103	C3	СЗ	1,650	3,150	168,000	325,000	RE12801 RE12802	A B
670	900	200	103	С3	СЗ	1,650	3,150	168,000	325,000	RE13405 RE13406	A B
770	1,070	300	180	C2.5	C6	5,300	12,000	540,000	1,230,000	RE15404 RE15405	A B

[●] The marked "*" bearings has a spherical surface of outer rings outside dia.
Remarks: 1. The above drawings are typical examples. Please contact NTN Engineering.

d 150∼1,400mm

<i>a</i> 130	~1,400mi		dary dime	neione			Rasic	load ratings		Bearing ⁰	Drawing
		Douil	mm	11310113		dynamic k	static N	dynamic	static kgf	numbers	no.
d	D	В	 C	r_1	r_2	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
150	260	121	67	2.1	2.1	420	720	43,000	73,500	2PE3012	A
190	290	150	90	2.1	2.1	785	1,440	80,000	147,000	2PE3801	Α
200	340	152	90	3	3	935	1,620	95,000	165,000	2PE4002	Α
240	400	173	104	4	4	1,070	1,990	109,000	203,000	2PE4802	Α
315.9	530	210	133	5	5	2,130	4,150	218,000	420,000	2PE6301	А
320	480	226	121	7.5	4	1,590	2,930	163,000	299,000	2PE6401	А
360	540	212	134	3	5	2,270	4,350	231,000	445,000	2PE7202	А
505	750	248	140	5	5	2,680	6,200	273,000	635,000	2PE10101	А
530	750	248	140	5	5	2,680	6,200	273,000	633,000	2PE10601	А
850	1,280	375	249	12	12	8,800	19,900	895,000	2,020,000	2PE17009	А
1 120	1,540	525	355	7.5	7.5	14,200	43,500	1,450,000	4,400,000	2PE22401	В
1 200	1,700	790	410	_	9.5	17,200	44,000	1,750,000	4,500,000	2PE24004	С
1 200	1,700	695	410	_	9.5	15,600	44,000	1,590,000	4,500,000	2PE24005	С
1 400	1,900	880	530	_	12	22,900	65,500	2,340,000	6,650,000	2PE28001	С

Double–Fractured Split Cylindrical Roller Bearings: Continuous Casting Equipment

NTN

- These bearings are designed to be a full complement roller type and have high rating load for heavy loads, ultra low speed rotation and space-saving.
- These bearings provide a multi-seal with a labyrinth ring, seal ring and special rubber seal to prevent water from invading.
- The clamping ring of the inner ring is not needed anymore and the structure of direct clamping is applied to make a compact bearing.
- Bearings have a self-aligning nature due to the roll deflection since the outer ring outside diameter and the housing inner diameter are spherical.
- Application of a water cooling jacket type housing controls rising bearing temperatures.

d 100~230mm

		Boundary dimensions mm			dynamic k	static	ad ratings dynamic ky	static gf	Bearing numbers	Housing No.
d	В	H	L	$D_{ m R}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		
100	154 169	145 132	210 220	210 225	355 475	790 950	36,000 48,500	80,500 96,500	RE2038V RE2039V	SS2020 SS2021
110	154 154	150 180 155	230 230 230	230 230 225	425 390	1,040 930	43,500 40,000	106,000 94,500	RE2224V RE2225V	SS2228 SS2230 SS2234
115	173	220	240	240	505	940	51,500	95,500	RE2306V	SS2304
120	151	190	240	250	395	970	40,000	99,000	RE2439V	SS2420
130	154	190	270	270	430	1,110	43,500	113,000	RE2628	SS2637
140	179 191	245 250	270 265	270 265	600 525	1,240 1,280	61,500 53,500	126,000 131,000	RE2827V RE2824V	SS2835 SS2825
145	196 208	260 270	280 295	280 295	630 765	1,440 1,780	64,500 78,000	147,000 182,000	RE2906V RE2907V	SS2908 SS2907
150	169	180	265	300	695	1,700	70,500	173,000	RE3036V	SS3043
165	228	280	320	320	930	2,210	95,000	225,000	RE3311V	SS3303
180	169 235	217.5 280	335 340	335 340	815 1,030	2,010 2,580	83,000 106,000	205,000 263,000	RE3621V RE3620V	SS3616 SS3415
190	233	280	370	370	1,320	3,100	134,000	320,000	RE3815V	SS3804
230	239	300	450	450	1,590	3,700	162,000	380,000	RE4606	SS4601

Ocylindrical Roller Bearings With Self-Aligning Rings: Continuous Casting Equipment

NTN

- These bearings are designed to be a full complement roller type and have high rating load.
- Bearings have a self-aligning nature since the outer ring outside surface and aligning ring inside surface are spherical.

d 55∼200mm

	Bound	dary dimen	sions	dynamic	Basic lo	ad ratings dynamic	static	Bearing numbers
		mm		kN		kį	gf	
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
55	90 100	32 25	1.1 1.5	85 94.5	203 146	8,700 9,650	20,700 14,900	R11A11V R11A12V
75	130	31	1.5	146	236	14,900	24,100	R1564V
110	170 180	60 56	2 2	297 325	720 635	30,500 33,000	73,000 65,000	R2260V R2252V
120	200	80	2	450	980	46,000	100,000	R2481V
130	200 210	69 80	2 2	405 495	935 1,090	41,500 50,500	95,500 112,000	R2674V R2677V
140	210 225	69 85	2 2.1	420 545	990 1,230	42,500 56,000	101,000 125,000	R2858V R2859V
150	250	100	2.1	710	1,620	72,500	165,000	R3056V
160	270	109	2.1	855	1,830	87,500	186,000	R3261V
170	260	90	2.1	635	1,510	65,000	154,000	R3444V
180	280	100	2.1	785	1,870	80,500	191,000	R3646V
200	340	112	3	1 160	2,470	119,000	252,000	R4051V

lacktriangle Smallest allowable dimension for chamfer dimension r.

Bearings for Preparing Rolls: Sendzimir Rolling Mills

NTN

- Since bearings are directly used in preparing rolls, the thickness of the outer ring is designed to be thicker than regular bearings.
- Since high accuracy under heavy loads is required, these bearings are designed to have a capacity for heavy loads and high accuracy.
- Several bearings are assembled on one shaft for operation, and the mutual difference of assembled thickness (Dimension H) of bearings on the same shaft is very minimal.
- When the outer ring outside surface is worn, it is possible to recycle it by grinding it to a certain level.

d 70∼180mm

	Bour	ndary dimen	sions			dynamic	static	ad ratings dynamic	static	Bearing I numbers	Orawing no.
d	D	mm B	C	$r_{ m smin}$	$r_{ m ls\;min}$	$C_{ m r}$	${\sf N}$ $C_{ m or}$	kç $C_{ m r}$	$C_{ m or}$		
a	D	D	C	7 s min	7 ls min	$O_{\rm r}$	$C_{ m or}$	$C_{\rm r}$	Cor		
70	160 160	90 90	90 90	1.5 1.5	0.6 0.6	455 355	855 605	46,500 36,000	87,000 61,500	3RCS1414VUP 3RCS1418UP	C B
90	220 220 220 200	96 120 120 130	94 120 120 130	3.0 2.0 2.0 2.0	1.1 0.3 1.5 1.5	470 775 650 675	695 1,510 1,150 1,260	48,000 79,000 66,000 69,000	71,000 154,000 118,000 128,000	2R1840LLUP-1 3R1827VUP 3R1829UP 3R1826UP	F E D
100	255	120	120	1.5	1.0	715	1,350	73,000	138,000	3RCS2035UP	А
130	300 300	160 172.6	159.5 172.6	1.5 1.5	2.0 2.0	1,480 1,580	2,700 2,930	151,000 161,000	275,000 299,000	3RCS2659UPV1 3RCS2629UP	A A
180	406.4 406.4	171.04 224	171.04 224	2.5 1.45	4.0 4.0	2,060 2,350	3,800 4,500	210,000 240,000	390,000 460,000	3RCS3615UP 3RCS3618UP	B B
	♪ Minimal al	llowable dime	nsion for char	mfer dime	asion v onsign	7:					

Drawing E

Drawing F

Sloping o	outer ring	Assembled thickness	Necessary number	Mass
m	m	mm		kg
a	f	Н	(P/C)	(approx.)
6	0.035	44.981 (±0.010)	32	10.7
6	0.035	44.981 (±0.010)	32	10.7
21	0.5	64.980 (±0.008)	64	21.7
6	0.035	64.978 (±0.008)	32	27.6
20.6	0.12	64.973 (0~-0.010)	40	27.5
6	0.1	64.960 (±0.008)	40	29.8
10	0.1	62.474 (0.010~0)	32	28.0
10	0.1	84.954 (±0.008)	40	67.4
10	0.1	84.954 (±0.008)	40	73.0
25	0.15	113.150 (±0.010)	56	132
25	0.15	113.150 (±0.010)	40	170

Enclosed-Type Tapered Roller Bearings for Wheels: **Sintering Machines**

- The double lip contact seal, which has a tight seal, is installed with the bearing side face to prevent dust from entering the bearings.
- Greasing the bearings is possible when a notch is positioned at the central part of inner ring.

d 85∼130mm

		E	Boundary di mm			dynamic ki	Basic load ratings dynamic static dynamic kN kgf			Bearing numbers
d	D	B_1	C	$r_{ m smin}$	$r_{1\mathrm{smin}}^{ullet}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	
85	180	115	115	2.5	0.6	440	715	45,000	73,000	CRI-1760LL
95	180	100	100	3.0	1.0	530	835	54,500	85,500	CRI-1959LL*
100	180	100	100	2.5	0.8	440	675	45,000	68,500	CRI-2070LL
110	200	100	100	3.0	1.0	605	965	61,500	98,500	CRI-2272LL
130	230	138	138	3.0	0.3	820	1,660	83,500	169,000	CRI-2666LL

Cylindrical Roller Bearings: Chain Conveyors

- Since the outer ring directly supports heavy loads, the thickness of outer ring is designed to be thicker than regular bearings.
- For operation under heavy loads and extremely low speed rotation, these bearings are designed to be a full complement roller type and have high loads capacity.
- To prevent foreign matter from entering the bearing, a labyrinth structure is applied, which has a narrower clearance between outer ring and rib ring.

d 28.3∼56mm

		Во	oundary dii		;		dynamic	static	ead ratings dynamic	static	Bearing numbers
			mm				k	N	ŀ	cgf	
d	d_1	d_2	D	В	C	T	C	$C_{ m o}$	C	$C_{ m o}$	
28.3	44.05	47	125	55	62	94	197	241	20,100	24,500	R06A31V
38.4	60	66	150	90	99	138	390	585	40,000	59,500	R08A31V
38.7	56	56	150	70	75	112	315	420	32,500	42,500	R08A24V
41.75	64.16	71	175	80	85	125	395	575	40,500	59,000	R08A02V
45	73	73	150	60	60	60	278	405	28,300	41,000	R09A20V
46	73	73	150	60	60	60	278	405	28,300	41,000	R09A21V
50	72	72	156	60	70	70	280	355	28,600	36,500	R1099V
56	74 73	74 73	160 150	51 60	55 60	49 60	261 278	310 405	26,600 28,300	31,500 41,000	R11A01V R11A13V

Tapered Roller Thrust Bearings: Screw Down Operations

NTN

- These bearings are designed to be a full complement roller type and have high static rating load for large axial load applications.
- Inner ring surface is spherical (convex or concave) to allow its circle center to meet the tip of the pressing screw.
- For hoisting, bearings are designed to have a hole or bushing at the center of the inner ring, and a bushing on the outer ring.

D 149.225~641.350mm

	Bound	ary dimensions			Basic load stat	Bearing numbers	
		mm			kN	kgf	
D	d_1	H	F	$r_{1\mathrm{s}\mathrm{min}}$	C_{oa}	C_{oa}	
149.225	146.900	47.625	127.000	1.6	2,280	233,000	CRT0402V
174.625	172.300	52.375	152.400	1.6	3,300	335,000	CRT0503V
203.200	200.800	65.075	177.800	1.6	4,550	465,000	CRT0607V
266.700	264.300	80.950	228.600	1.6	7,750	790,000	CRT0701V
320.675	318.300	95.250	279.400	1.6	11,800	1,200,000	CRT0814V
377.825	375.500	111.125	330.200	1.6	16,300	1,660,000	CRT0908V
409.575	407.200	122.225	355.600	3.2	19,300	1,960,000	CRT1006V
438.150	435.800	130.175	381.000	3.2	21,600	2,210,000	CRT1104V
495.300	492.900	146.050	431.800	3.2	27,300	2,780,000	CRT1209V
495.300	492.900	146.050	431.800	3.2	32,000	3,250,000	CRT1212V
523.875	521.500	152.400	457.200	3.2	32,000	3,300,000	CRT1409V
554.000	555.000	190.500	465.430	1.7	36,000	3,700,000	CRT1206V
555.625	553.300	165.100	482.600	3.2	36,000	3,650,000	CRT1516V
581.025	578.700	168.275	508.000	3.2	38,500	3,950,000	CRT1610V
609.600	607.200	177.800	533.400	3.2	44,000	4,500,000	CRT1806V
641.350	639.000	184.150	558.800	3.2	49,000	4,950,000	CRT1807V

lacktriangle Smallest allowable dimension for chamfer dimension r_i .

	Di	mensions			Mass
		mm			kg
$R_{ m S}$	b	U	V	$T_{ m h}$	(approx.)
228.6	12.7	4.7	1.2	M12	4.4
228.6	12.7	4.7	1.2	M12	6.7
254	15.875	6.4	1.2	M12	11
304.8	19.05	7.9	2	M20	24.1
381	22.225	10.3	2.4	M20	41.3
457.2	25.4	10.3	2.4	M24	73.7
508	28.575	10.3	2.4	M24	87.2
508	31.75	13.5	3.2	M24	105
558.8	34.925	13.5	3.2	M24	150
1,270	34.925	13.5	3.2	M24	150
635	34.925	13.5	3.2	M24	175
1,270	50	9.5	6	M24	245
635	38.1	13.5	3.2	M24	214
711.2	38.1	13.5	3.2	M24	238
762	38.1	13.5	3.2	M24	277
762	38.1	13.5	3.2	M24	317

Tapered Roller Thrust Bearings: Screw Down Operations

NTN

- These bearings are designed to be a full complement roller type and have high static rating load for large axial load applications.
- Inner ring surface is spherical (convex or concave) to allow its circle center to meet the tip of the pressing screw.
- For hoisting, bearings are designed to have a hole or bushing at the center of the inner ring, and a bushing on the outer ring.

D 149.225~641.350mm

	Bound	ary dimensions	3		Basic load	Bearing numbers	
		mm			kN	kgf	
D	d_1	Н	F	$r_{1\mathrm{s}\mathrm{min}}$	C_{oa}	$C_{ m oa}$	
149.225	146.900	80	127.000	1.6	2,280	233,000	CRT0401V
174.625	172.300	61.392	152.400	1.6	3,300	335,000	CRT0504V
203.200	200.800	75	177.800	1.6	4,650	475,000	CRT0606V
266.700	264.300	94.412	228.600	1.6	7,750	790,000	CRT0505V
320.675	318.300	110.973	279.400	1.6	11,800	1,200,000	CRT0811V
377.825	375.500	129.007	330.200	1.6	16,300	1,660,000	CRT0909V
409.575	407.200	140.767	355.600	3.2	19,300	1,960,000	CRT1007V
438.150	435.800	150.673	381.000	3.2	21,600	2,210,000	CRT1105V
482.600	480.212	145.542	419.100	3.2	27,200	2,770,000	CRT1307V
495.300	492.900	170.612	431.800	3.2	32,000	3,250,000	CRT1211V
523.875	521.500	174.35	457.200	3.2	32,500	3,350,000	CRT1412V
533.400	533.400	177.8	457.200	1.6	33,500	3,400,000	CRT1411V
555.625	553.300	190.856	482.600	3.2	36,000	3,650,000	CRT1517V
581.025	578.700	193.78	508.000	3.2	39,000	4,000,000	CRT1214V
581.225	578.700	193.777	508.000	3.2	38,500	3,950,000	CRT1601V
609.600	607.240	202.167	533.400	3.2	44,500	4,550,000	CRT1812V
641.350	639.000	212.674	558.800	3.2	49,000	4,950,000	CRT1808V

lacktriangle Smallest allowable dimension for chamfer dimension r_1 .

	Dimensions												
		mm					kg						
$R_{ m S}$	$H_{ m s}$	b	U	V	$T_{ m h}$	$T_{ m h1}^{m{2}}$	(approx.)						
457.2	47.625	12.7	4.7	1.2	M12	_	6.6						
457.2	52.375	12.7	4.7	1.2	M12	_	10.1						
508	65.075	15.875	6.4	1.2	M12	M16	17						
609.6	80.950	19.05	7.9	2	M20	_	36.2						
762	95.250	22.225	10.3	2.4	M20	_	61.3						
914.4	111.125	25.4	10.3	2.4	M24	_	98.8						
1,016	122.225	28.575	10.3	2.4	M24	_	127						
1,016	130.175	31.75	13.5	3.2	M24	_	155						
1,905	130.175	38.1	13.5	3.2	M24	_	182						
1,066.8	146.050	34.925	13.5	3.2	M24	_	215						
1,270	152.400	34.925	13.49	3.18	M24	_	259						
1,981.2	161.925	31.75	9.5	9.5	M24	_	271						
1,270	165.100	38.1	13.5	3.2	M24	_	316						
1,320.8	166.880	38.1	13.5	6	M24	M42	350						
1,422.4	168.275	38.1	13.5	3.2	M24	_	350						
1,524	177.800	38.1	13.5	3.2	M30	M42	388						
1,524	184.150	38.1	13.5	3.2	M24	_	469						

^{2 &}quot;—" means that is not prepared with a bush.

Tension Leveler Roll Unit: Cartridge Unit

NTN

- This unit has a precision small diameter and a long scaled roll, with the surface roughness of the roll designed to be low.
- Angular ball bearings are assembled in multiple rows in the cartridge to obtain high load capacity in both axial directions and at high speed.
- This unit has established both low torque operation and tight sealing by a labyrinth structure and low-contact seals.

Cartrige Unit

d 8∼15mm

Bearing numbers			Allowable axiale load						
				mm				kN	kgf
	d	D	L_1	L_2	L_3	D_1	L_4		
CU8A01W+WK30/150	8	30	1,716	1,552	1,500	26	92	1.85	189
CU8A05W+WK50/185	8	50	2,066	1,902	1,850	26	92	1.85	189
CU8A05W+IM38/185	8	38	2,066	1,902	1,850	26	92	1.85	189
CU10B01W+WK25/220	10	25	2,433.5	2,280	2,200	24	80	0.715	73
CU10B01W+WK20/180	10	20	2,033.5	1,880	1,800	24	80	0.715	73
CU12B04W+WK40/150	12	40	1,716	1,566	1,500	32	92	2.02	206
CU12B07W+WK30/220	12	30	2,433.5	2,288	2,200	28	85	1.49	151
CU12B07W+IM38/180	12	38	2,033.5	1,888	1,800	28	85	1.49	151
CU12B08W+WK40/210	12	40	2,332	2,170	2,100	38	100	2.02	206
CU15A04W+IM60/220	15	60	2,433.5	2,270	2,200	38	94	3.78	380

- This unit has established both low torque operation and tight sealing by a labyrinth structure and low-contact seals.
- When further low torque is requested, the roll unit (Model BUB), which uses only the deep groove ball bearings, is available.
- Since the unit is used as a backup roll, the accuracy and its surface roughness are designed to be low.

Backup Unit

Type NKZ

Type BUB

d 13∼70mm

Bearing numbers	Boundary dimensions				dynamic	Mass			
	mm		kN		kgf		kg		
	d	D	L	L_1	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	(approx.)
NKZ 13×34×190-2	13	34	190	150	42	68	4,300	6,900	1
NKZ 16×38×192	16	38	192	170	35.5	55.5	3,600	5,650	1.4
NKZ 20×50×153-1	20	50	153	115	77.5	116	7,900	11,900	1.9
BUB 24×63.5×150-01	24	63.5	190	140	26.6	23.4	2,710	2,390	2.4
NKZ 24×65×205-6	24	65	205	155	82.5	122	8,450	12,500	3.9
NKZ 24×65×294	24	65	294	244	98	153	10,000	15,600	5.8
NKZ 24×65×314-4	24	65	314	275	84	150	8,600	15,300	6.5
BUB 24×65×320-03	24	65	320	274	19.2	14.8	1,950	1,510	6.5
NKZ 26×75×208-5	26	75	208	160	112	163	11,400	16,700	5.1
NKZ 28×75×150	28	75	150	108	112	163	11,400	16,700	3.6
NKZ 30×65×196	30	65	196	146	114	186	11,600	18,900	3.8
NKZ 30×75×150-24	30	75	150	110	125	187	12,700	19,000	3.7
NKZ 30×75×230-19	30	75	230	180	151	228	15,400	23,200	5.8
NKZ 30×75×326-12	30	75	326	276	151	228	15,400	23,200	8.5
NKZ 40×90×195	40	90	195	145	128	214	13,000	21,900	7
NKZ 70×150×345-4	70	150	345	250	515	905	52,500	92,500	34.5

Turn Table Bearings: 3–Row Cylindrical Roller Type

NTN

- These are compound type bearings which unite the double row thrust roller bearing and the radial roller bearing.
- These bearings are designed so that rollers in each row support axial and moment loads respectively, and high rigidity and long life can be obtained since the rolling parts make line contact.
- They are suitable for tunnel excavating machines or cranes with frequent turns.

Drawing A

D_i 1,104~4,000mm

	Bound	lary dime	nsions	•	Gear	spec			Settii	ng hole	s (inr	ner ring)		;	Settin	g hole	s (oute	er rin	g)
				m	odule r	number o	f gear tee	eth											
	D_{i}	D_{a}	Н	mz	m	z	b	$L_{ m i}$	$z_{ m i}$ (n)	$d_{ m i}$	$S_{\rm i}$	$m_{ m i}$	$t_{ m i}$	$L_{\rm a}$	$z_{ m a}$ (n)	$d_{ m a}$	S_{0}	$t_{ m o}$	$m_{ m o}$
-	1,104	1,510	175	1,128	12	94	140	1,230	36	φ 26	30	M24X3	45	1,460	36	φ 26	108	52	M24X3
-	1,400	1,850	220	1,428	14	102	120	1,520	48	φ 26	30	M24X3	50	1,795	48	φ 26	_	_	_
-	1,620	2,180	260	1,656	18	92	180	1,800	40	φ 33	30	M30X3.5	60	2,115	40 0	φ 33	_	_	_
2	2,172	2,660	230	2,196	12	183	170	2,300	48	φ 33	35	M30X3.5	60	2,595	48	φ 33	_	_	_
2	2,784	3,305	240	2,808	12	234	140	2,910	42	φ 33	30	M30X3.5	55	3,240	42	φ 33	_	_	_
4	1,000	4,700	348	4,032	16	252	210	4,175	88	φ 42	50	M39X4	70	4,615	88	φ 42	226	80	M39X4

Drawing B

Unit mm

Bearing I	Draw	ing	Di	mension	s					Basic loa	d ratings			Mass
numbers	no								static			static		
									kN			Tonf		kg
		0	$U_{ m i}$	$U_{\rm a}$	R	K	C	main thrust line	sub thrust line	radial line	main thrust line	sub thrust line	radial line	(approx.)
K2N-RTD22602PX	I A	1,306	1,284	1,166	15	15	20	11,500	6,700	1,410	1,170	680	143	930
K2N-RTD28601PX	ΙВ	1,618	1,576	1,475	20	15	85	20,500	10,800	2,200	2,100	1,110	225	1,550
K2N-RTD33102PX	В	1,902	1,844	1,710	20	25	55	28,900	14,600	3,050	2,950	1,490	310	2,650
K2N-RTD43902PX	ΙВ	2,391	2,364	2,235	30	20	40	27,500	18,600	2,280	2,800	1,900	233	2,600
K2N-RTD56205PX	ΙВ	3,034	3,000	2,846	20	15	85	36,500	22,000	4,500	3,700	2,240	460	3,850
K2N-RTD80602PX	I A	4.321	4.219	4.085	20	52	86	114.000	50.500	17.000	11,600	5.150	1.740	10.300

Sealed Spherical Roller Bearings: Model WA

- Special contact type rubber seal prevents foreign matter from entering the bearings.
- Compact design enables bearings to be mounted with the standard type of plummer blocks (SN5, SN2).
- Greasing bearings is possible since lubrication grooves and holes are provided on the outer ring.
- Bearings are prelubricated with grease and can be directly mounted on machines.

Cylindrical bore

Tapered bore taper 1:12

d 60∼160mm

	Boun	dary dimer	nsions	dynamic	Basic loa static	d ratings dynamic	static	Bearing	ı numbers
		mm		, kl	N	k	gf		
d	D	В	$r_{ m smin}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Cylindrical bore	Tapered bore
60	110	36	1.5	115	147	11,700	15,000	LH-WA22212BLLS	LH-WA22212BLLSK
65	120	39	1.5	143	179	14,600	18,300	LH-WA22213BLLS	LH-WA22213BLLSK
70	125	39	1.5	154	201	15,700	20,500	LH-WA22214BLLS	LH-WA22214BLLSK
75	130	39	1.5	166	223	16,900	22,800	LH-WA22215BLLS	LH-WA22215BLLSK
80	140	41	2	179	239	18,300	24,400	LH-WA22216BLLS	LH-WA22216BLLSK
85	150	44	2	206	272	21,000	27,800	LH-WA22217BLLS	LH-WA22217BLLSK
90	160	50.4	2	256	345	26,200	35,000	LH-WA22218BLLS	LH-WA22218BLLSK
95	170	51	2.1	294	390	30,000	39,500	WA22219BLLS	WA22219BLLSK
100	180	60.3	2.1	315	415	32,000	42,500	WA22220BLLS	WA22220BLLSK
110	200	69.8	2.1	410	570	42,000	58,000	WA22222BLLS	WA22222BLLSK
120	215	76	2.1	485	700	49,500	71,500	WA22224BLLS	WA22224BLLSK
130	230	80	3	570	790	58,000	80,500	WA22226BLLS	WA22226BLLSK
140	250	88	3	685	975	70,000	99,500	WA22228BLLS	WA22228BLLSK
150	270	96	3	775	1,160	79,000	119,000	WA22230BLLS	WA22230BLLSK
160	290	104	3	870	1,290	88,500	132,000	WA22232BLLS	WA22232BLLSK

[●] Smallest allowable dimension for chamfer dimension r. ② "K" indicates bearings have tapered bore with a taper ratio of 1: 12.

Equivalent bearing load dynamic $P_r = XF_r + YF_a$

	$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_a}{F_1}$;>e
1	X	Y	X	Y
	1	Y_1	0.67	Y_2

static
Por=Fr+YoFa

For values of e, Y_2 and Y_0 see the table below.

Abut	tment and fi	llet dimension	ons	Constant	Ах	ial load facto	ors	Mass (approx.)		
min	$d_{ m a}$ max	M $D_{ m a}$ max	$r_{ m as}$ max	e	Y_1	Y_2	Y_0	k Cylindrical bore	-	
68.5	74.5	101.5	1.5	0.27	2.49	3.71	2.44	1.41	1.37	
73.5	80	111.5	1.5	0.28	2.42	3.60	2.37	1.80	1.76	
78.5	84	116.5	1.5	0.26	2.55	3.80	2.50	1.91	1.86	
83.5	89.5	121.5	1.5	0.24	2.81	4.19	2.75	2.06	2.00	
90	94.5	130	2	0.26	2.64	3.93	2.58	2.51	2.45	
95	101	140	2	0.26	2.60	3.88	2.55	3.08	3.01	
100	107	150	2	0.26	2.55	3.80	2.49	4.08	3.97	
107	114	158	2	0.26	2.63	3.92	2.57	4.71	4.59	
112	119	168	2	0.26	2.55	3.80	2.49	6.01	5.83	
122	133	188	2	0.27	2.51	3.74	2.46	8.87	8.60	
132	147	203	2	0.27	2.47	3.68	2.42	11.2	10.9	
144	154	216	2.5	0.28	2.39	3.56	2.33	12.5	12.1	
154	168	236	2.5	0.28	2.39	3.55	2.33	16.9	16.3	
164	185	256	2.5	0.27	2.46	3.66	2.40	22.6	21.9	
174	197	276	2.5	0.28	2.42	3.60	2.37	28.0	27.2	

- These are self-aligning sliding bearings: the sliding parts form a spherical surface. The bearings also can support radial loads and axial loads in either direction.
- A lubricant (oil or grease) should be used since the sliding parts are steel on steel.
- These bearings are suitable for swinging and aligning movements, and used in joint-movement parts for industrial and construction machines.

Grease up type

Drawing B Divided by 2 place (outer ring)

d 110~420mm

	В	•	limension	s	α	dynamic k	Basic load static N	d ratings dynamic kg	static	Bearing numbers
d	D	В	C	K	(deg.)	$C_{ m d}$	$C_{ m s}$	$C_{ m d}$	$C_{ m s}$	
110	180 180	85 100	70 75	160 160	6 10	1,100,000 1,180,000	6,600,000 7,050,000	112,000 120,000	670,000 720,000	W2222 W2225
180	260	105	60	225	12	1,110,000	6,670,000	113,000	680,000	W3617
200	290	130	120	250	2	2,550,000	15,300,000	260,000	1,560,000	W4029
260	430	215	195	375	3	6,350,000	38,000,000	645,000	3,900,000	W52A07
280	350 430	69 220	69 140	320 375	_ 10	2,170,000 4,900,000	13,000,000 29,600,000	221,000 500,000	1,320,000 3,010,000	W5605 W5613
300	440	190	150	380	6	5,000,000	30,500,000	510,000	3,050,000	W6022
320	440	160	120	380	6	4,200,000	25,300,000	430,000	2,580,000	W6415
380	480	100	100	430	_	4,200,000	25,300,000	430,000	2,580,000	W7601
420	540	120	120	480	_	5,650,000	34,000,000	575,000	3,450,000	W8407

Drawing C
Divided by 1 place (outer ring)
Plastic sealed

Drawing D
Divided by 2 place (outer ring)
Retaining ring (shrinkage fit) type
(D ≧ 500mm)

	Drawing no.	Mass	Remarks
		kg	
		(approx.)	
	A C	9.42 10.3	
	Α	16.1	Inner ring outside dia. with oil groove
	В	33.0	Inner ring outside dia. with oil groove
•	В	140	Inner ring outside dia. with oil groove
	B B	18.7 106	Without oil hole, oil groove Inner ring outside dia. with oil groove
	В	101	Inner ring outside dia. with oil groove
•	В	72	Inner ring outside dia. with oil groove
	В	52.9	Without oil hole, oil groove
•	D	85.0	Without oil hole, oil groove

Catalog List & Appendix Table

CATALOG TITLES	CATALOG No.
●BALL AND ROLLER BEARINGS	
Ball and Roller Bearings	2202/C/E/I/P/S
Large Bearings	2250/E/P
Miniature and Extra Small Ball Bearings	3013/E
Miniature Molded Rubber Bearings	3014/E
Ball Bearings Shield and Seal Types	3015/E
Care and Maintenance of Bearings	3017/E/S/P
HL Bearings	3020/E
Bearings with Solid Grease	3022/E/S/P
Large Size, Long Operating Life Bearing-EA type	3024/E/P
Tapered Roller Bearings ECO-Top	3026/E/S/C
Self-Aligning Spherical Roller Bearings LH Series	3027/E/S/C
Bearings for Clean Environment	3028/E
Insulated Bearings-Resin Coated Type	3204/E
Type E Spherical Roller Bearings	3701/E
Sealed Self-Aligning Roller Bearings-WA Type	3702/E/S
Spherical Roller Bearings-UA Type	3710/E
HUB BEARINGS	4601/E
Aerospace Bearings	8102/E
Precision Rolling Bearings for Machine Tools	8401/E
Super High-speed Precision Bearings for Main Spindles of Machine Tools	8403/E
•NEEDLE ROLLER BEARINGS	
Needle Roller Bearings	2300/E/I/P/S
Miniature Cam Followers	3601/E
● CONSTANT VELOCITY JOINTS	
Constant Velocity Joints for Automobiles	5601/JE
TRI-Ball Joint / Constant Velocity Joints	5602/E
Constant Velocity Joints for Industrial Machines	5603/E
BEARING UNITS	
Bearing Units	2400/E/I/S
Bearing Units with Ductile Cast Iron Housing	3901/E
Bearing Units Steel Series	3902/E
Bearing Units Stainless Series	3903/E
Bearing Units Plastic Housing Series	3904/E
Triple-Sealed Bearings for Bearing Units	3905/E

CATALOG TITLES	CATALOG No.
•PLUMMER BLOCKS	
Plummer Blocks	2500E/S
PRECISION BALL SCREWS	
Precision Ball Screws	6000/E
Rolled Ball Screws	6206/E
●PARTS FEEDER	
Parts Feeder	7018/E
NTN Parts Feeder with Standard Attachments (for Bolts or Washer)	7016/E
OCLUTCHES	
One-way Clutches (Overrunning Clutches)	6402/E
PLAIN BEARINGS	
"BEAREE" NTN Engineering Plastics	5100/E
Miniature Plastic Sliding Screws	5112/E
NTN "BEARPHITE" Oil Impregnated Sintered Bearings	5202/E
Spherical Plain Bearings	5301/E
● HANDBOOK	
Bearing Units Handbook	9011/E/S
Rolling Bearings Handbook	9012/E
Needle Roller Bearings Handbook	9013/E
● GUIDE BOOK	
Parts Feeder Guide Book	7019/E
Automotive Products Guide Book	8021/E/D/F/C
New Products Guide	9208/E/C
Food Machinery Component Guide	9209/E
Product Catalog for Paper Manufacturing Machinery	9210/E
Steel Manufacturing Machinery Product Guide Book	9211/E
•ELECTRONIC CATALOG	
NTN Electronic Catalog (CD-ROM for Windows)	7903/E
NTN Autoparts Catalog (CD-ROM for Windows)	7905/E
Reference Kit Program -Bearing Interchange- (CD-ROM for Windows)	7907/E
• OTHERS	
Bearing Handling	9103/E/P/S

C:Chinese E:English F:French D:Germany I:Italian K:Korean S:Spanish T:Thai TC: Taipei Chinese

Note : The above are basic numbers. Renewal of the suffix by a revision.

Appendix table 1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-1

Sing	e row	radial	67				Ĺ		68						Ŭ	· ·			69 79	ei L									160	60							
Doub ball b	earing le row earing	radial s	0,						78										79											70							
bear	drical ngs lle rolle									N28	N38	-							N19	N29	NN39		11450	114.00						N10	N20	NN30	NN40				
Sphe	ngs rical re											NA48									239		NA59	NA69								230	240				
Non bea	ninal ring	Dia	amet	ter se	eries	7			Dia	ame	ter se	eries	8			_				Di:			ries	9						[Diam		serie	es O))		
l bo	re neter	Nominal outside	Dim	nensi	on se	eries	Nominal outside			D	imen	sion	serie	s			Nominal outside				Dim	ensi	on se	ries				Nominal outside					sion				
N	Di	diameter of	17	27	37	17~37	diameter	08	18	28	38	48	58	68	08	18~68	diamete	09	19	29	39	49	59	69	09	19~39	49~69	diameter of	00	10	20	30	40	50	60	00 10	 0∼60
Number	Dimension	bearing D	Nomi	nal wi	$\operatorname{dth} B$	Chamfer dimension y s min	bearing D		N	omir	nal w	idth.	В		ldime	mfer	bearing D		N	lomii	nal w	idth	В		dir	hamf	on	bearing D			Non	ninal	widt	hB		Cham	sion
	0.6	2	0.8	_	_	0.05	2.5	_	1	_	1.4	_	_	_	<u>γ</u> s	min 0.05	_	_	_	_	_	_	_	_	_	s mi —	_	_	_	_	_	_	_	_	_	γs m	
1	1.5		1	_	1.8	0.05	4	_	1.2	_	1.5	_	_	_	_	0.05	5	=	1.6	=	2.3	_	_	_		0.1 0.15		6	=	2.5	_	3	_	_	=	_ o	0.15
_	2.5		1.2	_	2 2.3	0.05 0.08		_	1.5 1.8	_	2.3 2.6	_	_	_	_	0.08		_	2.3 2.5	=	3 3.5	_	_	_		0.15 0.15		7 8	=	2.8 2.8	_	3.5	_	_	-).15).15
3			2	2.5 2.5	3	0.08		_	2 2.5	3.5	3 4		_	_	_	0.1	8 11	_	3	_	4 5	_	_	_	_	0.15 0.15		7 12		3 4	_	5 6		_		<u> </u>).15).2
5	5	8	2.5	2.5	3 3.5	0.08 0.1		_	3.5	4 5	5 6	_	_	_	_	0.15 0.15	13	_	4 5	_	6 7	10 10	_	_	_	0.2	0.15 0.15	14 17		5 6	_	7 9	_	_	-	— lo	0.2
7	7	11	2.5	3	3.5	0.1	14	_	3.5	5	6	-	_	_	_	0.15		_	5	_	7	10	_	_	_	0.3	0.15	19	-	6	8	10	_	_	-		0.3
8		12 14	2.5	_	3.5 4.5	0.1	16 17	_	4	5 5	6 6	8	=	=		0.2 0.2	19 20	_	6	=	9	11 11	_	_	=	0.3	0.2 0.3	22 24		7 7	9 10	11 12	14 15	19 20	25 27	— lo	0.3 0.3
00 01	12	15 18	3	_	4.5 5	0.1	19 21	=	5 5	6	7 7	9	\equiv	\equiv	_	0.3	22 24	_	6	8 8	10 10	13 13	16 16	22 22	_	0.3	0.3 0.3	26 28	7	8 8	10 10	12 12	16 16	21 21	29 29	0.3	0.3 0.3
02		21	4		5	0.2	24		5	6	7	9		_		0.3	28		7	8.5	10	13	18	23	_	0.3	0.3	32	8	9	11	13	17	23			0.3
03	20	23 27	4	_	5 5	0.2	32	4	5 7	6 8	7 10	9 12	16	22	0.3		30	7	7 9	8.5 11 11	10	13 17 17	18 23	23 30	0.3		0.3	35 42	8	10	12	16	18 22	30	40	0.3 0	0.6
/22 05 /28	25	32	4_		5	0.2	34 37 40	4 4 4	7 7 7	8	10 10 10	12	16 16 16	22 22 22	0.3 0.3 0.3	0.3	39 42 45	7 7 7	9	11	13 13 13	17 17 17	23 23 23	30 30 30	0.3 0.3 0.3	0.3	0.3 0.3 0.3	44 47 52	8 8 8	12 12 12	14 14 15	16 16 18	22 22 24	30 30 32	40	0.3 0 0.3 0 0.3 0	0.6
06		37	4	_	5	0.2	42	4	7	8	10	12	16	22	0.3		47	7	9	11	13	17	23	30	0.3		0.3	55	9	13	16	19	25	34		0.3 1	
/32		_	5	_	_	0.3	44	4	7 7	8	10	12	16 16	22	0.3	0.3	52 55	7	10 10	13	15 15	20 20	27 27	36 36	0.3		0.6	58 62	9	13 14	16 17	20 20	26 27	35 36	47	0.3 1 0.3 1	
08 09					=		52 58	4 4	7 7	8	10 10	12 13	16 18	22 23	0.3	0.3	62 68	8 8	12 12	14 14	16 16	22 22	30 30	40 40	0.3	0.6 0.6	0.6 0.6	68 75	9 10	15 16	18 19	21 23	28 30	38 40	50	0.3 1 0.3 1	
10			_	_	_	_	65	5	7	10	12	15	20	27	0.3		72	8	12	14	16	22	30	40	0.3		0.6	80	10	16	19	23	30	40		0.6	
11		_			=	=	72 78	7 7 7	9 10 10	11 12 13	13 14	17 18 20	23 24 27	30 32 36	0.3	0.3	80 85 90	9 9	13	16 16 16	19 19 19	25 25 25	34 34 34	45 45 45	0.3 0.3 0.6	1	1 1	90 95 100	11	18 18 18	22 22 22	26 26 26	35 35 35	46 46 46	63	0.6 1	.1
13 14			=	=	=	=	85 90	7 8	10	13	15 15	20	27	36	0.3		100	10	13 16	19	23	30	40	54		i	1	110	11 13	20	24	30	40	54			.1
15 16			_	_	_	_	95 100	8 8	10 10	13 13	15 15	20 20	27 27	36 36	0.3 0.3		105 110	10 10	16 16	19 19	23 23	30 30	40 40	54 54	0.6	1	1	115 125	13 14	20 22	24 27	30 34	40 45	54 60			l.1
17	85	_	_	_	_	=	110 115	9	13 13	16 16	19 19	25 25	34 34	45 45	0.3	1	120 125	11	18 18	22	26 26	35 35	46 46	63 63	0.6		1.1	130 140	14 16	22 24	27 30	34 37	45 50	60 67		0.6 1	.1
19	95	-	_	_	_	_	120	9	13	16	19	25	34	45	0.3	1	130	11	18	22	26	35	46	63	0.6	1.1	1.1	145	16	24	30	37	50	67	90		.5
20 21	105	=	=	=	_	=	125 130	9	13 13	16 16	19 19	25 25	34 34	45 45	0.3	1	140 145	13 13	20 20	24 24	30 30	40 40	54 54	71 71	0.6	1.1	1.1 1.1	150 160	16 18	24 26	30 33	37 41	50 56	67 75	109		.5
24	120		=	=	_	=	140 150	10 10 11	16 16	19	23	30	40 40	54 54	0.6	1	150 165	13	20	24	30 34	40 45	54 60	71 80		1.1	1.1	170	19	28 28	36 36	45 46	60 60		109	1 2 1 2 1 2 1.1 2	
26 28							165 175	11	18 18	22	26 26	35 35	46 46	63 63	0.6		180	16	24 24	30	37	50 50	67	90		1.5		200	22	33	42 42	52 53	69 69	95 65		1.1 2	
30	150		_		_	_	190 200	13 13	20	24	30	40 40	54 54	71 71	0.6 0.6	1.1	210 220	19	28 28	36 36	45 45	60 60	80	109 109	1	2	2	225 240	24	35 38	45 48	56 60	75 80	100	136		2.1
34	170	<u> </u>	_	_	_	_	215 225	14 14	22	27 27	34 34	45 45	60 60	80 80	0.6	1.1	230 250	19 22	28 33	36 42	45 52	60 69	80	109 125	1	2	2	260 280	28 31	42 46	54 60	67	90	122	160 180	1.5 2	2.1 2.1
38			_	_	_	_	240	16	24	30	37	50	67	90	1	1.5	260	22	33	42	52	69	95	125		2	2	290	31	46	60				180	2 2	2.1
44	200 220	_	=	=	_	=	250 270	16 16	24 24	30 30	37 37	50 50	67 67	90 90	1	1.5 1.5	280 300	25 25	38 38	48 48	60 60	80	109	145 145		2.1	2.1	310 340	34 37	51 56	66 72	90	118	160	200 218	2 2 2	2.1
	240 260		=	=	_	=	300 320	19 19	28 28	36 36	45 45	60 60	80 80	100 100	1	2	320 360	25 31	38 46	48 60	60 75		109 136	145 180			2.1 2.1	360 400	37 44	56 65	72 82				218 250		ŕ
	280 300		_	_	_	_	350	22	33 38	42 48	52 60	69 80	95 109	125	1.1	2 1	380 420	31 37	46 56	60	75 90	100	136	180	2 2 1	2.1	2.1 3	420 460	44 50	65 74	82 95	106	140	190	250 290		
64	320 340	_	_	_	_	_	380 400 420	25 25 25	38 38	48 48	60 60	80	109 109	145	1.5	2.1	440 460	37 37	56 56	72 72 72	90	118 118	160 160 160	218 218	2.1	3	з	480 520	50 57	74	95	121	160	218	290 325	4 4	,
	360		_	_	_	_	440	25	38	48	60	80	109	145	1.5	2.1	480	37	56	72	90	118	160	218	2.1	3		540	57	82	106	134	180	243	325	4 5	,
80	380 400	_		_	=	=	480 500	31 31	46 46	60 60		100	136	180	2	2.1	520 540	44 44	65 65	82 82	106	140	190	250		4	4	560 600	57 63	90	118	148	180 200	272	355	4 5 5	,
88	420 440 460	_		_	=	Ξ	520 540 580	31 31 37	46 46 56	60 60 72	75	100 100	136	180	2 2 1	2.1 2.1	560 600	50 50	65 74 74	95 95	118	160	190 218 218	250 290	4	4	4	620 650	63 67 71	94	122	157	212	280		5 6	,
	480			_			600	37	56	72		118 118					620 650	50	78				230			4 5	4 5	700							400		
/500	500 530	_			_	_	620 650	37 37	56 56	72 72	90	118 118	160	218	21	3	670 710	54 57	78 82	100 106	128 136	170 180	230 243	308 325	4	5 5	5	720 780	71 80	100 112	128 145	167 185	218 250	300 335	400 450	5 6	;
/560	560 600	_	_	=	_	_	680 730	37 42	56 60	72 78	90	118 128	160	218 236	2.1	3 3	750 800	60 63	85	112	140	190	258 272	345	5	5 5		820 870	82	115	150	195	258	355	462 488	6 6	;
/630	630		_	_	_	_	780	48	69	88	112	150	200	272	3	4	850						300 308			6	6	920	92	128	170	212	290	388	515 560		7.5 7.5
/710	670 710				=		820 870	48 50	69 74	88 95	118	150 160	218	290		4 4	900	78	106	140	180	243	325	438	5	6		1030	103	140	185	236	315	438	580	6 7	7.5
	750 800		_	_	=	=	920 980	54 57	78 82	100	128 136	180	230 243	308 325	4	4 5 5	1000 1060	82	115	145 150	195	250 258	335 355	450 462	6 6	6 6	6 6	1150	112	155	200	250 258	335 345	462 475	615 630	7.5 7 7.5 7	7.5 7.5
	850 900			_	_	_	1030 1090	57 60	82 85	106 112	136 140	180 190	243 258	325 345	4 5	5	1120 1180	85 88	118 122	155 165	200	272 280	365 375	488 500	6	6 6	6 6	1220	118 122	165 170	212 218	272 280	365 375	500 515	670 690	7.5 7 7.5 7	.5
/950	950 1000	_			=		1150 1220	63 71	63	118	150	200	272	355	5	5 5 5 6 6	1250	95 103	132	175	224	300	400 438	545	6	7.5 7.5	7.5	1300	132	180	236	300	412	560	730	7.5 7	.5 7.5 7.5
/1060	1060	-	_	_	-	_	1280	71			165 165						1400	109	150	195	250	335	462	615	7.5	7.5	7.5	1500	140	195	250	325	438	600	800	9.5	9.5
/1180	1120 1180	_			=	=	1360 1420	78 78	106	140	180 180	243	325	438	5	6 6	1540	109 115	160	206	272	355	488	650		7.5	7.5	1660	155	212	272	355	475	615 650	825 875	9.5 9.5 9	9.5
/1320	1250	_			_		1500 1600	88	122	165	185 206	280	375	500	6	6 6 6 7.5	1720	122 128	175	230	300	400	515 545	690 710	7.5		7.5 7.5	1750 1850		218 230	290 300	375 400	500 530	_	-	— 9 — 1	9.5 2
	1400 1500						1700 1820	95			224		400	545	6		1820 1950				315 335					9.5 9.5		1950 2120		243 272							2
/1600	1600 1600 1700	_			_		1950 2060		155	200	265 272	345	_	Ξ	_	7.5	2060 2180	_	200	265	335 345 355	462		=	_	9.5 9.5 9.5	9.5	2120 2240 2360		272 280 290	365	475	630			— 1	2
/1800	1800 1900	_			Ξ	_	2180 2300			218	290	375	_	Ξ	—	9.5	2300 2430	_	218	290	375 400	500		=	_	12 12		2500		308				\equiv			5
	2000		_	_	_		2430	_			325		_	_		9.5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
							-																														_

Appendix table 1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-2

ball b	e row earing	ıs										62 72		1,22	1,32						63 73		623 43	633 53				64 74		
Cylin beari	earing drical i ngs	is roller				NN31						12 N2		22	32 N32						13 N3		23	33 N33				N4		
beari	rical re					231	241							222	232						213		223							
Non bea	ninal ring re			Dian	nete		ies 1	ı				Dia	ame	ter s		2				Dia	ame	er s		3			Diar	nete		
diam	ι	Nominal outside diameter	01				serie			Nominal outside diameter	00	00		nensi			00	00 40	Nominal outside diameter	00		- · ·		serie		00 00	Nominal outside diameter		nensi	
Number	Dimension	of bearing	01	11 Non	21 ninal	31 widt	$oxed{f 41}$ th B	01	11~41 Chamfer dimension	of bearing	82	02 Non	12 nina	22 I wid	$oxed{132}$ th B	42	Cha	02~42 mfer nsion	of bearing	83 N	03 Iomir	13 nal w	23 ridth	33 B	Cha	03~33 Imfer nsion	bearing	Non wig	24 linal oth	Chamfer dimension y s min
	_	<i>D</i>		=					ys min	<i>D</i>				_			γs —	min	<i>D</i>	_					γs —	min	<i>D</i>	_	<u> </u>	_
2	=	_	_	=	_	=	_	_	_	_	=	_	=	_	=	=	=	_	_	_	_	_	=	_	=	_	_	_	_	=
3	3		_	_	_	_	_	_		10	2.5	4	_	_	5	_	0.1	0.15	13	_	5	_	_	7	_	0.2	_	_	_	_
4 5 6	4 5 6		_	Ξ	_	=	_	_	=	13 16 19	3 3.5 4	5 5 6	=	_	7 8 10	=	0.15 0.15 0.2		16 19 22	=	5 6 7	=	_ _ 11	9 10 13	=	0.3 0.3 0.3	_	_	_	=
7	7	_	_	_	_	_	_	_	_	22	5	7	_	_	11	_	0.3	0.3	26	-	9	_	13	15	_	0.3	_	_	_	_
8 9 00	8 9 10		_	Ξ	=		_	_	=	24 26 30	5 6 7	8 8 9	Ξ		12 13 14.3		0.3 0.3 0.3	0.3 0.3 0.6	28 30 35	9	9 10 11	=	13 14 17	15 16 19	0.3	0.3 0.6 0.6	30 32 37	10 11 12	14 15 16	0.6 0.6 0.6
01 02	12 15	_	_	=	_	=	_	_	_	32 35	7 8	10 11	=		15.9 15.9		0.3	0.6 0.6	37 42	9	12 13	_	17 17	19 19	0.3	1	42 52	13 15	19 24	1.1
03 04 /22	17 20 22	_	_	_	_		_	_	_	40 47 50	8 9 9	12 14 14	=	18	20.6	27	0.3	0.6	47 52 56	10 10 11	14 15	_	19 21 21	22.2	0.6	1.1	62 72	17 19	29 33	1.1 1.1
05 /28	25 28			Ξ				_	=	52 58	10 10	15 16	Ξ		20.6 20.6 23		0.3 0.3 0.6	1 1 1	62 68	12 13	16 17 18		24 24	25 25.4 30	0.6 0.6 0.6	1.1 1.1 1.1	80	21	36	1.5
06 /32	30 32	_	_	_	_	_	_	_	_	62 65	10 11	16 17	_		23.8 25	32 33	0.6 0.6	1	72 75	13 14	19 20	_	27 28	30.2 32	0.6	1.1 1.1	90	23	40	1.5
07 08 09	35 40 45			Ξ	=			_	_	72 80 85	12 13 13	17 18 19	Ξ	23	27 30.2 30.2		0.6 0.6 0.6	1.1 1.1 1.1	80 90 100	14 16 17	21 23 25		31 33 36		0.6 1 1	1.5 1.5 1.5	100 110 120	25 27 29	43 46 50	1.5 2 2
10	50	_	_	_	_	_	_	_	_	90	13	20	_	23	30.2	40	0.6	1.1	110	19	27	_	40	44.4	1 1	2	130	31	53	2.1 2.1
11 12 13	55 60 65	_	_	Ξ	=	=	_	_	=	100 110 125	14 16 18	21 22 23	Ξ	25 28 31	38.1	50 56	1 1 1	1.5 1.5 1.5	120 130 140	24	29 31 33	=	43 46 48	54 58.7	1.1	2 2.1 2.1	140 150 160	33 35 37	64	2.1 2.1
14 15	70 75			_	_			_		125	18	24 25	_	31	39.7	56 56	1	1.5	150 160	25 27	35	_	51 55	63.5 68.3		2.1	180	42 45	74 77	3
16 17 18	80 85 90	150	_	Ξ	_	_	60	_	_ _ 2	140 150 160	19 21 22	26 28 30	=	36	44.4 49.2 52.4	65	1 1.1 1.1	2 2 2	170 180 190	28 30 30	39 41 43	_	58 60 64	68.3 73 73		2.1 3 3	200 210 225	48 52 54	80 86 90	3 4 4
19	95	160	_	_	_	_	65	_	2	170	24	32	_	43	55.6	75	1.1	2.1	200	33	45	_	67	77.8	2	3	240	55	95	4
20 21 22	100 105 110	175	21 22 22	30 33 33	39 42 42	52 56 56	65 69 69	1.1 1.1 1.1	2 2	180 190 200	25 27 28	34 36 38	=	50	60.3 65.1 69.8	85	1.5 1.5 1.5	2.1 2.1 2.1	215 225 240	36 37 42	47 49 50	51 53 57	77	87.3 92.1		3 3	250 260 280	58 60 65	98 100 108	4 4 4
24 26		200 210	25 25	38 38	48 48	62 64	80 80	1.5 1.5	2	215 230	=	40 40	42 46		76 80	95 100	=	2.1	260 280	44 48	55 58	62 66	86 93		3	3	310 340	72 78	118 128	5 5
28 30 32		225 250 270	27 31 34	40 46	50 60	68 80	85 100	1.5	2.1	250 270 290	=	42 45	50 54	73	88 96 104	109 118	=	3 3 3	300 320	50	62 65	70 75	102 108	118 128	4_	4	360 380	82 85 88	132 138	5
34 36	170	280	34 37	51 51 56	66 66 72	86 88 96	109 109 118	2 2 2.1	2.1 2.1 3	310 320	=	48 52 52	58 62 62	86	110 112	128 140 140	=	4	340 360 380	_	68 72 75	79 84 88	114 120 126	136 140 150	=	4 4 4	400 420 440	92 95	142 145 150	5 5 6
38 40		320 340	42 44	60 65	78 82	104 112	128 140	3	3	340 360	_	55 58	65 70		120 128	150 160	_	4	400 420	_	78 80	92 97	132 138	155 165	_	5 5	460 480	98 102	155 160	6
44 48 52		370 400 440	48 50 57	69 74 82	88 95 106	120 128 144	150 160 180	3 4 4	4 4 4	400 440 480	=	65 72 80	78 85 90	120	144 160 174	180 200 218		4 4 5	460 500 540	=	88 95 102	106 114 123	145 155 165	180 195 206		5 5 6	540 580 620	115 122 132	180 190 206	6 6 7.5
56	280	460	57	82	106	146	180	4	5	500	_	80	90	130	176	218	_	5	580	_	108	132	175	224	_	6	670	140	224	7.5
	320	500 540 580		100	118 128 140	176		5 5 5	5 5 5	540 580 620	=	92 92	105 118	140 150 165	208 224	243 258 280	=	5 5 6	620 670 710		112	140 155 165	200	258	=	7.5	710 750 800	155	250	
	360	600			140 140		243	5	5	650 680	_	95 95	122	170 175	232	300	_	6	750 780	_		170 175		300	_		850 900		300	9.5
80 84	400	650 700	80 88	112 122		200 224	250 280		6	720 760 790		103	140 150	185 195 200	256 272	315 335 345		6 7.5	820 850 900		136 136	185 190 200	243 250	308 315		7.5 9.5	950 980 1030	200 206	315 325	12 12
92	460	760	95	132	175	240	300	6	7.5	830	_	118	165	212	296	365	_	7.5	950	_	155	212	280	365	_	9.5	1060	218	345	12
/500 /530	500 530	790 830 870	106 109	145 150	190 195	264 272	325 335	6 7.5 7.5	7.5 7.5	920 980	Ξ	125 136 145	185 200	224 243 258	336 355	388 412 450		7.5 9.5	980 1030 1090		170 180	218 230 243	300 325	388 412		12 12	1150 1220	230 236 250	375 400	15 15
/560	560	920 980	115	160	206	280	355	7.5 7.5	7.5	1030 1090	=	150 155		272 280		475 488	=		1150 1220	=	190 200	258 272			=			258 272		15 15
/670	670	1030 1090	136	185	243	336	412	7.5 7.5	7.5	1150 1220 1280	=	175	243	300 315 325	438	515 545	=		1280 1360	_	206 218	300	400	515	=	15	1420 1500	280 290		15 15
/750	750	1150 1220 1280	150	206	272	365	475	9.5 9.5 9.5	9.5	1280 1360 1420		195	265	325 345 355	475	560 615 615		12 15 15	1420 1500 1600		224 236 258	325	438	560		15 15 15				
/850	850	1360 1420	165	224	290	400	500	12 12	12	1500 1580	=	206 218	280 300	375 388	515 515	650 670	_	15 15	1700 1780	_		375	488	630	_	19 19	_	_	_	_
/950 /1000	950 1000	1500 1580 1660	175 185	243 258	315 335	438 462	545 580	12 12 12	12	1660 1750	=	230 243	315	412 425	530	710 750		15 15	1850 1950	=	290	400 412	515	670 710		19	_	=	=	
/1120	1120	1750	_	280	365	475	630	_	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
/1250 /1320	1180 1250 1320	1950 2060	_	290 308 325	400 425	500 530 560	710 750	=	15 15 15		Ξ	_	Ξ	=		=		=	=	=				=			_		=	
/1400	1400			345		580	775	_	19 19		_	_	_	_	_	_		_	_	_				_					_	_
. 300																														

Appendix table 2: Comparison of SI, CGS and gravity units-1

Unit system Quantity	Length ${\cal L}$	Mass M	Time T	Acceleration	Force	Stress	Pressure	Energy
SI	m	kg	S	m/s²	N	Pa	Pa	J
CGS system	cm	g	s	Gal	dyn	dyn/cm²	dyn/cm²	erg
Gravitation system	m	kgf · s²/m	S	m/s²	kgf	kgf/m²	kgf/m²	kgf · m

Appendix table 3: SI-customary unit conversion table-1

Quantity	Unit designation	Symbol	Conversion rate to SI	SI unit designation	Symbol
	Degree	•	π/180		
Angle	Minute	,	π/10 800	Radian	rad
	Second	" (sec)	π /648 000		
	Meter	m	1		
Length	Micron	μ	10 ⁻⁶	Meter	m
	Angstrom	Å	10 ⁻¹⁰		
	Square meter	m²	1		
Area	Are	а	10 ²	Square meter	m²
	Hectare	ha	10⁴	·	
	Cubic meter	m³	1		
Volume	Liter	R.L	10 ⁻³	Cubic meter	m³
	Kilogram	kg	1		
Mass	Ton	t t	10 ³	Kilogram	kg
Mass	Kilogram force / square second per meter	kgf·s²/m	9.806 65	- Kilogram	l "s
	Second	kyi s/iii S	1		
	Minute	min	60		
Time	Hour		3 600	Second	s
		h d	86 400		
	Day		86 400		
Speed	Meters per second	m/s	1 050/0 000	Meters per second	m/s
	Knot	kn	1 852/3 600		
Frequency and vibration		s ⁻¹ (pps)	1	Hertz	Hz
	Revolutions per minute (rpm)	rpm(r/min)	1/60	Per second	S ⁻¹
Angular speed	Radians per second	rad/s	1	Radians per second	rad/s
Acceleration	Meters per square second	m/s²	1	Meters per second square	m/s²
	G	G	9.806 65	·	
	Kilogram force	kgf	9.806 65		
Force	Ton force	tf	9 806.65	Newton	N
	Dyne	dyn	10.5		
	Kilogram force / meter	kgf · m	9.806 65	Newton meter	N·m
Inertia moment	Kilogram force / meter / square second	kgf·m·s²	9.806 65	Kilogram / square meter	kg · m²
Stress	Kilogram force per square meter	kgf/m²	9.806 65	Pascal or newton per square meter	Pa or N/m ²
	Kilogram force per square meter	kgf/m²	9.806 65		
	Meter water column	mH₂O	9 806.65		
Pressure	Meter of mercury	mHg	101 325/0.76	Pascal	Pa
riessuie	Torr	Torr	101 325/760	r ascai	Fa
	Atmosphere	atm	101 325		
	Bar	bar	10 ⁵		
	Erg	erg	10 ⁻⁷		
	IT calorie	саlıт	4.186 8		
Energy	Kilogram force / meter	kgf · m	9.806 65	Joule	J
- 3,	Kilowatt hour	kW · h	3.600×10 ⁶		
	Metric horsepower per hour	PS · h	2.647 79×10 ⁶		
	Watt	W	1		
Power rate and power	Metric horsepower	PS	735.5	Watt	W
1 Ovor rate and power	Kilogram force / meter per second	kgf · m/s	9.806 65	Trans	
	miogram force / meter per second	ryi III/S	0.000 00		

Appendix table 2: Comparison of SI, CGS and gravity units-2

Unit system Quantity	Power rate	Temperature	Viscosity	Dynamic viscosity	Magnetic flux	Flux density	Magnetic field strength
SI	W	K	Pa · s	m²/s	Wb	Т	A/m
CGS system	erg/s	°C	Р	St	Mx	Gs	Oe
Gravitation system	kgf · m/s	°C	kgf · s/m²	m²/s	_	_	_

Appendix table 3: SI-customary unit conversion table-2

Quantity	Unit designation	Symbol	Conversion rate to SI	SI unit designation	Symbol
	Poise	Р	10 ⁻¹		
Viscosity	Centipoise	сР	10 ⁻³	Pascal second	Pa · s
	Kilogram force / square second per meter	kgf · s/m²	9.806 65		
Dynamic viscosity	Stoke	St	10 ⁻⁴	Square meter per second	m²/s
Dynamic viscosity	Centistoke	cSt	10 ⁻⁶	Square meter per second	11175
Temperature	Degree	°C	+273.15	Kelvin	К
Radioactive	Curie	Ci	3.7×10 ¹⁰	Becquerel	Bq
Dosage	Roentgen	R	2.58×10 ⁻⁴	Coulombs per kilogram	C/kg
Absorption dosage	Rad	rad	10 ⁻²	Gray	Gy
Dosage equivalent	Rem	rem	10 ⁻²	Sievert	Sv
Magnetic flux	Maxwell	Mx	10 ⁻⁸	Weber	Wb
Flux density	Gamma	γ	10 ⁻⁹	Tesla	т.
riux derisity	Gauss	Gs	10 ⁻⁴	i esia	'
Magnetic field strength	Oersted	Oe	$10^{3}/4 \pi$	Amperes per meter	A/m
Quantity of electricity	Coulomb	С	1	Coulomb	С
Potential difference	Volt	V	1	Volt	V
Electric resistance	Ohm	Ω	1	Ohm	Ω
Current	Ampere	Α	1	Ampere	A

Appendix table 4: Tenth power multiples of SI unit

Multiples of	Pre	efix	Multiples of	Pre	efix
unit	Name	Symbol	unit	Name	Symbol
10 ¹⁸	Exa	E	10 ⁻¹	Deci	d
10 ¹⁵	Peta	P	10 ⁻²	Centi	С
10 ¹²	Tera	T	10 ⁻³	Mili	m
10°	Giga	G	10 ⁻⁶	Micro	μ
10 ⁶	Mega	M	10 ⁻⁹	Nano	n
10 ³	Kilo	k	10 ⁻¹²	Pico	р
10 ²	Hecto	h	10 ⁻¹⁵	Femto	f
10	Deca	da	10 ⁻¹⁸	Ato	а

Appendix table 5: Dimensional tolerance for shafts

div	meter ision	a13	c12	d6	e6	e13	f5	f6	g5	g6
over	nm incl.	high low	high low	high low	high low	high low	high low	high low	high low	high low
3	6	- 270 - 450	- 70 - 190		- 20 - 28			-		
6	10					- 25 - 245				
10	18					- 32 - 302				
18	30	<u> </u>		<u> </u>	<u> </u>	<u> </u>	-20 -29	<u> </u>	- 7 -16	− 7 − 20
30	40	– 310 – 700		_ 80 _ 96	_ 50 _ 66	- 50 - 440	-25 -36	_ 25 _ 41	_ 9 _20	- 9 - 25
40	50	<u> </u>		00 00	00 00	00 440	20 00	20 11	0 20	0 20
50	65	- 340 - 800	-140 - 440	-100 -119	- 60 - 79	- 60 - 520	-30 - 43	- 30 - 49	-10 -23	-10 - 29
65	80	<u> </u>	<u>-150 - 450</u>	100 110	00 70	00 020	33 .3			
80	100		-170 - 520	-120 -142	- 72 - 94	- 72 - 612	-36 -51	- 36 - 58	-12 -27	-12 - 34
100	120	<u> </u>	<u>-180 - 530</u>	1.2						
120	140	- 460 -1 090	-200 - 600	445 470	05 440	05 745	40 04	40 00		4.4
140	160	- 520 -1 150		-145 -170	- 85 -110	- 85 - 715	-43 -61	- 43 - 68	-14 -32	-14 - 39
160	180	<u> </u>	-230 - 630							
180 200	200	- 660 -1 380	$\begin{vmatrix} -240 & -700 \\ -260 & -720 \end{vmatrix}$	170 100	100 100	100 000	F0 70	F0 70	15 05	45 44
200	225 250	- 740 -1 460 - 820 -1 540	$\begin{vmatrix} -260 & -720 \\ -280 & -740 \end{vmatrix}$	-170 -199	- 100 - 129	-100 - 820	-50 -70	- 50 - 79	-15 -35	-15 - 44
250	280	- 920 -1 730	-300 - 820							
280	315	-1 050 -1 860	-330 - 850	-190 -222	-110 -142	-110 - 920	-56 - 79	- 56 - 88	-17 -40	-17 - 49
315	355	-1 200 -2 090	-360 - 930							
355	400	-1 350 -2 240	-400 - 970	-210 -246	-125 -161	-125 -1 015	-62 −87	- 62 - 98	-18 -43	-18 - 54
400	450	-1 500 -2 470	-440 -1 070							
450	500	-1 650 -2 620		-230 -270	-135 -175	-135 -1 105	-68 -95	− 68 − 108	-20 -47	-20 - 60
500	560	. 555 2 525	100 1110							
560	630			-260 -304	-145 -189			− 76 − 120		-22 - 66
630	710			000 611	100 615			00 400		0.4 =:
710	800			-290 -340	-160 -210			- 80 -130		-24 - 74
800	900			000 070	170 000			00 110		00 00
900	1 000			-320 -376	-170 -226			− 86 − 142		-26 - 82
1 000	1 120			050 440	105 001			00 101		00 04
1 120	1 250			-350 -416	-195 -261			− 98 − 164		-28 - 94
1 250	1 400			-300 -469	-220 -298			-110 -188		-30 -109
1 400	1 600	_		390 -468	-220 -298			-110 -188		-30 - 108

	meter ision		j5	j	s5	j	j6	j	s6		j7	k4	1	k	5	k(6	m	15
over n	nm incl.	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low
3	6	+3	- 2	+ 2.5	- 2.5	+ 6	- 2	+ 4	– 4	+ 8	– 4	+ 5	+1	+ 6	+1	+ 9	+1	+ 9	+ 4
6	10	+4	- 2	+ 3	- 3	+ 7	- 2	+ 4.5	- 4.5	+10	- 5	+ 5	+1	+ 7	+1	+10	+1	+12	+ 6
10	18	+5	- 3	+ 4	- 4	+ 8	- 3	+ 5.5	- 5.5	+12	- 6	+ 6	+1	+ 9	+1	+12	+1	+15	+ 7
18	30	+5	- 4	+ 4.5	- 4.5	+ 9	- 4	+ 6.5	- 6.5	+13	– 8	+ 8	+2	+11	+2	+15	+2	+17	+ 8
30 40	40 50	+6	- 5	+ 5.5	- 5.5	+11	- 5	+ 8	- 8	+15	-10	+ 9	+2	+13	+2	+18	+2	+20	+ 9
50 65	65 80	+6	— 7	+ 6.5	- 6.5	+12	- 7	+ 9.5	- 9.5	+18	-12	+10	+2	+15	+2	+21	+2	+24	+11
80 100	100 120	+6	– 9	+ 7.5	- 7.5	+13	- 9	+11	-11	+20	—15	+13	+3	+18	+3	+25	+3	+28	+13
120 140 160	140 160 180	+7	-11	+ 9	- 9	+14	-11	+12.5	-12.5	+22	—18	+15	+3	+21	+3	+28	+3	+33	+15
180 200 225	200 225 250	+7	-13	+10	-10	+16	-13	+14.5	-14.5	+25	-21	+18	+4	+24	+4	+33	+4	+37	+17
250 280	280 315	+7	-16	+11.5	-11.5	+16	-16	+16	-16	+26	-26	+20	+4	+27	+4	+36	+4	+43	+20
315 355	355 400	+7	-18	+12.5	-12.5	+18	-18	+18	-18	+29	-28	+22	+4	+29	+4	+40	+4	+46	+21
400 450	450 500	+7	-20	+13.5	-13.5	+20	-20	+20	-20	+31	-32	+25	+5	+32	+5	+45	+5	+50	+23
500 560	560 630	_	_	_	_	_	_	+22	-22	_	_	_	_	_	_	+44	0	_	_
630 710	710 800	_	_	-	_	_	_	+25	-25	_	_	_	_	_	_	+50	0	_	_
800 900	900 1 000	_	_	_		_	_	+28	-28	_	_	_	_	_	_	+56	0	_	_
1 000 1 120	1 120 1 250	_	_	_	_	_	_	+33	-33	_	_	_	_	_	_	+66	0	_	_
1 250 1 400	1 400 1 600	_	_	_	_	_	_	+39	-39	_	_	_	_	_	_	+78	0	_	_

Unit	μm
------	----------

	h4		h	5		h6		h7		h8		h9		h10		h11		h13		js4	Diamete m	r division
hig	gh low	v r	nigh	low	higl	h low	high	low	high	low	high	low	high	low	high	low	higl	n low	high	low	over	incl.
0	- 4 - 4 - 5	.	•	- 5 - 6 - 8	0	- 8 - 9 -11	0 0 0	- 12 - 15 - 18	0 0 0	- 18 - 22 - 27	0 0	- 30 - 36 - 43	0 0	- 48 - 58 - 70	0 0	- 75 - 90 -110	0 0	-180 -220 -270	+ 2 + 2 + 2.5	- 2 - 2 - 2.5	3 6 10	6 10 18
0	- 6	- 1	-	- 9	0	-13	0	- 21	0	- 33	0	- 52	0	- 84	0	-130	0	-330	+ 3	- 3	18	30
0	- 7	,	0 -	- 11	0	-16	0	- 25	0	- 39	0	- 62	0	-100	0	-160	0	-390	+ 3.5	- 3.5	30 40	40 50
0	– 8	3	0 -	-13	0	-19	0	- 30	0	- 46	0	- 74	0	-120	0	-190	0	-460	+ 4	- 4	50 65	65 80
0	-10)	0 -	-15	0	-22	0	- 35	0	- 54	0	- 87	0	-140	0	-220	0	-540	+ 5	- 5	80 100	100 120
0	-12	2	0 -	-18	0	-25	0	- 40	0	– 63	0	-100	0	-160	0	-250	0	-630	+ 6	- 6	120 140 160	140 160 180
0	-14	ļ.	0 -	-20	0	-29	0	- 46	0	- 72	0	-115	0	-185	0	-290	0	-720	+ 7	- 7	180 200 225	200 225 250
0	-16	5	0 -	-23	0	-32	0	- 52	0	- 81	0	-130	0	-210	0	-320	0	-810	+ 8	- 8	250 280	280 315
0	-18	3	0 -	-25	0	-36	0	- 57	0	- 89	0	-140	0	-230	0	-360	0	-890	+ 9	- 9	315 355	355 400
0	-20)	0 -	-27	0	-40	0	– 63	0	- 97	0	-155	0	-250	0	-400	0	-970	+10	-10	400 450	450 500
_	_		_	_	0	-44	0	- 70	0	-110	0	-175	0	-280	0	-440	0	_	_	_	500 560	560 630
_	_		_	_	0	-50	0	- 80	0	-125	0	-200	0	-320	0	-500	0	_	_	_	630 710	710 800
_	-		-	-	0	-56	0	- 90	0	-140	0	-230	0	-360	0	-560	0	_	_	_	800 900	900 1 000
_	-		-	-	0	-66	0	-105	0	-165	0	-260	0	-420	0	-660	0	_	_	_	1 000 1 120	1 120 1 250
_	_		_	_	0	-78	0	-125	0	-195	0	-310	0	-500	0	-780	0	_	_	_	1 250 1 400	1 400 1 600

Unit μm

	m6	n	5	ne	6	p	5	ŗ	06	r6		r7	ı	Basic t	oleran	се	Diameter division mm	
high	low	high	low	high	low	high	low	high	low	high low	,	high low	IT2	IT3	IT5	IT7	over	incl.
+ 12 + 18 + 18 + 2	5 + 6 3 + 7	+13 +16 +20 +24	+ 8 +10 +12 +15	+ 16 + 19 + 23 + 28	+ 8 +10 +12 +15	+17 +21 +26 +31	+12 +15 +18 +22	+ 20 + 24 + 29 + 35	+ 12 + 15 + 18 + 22	+ 23 + 15 + 28 + 15 + 34 + 23 + 41 + 28	9	+ 27 + 15 + 34 + 19 + 41 + 23 + 49 + 28	1.5 1.5 2 2.5	2.5 2.5 3 4	5 6 8 9	12 15 18 21	3 6 10 18	6 10 18 30
+ 2	5 + 9	+28	+17	+ 33	+17	+37	+26	+ 42	+ 26	+ 50 + 34	4	+ 59 + 34	2.5	4	11	25	30 40	40 50
+ 30	+11	+33	+20	+ 39	+20	+45	+32	+ 51	+ 32	+ 60 + 4 + 62 + 43	- 1	+ 71 + 41 + 73 + 43	3	5	13	30	50 65	65 80
+ 39	5 +13	+38	+23	+ 45	+23	+52	+37	+ 59	+ 37	+ 73 + 5 ² + 76 + 5 ⁴	- 1	+ 86 + 51 + 89 + 54	4	6	15	35	80 100	100 120
+ 40	+15	+45	+27	+ 52	+27	+61	+43	+ 68	+ 43	+ 88 + 68 + 90 + 68 + 93 + 68	5	+103 + 63 +105 + 65 +108 + 68	5	8	18	40	120 140 160	140 160 180
+ 46	5 +17	+51	+31	+ 60	+31	+70	+50	+ 79	+ 50	+106 + 77 +109 + 80 +113 + 84	0	+123 + 77 +126 + 80 +130 + 84	7	10	20	46	180 200 225	200 225 250
+ 52	2 +20	+57	+34	+ 66	+34	+79	+56	+ 88	+ 56	+126 + 94 +130 + 98		+146 + 94 +150 + 98	8	12	23	52	250 280	280 315
+ 5	7 +21	+62	+37	+ 73	+37	+87	+62	+ 98	+ 62	+144 +108 +150 +114	- 1	+165 +108 +171 +114	9	13	25	57	315 355	355 400
+ 60	3 +23	+67	+40	+ 80	+40	+95	+68	+108	+ 68	+166 +126 +172 +132		+189 +126 +195 +132	10	15	27	63	400 450	450 500
+ 70	+26	_	_	+ 88	+44	_	-	+122	+ 78	+194 +156 +199 +156		+220 +150 +225 +155	-	_	_	70	500 560	560 630
+ 80	+30	_	_	+100	+50	_	_	+138	+ 88	+225 +175 +235 +185		+255 +175 +265 +185	-	_	_	80	630 710	710 800
+ 90	+34	_	_	+112	+56	_	-	+156	+100	+266 +210 +276 +220		+300 +210 +310 +220	_	_	_	90	800 900	900 1 000
+106	6 +40	_	-	+132	+66	-	-	+186	+120	+316 +250 +326 +260	- 1	+355 +250 +365 +260	_	-	-	105	1 000 1 120	1 120 1 250
+126	+48	_	-	+156	+78	_	-	+218	+140	+378 +300 +408 +330		+425 +300 +455 +330	ı	-	_	125	1 250 1 400	1 400 1 600

Appendix table 6: Dimensional tolerance for housing bore

Diam divis	ion	E7		E ⁻	10	E	11	Е	12	F	- 6	F	7	F	8	G	6	G	7	H6
over		high lov	v	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high low
3 6 10 18	6 10 18 30	+ 32 + + 40 + + 50 + + 61 +	25 32	+ 68 + 83 +102 +124	+ 25 + 32	+ 95 +115 +142 +170	+ 25 + 32	+175 +212	+ 25 + 32		+ 10 + 13 + 16 + 20	+ 28 + 34	+ 10 + 13 + 16 + 20	+ 35 + 43	+ 10 + 13 + 16 + 20	+ 12 + 14 + 17 + 20	+ 5 + 6	+ 16 + 20 + 24 + 28	+ 4 + 5 + 6 + 7	+ 8 0 + 9 0 +11 0 +13 0
30 40	40 50	+ 75 +	50	+150	+ 50	+210	+ 50	+300	+ 50	+ 41	+ 25	+ 50	+ 25	+ 64	+ 25	+ 25	+ 9	+ 34	+ 9	+16 0
50 65	65 80	+ 90 +	60	+180	+ 60	+250	+ 60	+360	+ 60	+ 49	+ 30	+ 60	+ 30	+ 76	+ 30	+ 29	+10	+ 40	+10	+19 0
80 100	100 120	+107 +	72 -	+212	+ 72	+292	+ 72	+422	+ 72	+ 58	+ 36	+ 71	+ 36	+ 90	+ 36	+ 34	+12	+ 47	+12	+22 0
120 140 160	140 160 180	+125 +	35	+245	+ 85	+335	+ 85	+485	+ 85	+ 68	+ 43	+ 83	+ 43	+106	+ 43	+ 39	+14	+ 54	+14	+25 0
180 200 225	200 225 250	+146 +1	00 -	+285	+100	+390	+100	+560	+100	+ 79	+ 50	+ 96	+ 50	+122	+ 50	+ 44	+15	+ 61	+15	+29 0
250 280	280 315	+162 +1	10	+320	+110	+430	+110	+630	+110	+ 88	+ 56	+108	+ 56	+137	+ 56	+ 49	+17	+ 69	+17	+32 0
315 355	355 400	+182 +1	25	+355	+125	+485	+125	+695	+125	+ 98	+ 62	+119	+ 62	+151	+ 62	+ 54	+18	+ 75	+18	+36 0
400 450	450 500	+198 +1	35 -	+385	+135	+535	+135	+765	+135	+108	+ 68	+131	+ 68	+165	+ 68	+ 60	+20	+ 83	+20	+40 0
500 560	560 630	+215 +1	45	_	-	-	_	_	_	+120	+ 76	+146	+ 76	+186	+ 76	+ 66	+22	+ 92	+22	+44 0
630 710	710 800	+240 +1	60	_	-	ı	_	_	_	+130	+ 80	+160	+ 80	+205	+ 80	+ 74	+24	+104	+24	+50 0
800 900	900 1 000	+260 +1	70	-	-	ı	_	_	_	+142	+ 86	+176	+ 86	+226	+ 86	+ 82	+26	+116	+26	+56 0
1 000 1 120		+300 +1	95	-	-		_	-	_	+164	+ 98	+203	+ 98	+263	+ 98	+ 94	+28	+133	+28	+66 0
1 250 1 400		+345 +2	20	_	_	_	_	_	_	+188	+110	+235	+110	+305	+110	+108	+30	+155	+30	+78 0
1 600 1 800	1 800 2 000	+390 +2	40	-	-	ı	-	_	-	+212	+120	+270	+120	+350	+120	+124	+32	+182	+32	+92 0

Unit μ m Diameter K6 K7 M6 M7 N7 P6 **P7** R6 R7 N6 division high low high high high high high high high over incl high low low low low high low low low low low 20 24 29 23 28 ++ 5 7 9 6 7 9 10 18 +212 15 15 18 16 20 21 26 9 25 31 5 10 3 4 19 12 16 13 34 10 9 23 16 20 12 0 5 15 18 30 24 31 37 17 21 15 18 30 40 40 +3 -13+ 7 18 20 0 25 -12 28 8 33 21 37 17 42 29 25 50 35 60 50 65 30 65 54 21 5 0 30 -14 33 9 39 26 45 21 32 80 37 56 62 100 44 66 38 73 +4 - 18+10 25 -1045 30 52 24 6 28 0 35 -16 38 59 100 120 47 69 41 76 120 140 56 81 48 88 +4 -21 +1228 8 33 0 40 -20 45 12 52 36 61 28 58 83 68 160 180 61 86 53 93 -106 -109 68 97 60 180 200 200 225 100 71 +13 +5-2433 8 37 0 46 -22 51 -1460 - 41 - 70 33 225 250 104 67 113 75 250 280 85 280 -117-126+5 -27+16 36 9 41 0 52 -25 57 -14 66 47 79 36 -130 89 315 -121 78 97 -133 87 **-144** 315 355 +17 40 -10 46 0 57 41 -29-26 62 73 87 +7-1651 355 400 103 93 -139 150 103 400 113 -166 450 -153+8 -32+18 -10 50 0 63 -27 -17 55 95 - 45 -108450 500 119 -159 109 -172 500 560 560 150 -194-150 -2200 0 70 -26 70 -26 96 -44 -122 78 -4488 -44-11478 -148630 155 199 155 225 630 710 175 225 175 225 0 -500 - 80 -3080 -30 -100-50 -100-50 -13088 -13888 800 710 185 -235 185 265 900 210 -266 210 -300-56 0 - 90 -34 90 34 124 -56 -112-156100 -190-56 -146100 900 1 000 220 276 220 310 250 316 250 -355 1 000 1 120 0 -660 -105-40-106-40 -145-66 -132-66 -171120 -186120 -2251 120 1 250 260 326 260 365 300 300 -4251 250 1 400 378 -780 -125-48-126-48 -173 -78 140 -213140 -265-156**-78** -2031 400 1 600 330 408 330 455 1 600 1 800 370 -462 -370 -520 -920 -150-58-150-58 -208-92-184-92-242170 -262-170 - 3201 800 2 000 400 -492 -400 -550

Unit μ m

H7	H8	Н9	H10	H11	H13	J6	Js6	J7	Js7	K5	Diameter division mm
high low	high low	high low	high low	high low	high low	high low	high low	high low	high low	high low	over incl.
+ 12 0 + 15 0 + 18 0 + 21 0	+ 18 0 + 22 0 + 27 0 + 33 0	+ 30 0 + 36 0 + 43 0 + 52 0	+ 58 0	+ 75 0 + 90 0 +110 0 +130 0	+180 0 +220 0 +270 0 +330 0	+ 6 -5	+ 4 - 4 + 4.5 - 4.5 + 5.5 - 5.5 + 6.5 - 6.5	+10 - 8	+ 7.5 - 7.5	$ \begin{array}{r} 0 - 5 \\ +1 - 5 \\ +2 - 6 \\ +1 - 8 \end{array} $	3 6 6 10 10 18 18 30
+ 25 0	+ 39 0	+ 62 0	+100 0	+160 0	+390 0	+10 -6	+ 8 - 8	+14 -11	+12.5 -12.5	+2 - 9	30 40 40 50
+ 30 0	+ 46 0	+ 74 0	+120 0	+190 0	+460 0	+13 -6	+ 9.5 - 9.5	+18 -12	+15 -15	+3 -10	50 65 65 80
+ 35 0	+ 54 0	+ 87 0	+140 0	+220 0	+540 0	+16 -6	+11 -11	+22 -13	+17.5 -17.5	+2 -13	80 100 100 120
+ 40 0	+ 63 0	+100 0	+160 0	+250 0	+630 0	+18 -7	+12.5 -12.5	+26 -14	+20 -20	+3 -15	120 140 140 160 160 180
+ 46 0	+ 72 0	+115 0	+185 0	+290 0	+720 0	+22 -7	+14.5 -14.5	+30 -16	+23 -23	+2 -18	180 200 200 225 225 250
+ 52 0	+ 81 0	+130 0	+210 0	+320 0	+810 0	+25 -7	+16 -16	+36 -16	+26 -26	+3 -20	250 280 280 315
+ 57 0	+ 89 0	+140 0	+230 0	+360 0	+890 0	+29 -7	+18 -18	+39 -18	+28.5 -28.5	+3 -22	315 355 355 400
+ 63 0	+ 97 0	+155 0	+250 0	+400 0	+970 0	+33 -7	+20 -20	+43 -20	+31.5 -31.5	+2 -25	400 450 450 500
+ 70 0	+110 0	+175 0	+280 0	+440 0	- 0		+22 -22		+35 -35		500 560 560 630
+ 80 0	+125 0	+200 0	+320 0	+500 0	- 0		+25 -25		+40 -40		630 710 710 800
+ 90 0	+140 0	+230 0	+360 0	+560 0	- 0		+28 -28		+45 -45		800 900 900 1 000
+105 0	+165 0	+260 0	+420 0	+660 0	- 0		+33 -33		+52.5 -52.5		1 000 1 120 1 120 1 250
+125 0	+195 0	+310 0	+500 0	+780 0	- 0		+39 -39		+62.5 -62.5		1 250 1 400 1 400 1 600
+150 0	+230 0	+370 0	+600 0	+920 0	- 0		+46 -46		+75 -75		1 600 1 800 1 800 2 000

Appendix table 7: Basic tolerance

Unit μ m

reperions											Onit μ ni
	er division mm				IT bas	sic tolerance	class				
over	incl.	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10
_	3	0.8	1.2	2	3	4	6	10	14	25	40
3	6	1	1.5	2.5	4	5	8	12	18	30	48
6	10	1	1.5	2.5	4	6	9	15	22	36	58
10	18	1.2	2	3	5	8	11	18	27	43	70
18	30	1.5	2.5	4	6	9	13	21	33	52	84
30	50	1.5	2.5	4	7	11	16	25	39	62	100
50	80	2	3	5	8	13	19	30	46	74	120
80	120	2.5	4	6	10	15	22	35	54	87	140
120	180	3.5	5	8	12	18	25	40	63	100	160
180	250	4.5	7	10	14	20	29	46	72	115	185
250	315	6	8	12	16	23	32	52	81	130	210
315	400	7	9	13	18	25	36	57	89	140	230
400	500	8	10	15	20	27	40	63	97	155	250
500	630	9	11	16	22	30	44	70	110	175	280
630	800	10	13	18	25	35	50	80	125	200	320
800	1 000	11	15	21	29	40	56	90	140	230	360
1 000	1 250	13	18	24	34	46	66	105	165	260	420
1 250	1 600	15	21	29	40	54	78	125	195	310	500
1 600	2 000	18	25	35	48	65	92	150	230	370	600
2 000	2 500	22	30	41	57	77	110	175	280	440	700
2 500	3 150	26	36	50	69	93	135	210	330	540	860

Appendix table 8: Viscosity conversion table

Kinematic viscosity mm ² /s	Saybolt SUS (second)	Redwood R"(second)	Engler E (degree)
2.7	35	32.2	1.18
4.3	40	36.2	1.32
5.9	45	40.6	1.46
7.4	50	44.9	1.60
8.9	55	49.1	1.75
10.4	60	53.5	1.88
11.8	65	57.9	2.02
13.1	70	62.3	2.15
14.5	75	67.6	2.31
15.8	80	71.0	2.42
17.0	85	75.1	2.55
18.2	90	79.6	2.68
19.4	95	84.2	2.81
20.6	100	88.4	2.95
23.0	110	97.1	3.21
25.0	120	105.9	3.49
27.5	130	114.8	3.77
29.8	140	123.6	4.04
32.1	150	132.4	4.32
34.3	160	141.1	4.59
36.5	170	150.0	4.88
38.8	180	158.8	5.15
41.0	190	167.5	5.44
43.2	200	176.4	5.72
47.5	220	194.0	6.28
51.9	240	212	6.85
56.5	260	229	7.38
60.5	280	247	7.95
64.9	300	265	8.51
70.3	325	287	9.24
75.8	350	309	9.95
81.2	375	331	10.7
86.8	400	353	11.4
92.0	425	375	12.1
97.4	450	397	12.8

Kinematic	Saybolt	Redwood	Engler
viscosity mm²/s	SUS (second)	R"(second)	E (degree)
103	475	419	13.5
108	500	441	14.2
119	550	485	15.6
130	600	529	17.0
141	650	573	18.5
152	700	617	19.9
163	750	661	21.3
173	800	705	22.7
184	850	749	24.2
195	900	793	25.6
206	950	837	27.0
217	1 000	882	28.4
260	1 200	1 058	34.1
302	1 400	1 234	39.8
347	1 600	1 411	45.5
390	1 800	1 587	51
433	2 000	1 763	57
542	2 500	2 204	71
650	3 000	2 646	85
758	3 500	3 087	99
867	4 000	3 526	114
974	4 500	3 967	128
1 082	5 000	4 408	142
1 150	5 500	4 849	156 170
1 300	6 000	5 290	
1 400	6 500	5 730	185
1 510 1 630	7 000 7 500	6 171 6 612	199 213
1 740	8 000	7 053	213
1 850	8 500	7 494	242
1 960	9 000	7 494	256
2 070	9 500	7 934 8 375	270
2 200	10 000	8 816	284
2 200	10 000	0.010	204

Appendix table 9: Kgf to N conversion table

11.								
kgf		N	kgf		N	kgf		N
0.1020	1	9.8066	3.4670	34	333.43	6.8321	67	657.04
0.2039	2	19.613	3.5690	35	343.23	6.9341	68	666.85
0.3059	3	29.420	3.6710	36	353.04	7.0361	69	676.66
0.4079	4	39.227	3.7730	37	362.85	7.1380	70	686.46
0.5099	5	49.033	3.8749	38	372.65	7.2400	71	696.27
0.6118	6	58.840	3.9769	39	382.46	7.3420	72	706.08
0.7138	7	68.646	4.0789	40	392.27	7.4440	73	715.88
0.8158	8	78.453	4.1808	41	402.07	7.5459	74	725.69
0.9177	9	88.260	4.2828	42	411.88	7.6479	75	735.50
1.0197	10	98.066	4.3848	43	421.68	7.7499	76	745.30
1.1217	11	107.87	4.4868	44	431.49	7.8518	77	755.11
1.2237	12	117.68	4.5887	45	441.30	7.9538	78	764.92
1.3256	13	127.49	4.6907	46	451.10	8.0558	79	774.72
1.4276	14	137.29	4.7927	47	460.91	8.1578	80	784.53
1.5296	15	147.10	4.8946	48	470.72	8.2597	81	794.34
1.6316	16	156.91	4.9966	49	480.52	8.3617	82	804.14
1.7335	17	166.71	5.0986	50	490.33	8.4637	83	813.95
1.8355	18	176.52	5.2006	51	500.14	8.5656	84	823.76
1.9375	19	186.33	5.3025	52	509.94	8.6676	85	833.56
2.0394	20	196.13	5.4045	53	519.75	8.7696	86	843.37
2.1414	21	205.94	5.5065	54	529.56	8.8716	87	853.18
2.2434	22	215.75	5.6085	55	539.36	8.9735	88	862.98
2.3454	23	225.55	5.7104	56	549.17	9.0755	89	872.79
2.4473	24	235.36	5.8124	57	558.98	9.1775	90	882.60
2.5493	25	245.17	5.9144	58	568.78	9.2794	91	892.40
2.6513	26	254.97	6.0163	59	578.59	9.3814	92	902.21
2.7532	27	264.78	6.1183	60	588.40	9.4834	93	912.02
2.8552	28	274.59	6.2203	61	598.20	9.5854	94	921.82
2.9572	29	284.39	6.3223	62	608.01	9.6873	95	931.63
3.0592	30	294.20	6.4242	63	617.82	9.7893	96	941.44
3.1611	31	304.01	6.5262	64	627.62	9.8913	97	951.24
3.2631	32	313.81	6.6282	65	637.43	9.9932	98	961.05
3.3651	33	323.62	6.7302	66	647.24	10.0952	99	970.86
(1.1	-1-1-2		 			-		1kaf-0 90665N

(How to read the table) If for example you want to convert 10 kgf to N, find "10" in the middle column of the first set of columns on the right. Look in the N column directly to the right of "10," and you will see that 10 kgf equals 98.066 N. Oppositely, to convert 10 N to kgf, look in the kgf column to the right of "10" and you will see that 10 N equals 1.0197 kgf.

1kgf = 9.80665N1N=0.101972kgf

Appendix table 10: Inch-millimetre conversion table

į	nch	011	411	0.11	0.11	411	="	O.II		0.11	011
fraction	decimal	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"
1/64 1/32 3/64 1/16	0.015625 0.031250 0.046875 0.062500	0.397 0.794 1.191 1.588	25.400 25.797 26.194 26.591 26.988	50.800 51.197 51.594 51.991 52.388	76.200 76.597 76.994 77.391 77.788	101.600 101.997 102.394 102.791 103.188	127.000 127.397 127.794 128.191 128.588	152.400 152.797 153.194 153.591 153.988	177.800 178.197 178.594 178.991 179.388	203.200 203.597 203.994 204.391 204.788	228.600 228.997 229.394 229.791 230.188
5/64	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184	230.584
3/32	0.093750	2.381	27.781	53.181	48.581	103.981	129.381	154.781	180.181	205.581	230.981
7/64	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978	231.378
1/ 8	0.125000	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375	231.775
9/64	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772	232.172
5/32	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169	232.569
11/64	0.171875	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566	232.966
3/16	0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962	233.362
13/64	0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359	233.759
7/32	0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756	234.156
15/64	0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153	234.553
1/ 4	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550	234.950
17/64	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947	235.347
9/32	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744
19/64	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141
5/16	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138	236.538
21/64	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534	236.934
11/32	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931	237.331
23/64	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328	237.728
3/8	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725	238.125
25/64	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122	238.522
13/32	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519	238.919
27/64	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916	239.316
7/16	0.437500	11.112	36.512	61.912	87.312	112.721	138.112	163.512	188.912	214.312	239.712
29/64	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109
15/32	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506
31/64	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903
1/ 2	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900	241.300
33/64	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297	241.697
17/32	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694	242.094
35/64	0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091	242.491
9/16	0.562500	14.288	39.688	65.088	90.488	115.888	141.283	166.688	192.088	217.488	242.888
37/64	0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884	243.284
19/32	0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281	243.681
39/64	0.609375	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678	244.078
5/ 8	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075	244.475
41/64	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472	244.872
21/32	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869	245.269
43/64	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266	245.666
11/16	0.687500	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662	246.062
45/64	0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.056	246.459
23/32	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456	246.856
47/64	0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853	247.253
3/4	0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250	247.650
49/64	0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647	248.047
25/32	0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044	248.444
51/64	0.796875	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441	248.841
13/16	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838	249.238
53/64	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234	249.634
27/32	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631	250.031
55/64	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028	250.428
7/ 8	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425	250.825
57/64	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.422	225.822	251.222
39/32	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219	251.619
59/64	0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616	252.016
15/16	0.937500	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012	252.412
61/64	0.953125	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409	252.809
31/32	0.968750	24.606	50.006	75406	100.806	126.206	151.606	177.006	202.406	227.806	253.206
63/64	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203	253.603